
GemStone®

GemBuilder™ for Java™

Programming Guide

Version 2.2

October 2006

GemBuilder User Manual

ii GemStone Systems, Inc. October 2006

INTELLECTUAL PROPERTY OWNERSHIP
This documentation is furnished for informational use only and is subject to change without notice. GemStone
Systems, Inc. assumes no responsibility or liability for any errors or inaccuracies that may appear in this
documentation.
This documentation, or any part of it, may not be reproduced, displayed, photocopied, transmitted, or otherwise
copied in any form or by any means now known or later developed, such as electronic, optical, or mechanical means,
without express written authorization from GemStone Systems, Inc.
Warning: This computer program and its documentation are protected by copyright law and international treaties.
Any unauthorized copying or distribution of this program, its documentation, or any portion of it, may result in
severe civil and criminal penalties, and will be prosecuted under the maximum extent possible under the law.
The software installed in accordance with this documentation is copyrighted and licensed by GemStone Systems, Inc.
under separate license agreement. This software may only be used pursuant to the terms and conditions of such
license agreement. Any other use may be a violation of law.
Use, duplication, or disclosure by the Government is subject to restrictions set forth in the Commercial Software -
Restricted Rights clause at 52.227-19 of the Federal Acquisitions Regulations (48 CFR 52.227-19) except that the
government agency shall not have the right to disclose this software to support service contractors or their
subcontractors without the prior written consent of GemStone Systems, Inc.
This software is provided by GemStone Systems, Inc. and contributors “as is” and any expressed or implied
warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular
purpose are disclaimed. In no event shall GemStone Systems, Inc. or any contributors be liable for any direct,
indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of
substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory
of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the
use of this software, even if advised of the possibility of such damage.

COPYRIGHTS
This software product, its documentation, and its user interface © 1986-2006 GemStone Systems, Inc. All rights
reserved by GemStone Systems, Inc.

PATENTS
GemStone is covered by U.S. Patent Number 6,256,637 “Transactional virtual machine architecture”, Patent Number
6,360,219 “Object queues with concurrent updating”, and Patent Number 6,567,905 “Generational Garbage
Collector”. GemStone may also be covered by one or more pending United States patent applications.

TRADEMARKS
GemStone, GemBuilder, GemConnect, and the GemStone logos are trademarks or registered trademarks of
GemStone Systems, Inc. in the United States and other countries.
UNIX is a registered trademark of The Open Group in the United States and other countries.
Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in
the United States and other countries.
Other company or product names mentioned herein may be trademarks or registered trademarks of their respective
owners. Trademark specifications are subject to change without notice. All terms mentioned in this documentation
that are known to be trademarks or service marks have been appropriately capitalized to the best of our knowledge;
however, GemStone cannot attest to the accuracy of all trademark information. Use of a term in this documentation
should not be regarded as affecting the validity of any trademark or service mark.
GemStone Systems, Inc.
1260 NW Waterhouse Avenue, Suite 200
Beaverton, OR 97006

Preface

October 2006 GemStone Systems, Inc. iii

About This Documentation
This documentation describes GemBuilder® for Java™ 2.2, an application
programming interface (API) for developing distributed Gemstone® applications
with a Java client and a GemStone server.

GemBuilder for Java pairs the portability and flexibility of Java with the scalability
of the GemStone server. You can develop business applications around Java clients
that take advantage of the server's multi-user object execution engine, transaction
management facilities, and fault tolerant environment. The Java clients can be
distributed as standalone applications or as applets that provide a universal client
from a single, easily maintained source.

GemBuilder for Java consists of two parts: the programming interface between
your Java client and the GemStone server, and Java-based tools for developing
GemStone Smalltalk code and inspecting objects in the server.

The programming interface lets your client do the following:

• locate GemStone server objects and obtain stub references to them;

• send messages to GemStone server objects through stub references;

GemBuilder for Java Programming Guide

iv GemStone Systems, Inc. October 2006

• send messages to Java objects from GemStone server objects that implement an
adapter interface;

• execute ad-hoc Smalltalk code on the server; and

• handle exceptions signaled by server objects in a natural fashion.

The GemBuilder for Java Tools let you work with GemStone Smalltalk in the
server. These tools, which can be incorporated into a Java development
environment or used independently, are described in separate documentation,
GemBuilder for Java Tools.

GemBuilder for Java may be used against any GemStone/S server product,
including GemStone/S, the 32-bit server product, or GemStone/S 64 Bit versions
1.x or 2.x. While the server products are similar, some features differ. Gembuilder
for Java behavior that depends on server behavior may therefore vary depending
on which server product and version you are running with. In this documentation,
the term “GemStone/S” or “GemStone” is used when behavior is common; server
specific differences are noted when necessary.

Assumptions
To make use of the information in this documentation, you need to be familiar with
the GemStone server and with GemStone’s Smalltalk programming language as
described in the Programming Guide for GemStone/S or GemStone/S 64 Bit. These
books explain the basic concepts behind the language and describes the most
important GemStone kernel classes. The documentation assumes you have an
existing GemStone application for which you want to create Java clients.

In addition, you should be familiar with the Java language, the Java API, and the
development environment as described in your vendor’s documentation.

Finally, this documentation assumes that the GemStone system has been correctly
installed on your host computer as described in the System Administration Guide for
your GemStone server and that your system meets the requirements listed in your
GemBuilder for Java Installation Guide.

October 2006 GemStone Systems, Inc. v

How This Manual is Organized
Basic Concepts describes the overall design of a GemBuilder application and
presents the fundamental concepts required to understand the interface between a
Java client and the GemStone server.

Communicating With the Server explains how to communicate with the
GemStone server by initiating and managing GemStone sessions, and how to set
up and maintain the Session Broker service through which Java clients to log in.

Interacting with Server Objects describes how to locate objects in the server and
obtain stubs referencing them, how to send messages to the objects or execute ad-
hoc Smalltalk code, how to handle exceptions raised on the server, and how objects
are marshaled between the Java client and the server.

Forwarding Server Messages to Client Objects explains how GemStone objects
can send messages to Java objects by using an adapter to compile the message into
Java code.

Managing Server Transactions discusses the process of committing a transaction,
the kinds of conflicts that can prevent a successful commit, and how to avoid or
resolve such conflicts.

Observing Session and Server Events explains how your application can monitor
events in client sessions and certain events in the server.

Deploying Your Application explains the steps you need to take to deploy your
Java clients for use with the GemStone server.

Other Useful Documents
• GemBuilder for Java Tools printed manual and online documentation describes

the independent set of tools that let you explore and modify Smalltalk code in
the server.

• The Programming Guide for GemStone/S and for GemStone/S 64 Bit describe
the GemStone server and the GemStone Smalltalk language.

• If you will be acting as a system administrator, or developing software for
someone else who must play this role, you should read the System
Administration Guide for GemStone/S or for GemStone/S 64 Bit.

GemBuilder for Java Programming Guide

vi GemStone Systems, Inc. October 2006

Technical Support
GemStone provides several sources for product information and support. The
product-specific manuals and online help provide extensive documentation, and
should always be your first source of information. GemStone Technical Support
engineers will refer you to these documents when applicable.

GemStone Web Site: http://support.gemstone.com
GemStone’s Technical Support website provides a variety of resources to help
you use GemStone products. Use of this site requires an account, but registration
is free of charge. To get an account, just complete the Registration Form, found in
the same location. You’ll be able to access the site as soon as you submit the web
form.

The following types of information are provided at this web site:

Help Request allows designated support contacts to submit new requests for
technical assistance and to review or update previous requests.

Documentation for GemBuilder for Java is provided in PDF format. This is the
same documentation that is included with your GemBuilder for Java product.

Release Notes and Install Guides for your product software are provided in PDF
format in the Documentation section.

Downloads and Patches provide code fixes and enhancements that have been
developed after product release. Most code fixes and enhancements listed on the
GemStone Web site are available for direct downloading.

Bugnotes, in the Learning Center section, identify performance issues or error
conditions that you may encounter when using a GemStone product. A bugnote
describes the cause of the condition, and, when possible, provides an alternative
means of accomplishing the task. In addition, bugnotes identify whether or not a
fix is available, either by upgrading to another version of the product, or by
applying a patch. Bugnotes are updated regularly.

TechTips, also in the Learning Center section, provide information and
instructions for topics that usually relate to more effective or efficient use of
GemStone products. Some Tips may contain code that can be downloaded for use
at your site.

Community Links provide customer forums for discussion of GemStone product
issues.

Technical information on the GemStone Web site is reviewed and updated
regularly. We recommend that you check this site on a regular basis to obtain the

October 2006 GemStone Systems, Inc. vii

latest technical information for GemStone products. We also welcome
suggestions and ideas for improving and expanding our site to better serve you.

You may need to contact Technical Support directly for the following reasons:

• Your technical question is not answered in the documentation.

• You receive an error message that directs you to contact GemStone Technical
Support.

• You want to report a bug.

• You want to submit a feature request.

Questions concerning product availability, pricing, keyfiles, or future features
should be directed to your GemStone account manager.

When contacting GemStone Technical Support, please be prepared to provide the
following information:

• Your name, company name, and GemStone license number

• The GemStone product and version you are using

• The hardware platform and operating system you are using

• A description of the problem or request

• Exact error message(s) received, if any

Your GemStone support agreement may identify specific individuals who are
responsible for submitting all support requests to GemStone. If so, please submit
your information through those individuals. All responses will be sent to
authorized contacts only.

For non-emergency requests, the support website is the preferred way to contact
Technical Support. Only designated support contacts may submit help requests
via the support website. If you are a designated support contact for your
company, or the designated contacts have changed, please contact us to update
the appropriate user accounts.

Email: support@gemstone.com
Telephone: (800) 243-4772 or (503) 533-3503

Requests for technical assistance may also be submitted by email or by telephone.
We recommend you use telephone contact only for more serious requests that
require immediate evaluation, such as a production system that is non-
operational. In these cases, please also submit your request via the web or email,
including pertinent details such error messages and relevant log files.

GemBuilder for Java Programming Guide

viii GemStone Systems, Inc. October 2006

If you are reporting an emergency by telephone, select the option to transfer your
call to the technical support administrator, who will take down your customer
information and immediately contact an engineer.

Non-emergency requests received by telephone will be placed in the normal
support queue for evaluation and response.

24x7 Emergency Technical Support
GemStone offers, at an additional charge, 24x7 emergency technical support. This
support entitles customers to contact us 24 hours a day, 7 days a week, 365 days a
year, if they encounter problems that cause their production application to go
down, or that have the potential to bring their production application down. For
more details, contact your GemStone account manager.

Training and Consulting
Consulting and training for all GemStone products are available through
GemStone’s Professional Services organization.

• Training courses are offered periodically at GemStone’s offices in Beaverton,
Oregon, or you can arrange for onsite training at your desired location.

• Customized consulting services can help you make the best use of GemStone
products in your business environment.

Contact your GemStone account representative for more details or to obtain
consulting services.

Contents

October 2006 GemStone Systems, Inc. ix

Chapter 1. Basic Concepts

The GemStone Solution . 1-1
About the GemStone Server . 1-1
About GemBuilder for Java . 1-2
Integrating Information across the Enterprise 1-3

GemStone Sessions . 1-3
The Session Broker . 1-3
Development Strategy . 1-4

Using GemBuilder for Java with Your Development Environment 1-5
Development Steps . 1-5
Partitioning Your Application . 1-6

Chapter 2. Communicating With the Server

Overview . 2-1
Opening a Session . 2-2

Creating the Session Parameters . 2-2
Creating the Session and Connecting to the GemStone Server 2-4

Contents GemBuilder for Java Programming Guide

x GemStone Systems, Inc. October 2006

Launching Tools From Your Application 2-4
Logging of Debugging Information. 2-5

Closing a Session . 2-6
Administering the Server Component . 2-6

Running the Session Broker . 2-7
Effect of NetLDI Mode . 2-7
Configuration Files . 2-8
To Start the Session Broker. 2-11
To Halt the Session Broker . 2-13
Connecting to the Session Broker Gem 2-14
To Run Multiple Session Brokers . 2-15

Maintaining the Log Directory . 2-16
Troubleshooting . 2-16

To Determine if a Session Broker Is Running 2-16
To Restart a Session Broker . 2-16
To Locate Log Files . 2-17
To Enable Verbose Logging . 2-17

Chapter 3. Interacting with Server Objects

Overview . 3-1
The Message-forwarding Interface . 3-2
Using Stub Protocol to Send Messages . 3-3
Sending Dynamic Messages . 3-4
Handling Server Exceptions . 3-5

To Invoke a Debugger on an Exception 3-8
How Objects are Marshaled . 3-8

Using GemStone's DoubleByteString 3-9
Controlling How Objects Are Marshaled 3-9

Writing the State of an Object to Send to the Server 3-9
Reading the State of an Object Sent from the Server 3-10
Writing the State of an Object to Send to the Client 3-10
Reading the State of an Object Sent from the Client 3-11

Representing Server Objects in the Client . 3-11
Deciding Which Objects to Represent . 3-11
Obtaining GbjObject Stubs . 3-12

Looking Up a Named Object in the Server. 3-12
Saving a Returned Stub . 3-13

Contents

October 2006 GemStone Systems, Inc. xi

Registering a Custom Stub . 3-13
Accessing a Stub’s Cached Value . 3-14
Effect of Multiple Class Versions . 3-15

Executing Ad-hoc Smalltalk Code . 3-15
Accessing Complex Objects Efficiently . 3-16

Getting All Named Instance Variables. . 3-16
Flattening Objects in the Server. . 3-17
Replicating Objects Using Holders . 3-17

Working with Collections . 3-18
The GbjCollection Protocol . 3-19

Protocol Examples. . 3-20
Serializing the Collection in the Server . 3-20
Unpacking the Collection in the Client . 3-22

To Enumerate the Collection . 3-22
To Unpack the Collection from an Array 3-23

Obtaining Application-specific Stubs. . 3-23
Registering Stubs at Static Initialization 3-24
Registering Stubs at Runtime . 3-24

Putting Client Data into the Server . 3-25

Chapter 4. Forwarding Server Messages to Client Objects

Overview . 4-1
Using Reflection. 4-2
Implementing the Adapter Interface . 4-3

Registering a Client Adapter . 4-3
Dealing with Multithreading . 4-3

Message-sends in the Server . 4-4
Exceptions Raised in the Client . 4-6

Chapter 5. Managing Server Transactions

Overview . 5-1
Operating Inside a Transaction . 5-2

Committing a Transaction . 5-4
Aborting a Transaction . 5-4
Handling Commit Failures . 5-5

Contents GemBuilder for Java Programming Guide

xii GemStone Systems, Inc. October 2006

Operating Outside a Transaction . 5-5
Being Signaled to Abort . 5-7

Transaction Modes . 5-8
Manual Transaction Mode . 5-9
Automatic Transaction Mode . 5-9
Transactionless Mode . 5-10
Choosing Which Mode to Use . 5-10
Switching Between Modes . 5-10

Managing Concurrent Transactions . 5-11
Read and Write Operations. 5-11
Optimistic and Pessimistic Concurrency Control 5-12
Setting the Concurrency Mode . 5-13
Setting Locks . 5-13

Reduced-Conflict Classes . 5-15

Chapter 6. Observing Session and Server Events

Overview . 6-1
Observing Session Events . 6-1

To Monitor Session Events. 6-2
Observing Server Events. 6-3

Chapter 7. Deploying Your Application

Overview . 7-1
Deployment Steps . 7-2

To Deploy an Applet . 7-2
To Deploy a Standalone Application 7-3

Glossary

Chapter

October 2006 GemStone Systems, Inc. 1-1

1 Basic Concepts

The GemStone Solution
This overview describes GemStone's solution for Internet and corporate intranet
applications: the GemStone Server and GemBuilder for Java (GBJ).

About the GemStone Server
The GemStone server provides a wide range of services to help you build object-
based information systems. GemStone:

• supports transaction-intensive, business-critical applications involving more
than 1000 concurrent users and persistent object spaces in the tens of
gigabytes. GemStone/S 64 Bit provides greater scalability for much larger
applications requiring more object space.

• provides a distributed server architecture that allows the server and processes
to be spread over multiple hardware platforms and operating systems in a
heterogeneous computing environment

• provides object persistence on an instance basis (determined by reachability
from other persistent objects) for greater flexibility compared to object server
systems that use class-based persistence or object-relational mapping

The GemStone Solution GemBuilder for Java Programming Guide

1-2 GemStone Systems, Inc. October 2006

• provides transactions having ACID properties (atomicity, consistency,
isolation, durability)

• provides configurable concurrency modes and protocols for requesting locks
on individual client Smalltalk objects and collections of objects, allowing
developers to exercise fine-grained control over concurrent access to objects

• provides automatic referential integrity and an on-line garbage collection
process that runs in the background

• supports embedded queries, path queries, collection queries, non-locking
queries, multi-user indexes and extensible indexes

• can monitor events or changes in state of objects and send signals to other
applications or to users, eliminating the need for inefficient polling

About GemBuilder for Java
The GemBuilder for Java API is a Java runtime package that provides a message
forwarding interface between a Java client and a GemStone server:

• Java clients can locate GemStone server objects by name and obtain stub
references to them.

• Java clients can send messages to GemStone server objects through stub
references.

• GemStone server objects can send messages to Java client objects that
implement an adapter interface.

The API does not include user interface classes or application frameworks. The
focus is on transparent messaging and simple replication.

The GemBuilder for Java Tools are implemented in Java, so you can create Java
clients using your preferred Java development environment, then create server-
side applications in GemStone Smalltalk without leaving the Java environment.
The set includes the following tools:

• A GemStone Browser lets you view the available GemStone Smalltalk classes
and methods, create new classes, and add or modify methods.

• An Inspector lets you view objects residing in the GemStone server. You can
examine the state of individual objects, modify them if desired, browse
collections, or look at the contents of dictionaries.

• A Workspace lets you execute arbitrary strings of GemStone Smalltalk code.
Use this tool to locate server objects to be examined in an Inspector, create

Basic Concepts GemStone Sessions

October 2006 GemStone Systems, Inc. 1-3

sample data for testing applications, assign access control to objects or
collections, and perform administration tasks in the GemStone server.

• A Debugger is available whenever execution of a GemStone method results in
a run-time error.

Integrating Information across the Enterprise
Through GemStone's distributed architecture, Java applications have the use of
objects residing anywhere in the enterprise. And through GemStone's connectivity
tools, Java applications can also have access to business data from relational and
legacy databases:

• By using GemConnect, GemBuilder for Java clients have access to Oracle and
Sybase RDBMSs.

• GemStone Object Transaction Services provide complete control over
transactions that include data from heterogeneous sources.

GemStone Sessions
All interaction with the GemStone server takes place in the context of a session,
which is a login to the GemStone server under a particular GemStone User ID.
Because this context remains in effect until the session is closed, it does not have to
be reestablished for each individual service request.

Each session is associated with its own Gem process, which acts as the GemStone
server for that session. It is the Gem process that accesses the shared objects and
executes GemStone Smalltalk code.

The Session Broker
An intermediary called the Session Broker is responsible for assigning a Gem
process to serve a Java client, and then placing the Gem and client in
communication with each other. A GemStone administrator starts a Session Broker
(an instance of GbjBroker) from a Topaz session, after choosing a TCP/IP port to
serve as a well-known port. By default, the port number is 9090.

To connect to GemStone, a Java client must provide that port number and the
name of the GemStone server as two of the session parameters. GemBuilder for
Java then asks the Session Broker to provide a Gem session process; the Session
Broker, in turn, calls on a NetLDI network server to spawn the Gem.

Development Strategy GemBuilder for Java Programming Guide

1-4 GemStone Systems, Inc. October 2006

Once the connection has been established, further communication takes place
solely between the Java client and the Gem.

Figure 1.1 Session Broker Connecting a Client to the Server

Development Strategy
GemBuilder for Java supports distributed application development with the
GemStone server. GemStone is used as an object management system in which
Java clients can take advantage of GemStone Smalltalk method execution in the
server. GBJ provides limited replication of simple data types to the client.

Application partitioning must be considered in the development of GBJ
applications from the start because the client component is written in a different
language than the server component.

Server

Firewall

Client’s
Gem

Session
Broker NetLDI

Java
Client

Transient channels
to set up connection

1

2

3
4

5

Well-known port

Basic Concepts Development Strategy

October 2006 GemStone Systems, Inc. 1-5

Using GemBuilder for Java with Your Development
Environment

GemBuilder for Java works in conjunction with the Java development
environment (JDE) of your choice. After installing GBJ on your development
platform, do the following:

• Add gbj22.jar to your CLASSPATH.

• Add an item to your JDE tools menu to launch the GBJ Tools. For instance:

java com.gemstone.tools.GbjLauncher

• Add “com.gemstone.gbj.*” to the import list for each Java class where it is
appropriate.

• Optionally, add an item to the JDE tools menu to open a browser on the online
documentation home page, GbjIndex.html. Or, add a bookmark in your
Web browser.

Development Steps
The typical steps in developing an application using GemBuilder for Java are:

1. Model the system using accepted OO modeling techniques.

2. Identify objects that will provide server-based services.

3. Use the GBJ Tools to create server classes and methods.

4. Write the Java client classes using tools of your choice.

5. Test the application.

A Rapid Application Development approach could also be taken where classes
and methods are built in both the client and the server during the building and
testing of the application. In this approach, you would have the GemBuilder for
Java Tools running along side the Java development environment. You would add
or modify methods in the GemStone server, commit them to the server, and make
the requisite iterative runs of the Java application within a Java development
environment. Changes you make within the Tools session must be committed to
the GemStone server before you test them in the Java application because the
application being tested typically will run in a separate GemStone session.

Development Strategy GemBuilder for Java Programming Guide

1-6 GemStone Systems, Inc. October 2006

Partitioning Your Application
The recommended approach to application partitioning is to keep user-interface
work in the Java client, and to keep business objects — shared procedures, rules,
and data — in the GemStone server. In general, the recommended approach is:

• Have the server handle object processing and queries. Avoid having the server
side know about details of the user interface where that is not necessary.
Instead, let the client request the objects the interface needs.

• Have the client make the minimum number of requests to the server by using
the techniques described under “Accessing Complex Objects Efficiently” on
page 3-16. Making requests efficiently is especially important for Internet
applications where the network is quite slow.

The GemBuilder for Java Tools can also be used to test and debug GemStone
server-side classes and methods independently of a Java development
environment. The Workspace, Inspector, and Debugger tools are useful in
performing unit tests on server classes and in examining the state of the GemStone
server to find and correct bugs.

GbjObject, which extends java.lang.Object, is GemBuilder for Java's principal class.
Instances are stubs that represent objects in the GemStone server.

Although the stub and the holder classes present one recommended approach to
implementing the client, neither is inherently necessary; satisfactory results could
have been achieved in other ways.

Chapter

October 2006 GemStone Systems, Inc. 2-1

2 Communicating With
the Server

Overview
All interaction with the GemStone server takes place through a session that is
dedicated to serve your Java client. Each session is an instance of GbjSession,
which provides the environment and a number of important capabilities for
interaction with the GemStone server. Through GbjSession, your Java client can:

• connect to and disconnect from the server

• locate server objects by name and obtain stub instances representing them

• install custom stub objects for specific kinds of server objects

• execute ad-hoc GemStone Smalltalk code in the server

• control transactions in the server

• install adapters that dispatch messages from server objects to client objects

• observe events in the server, such as a change to a specific object or a Gem-to-
Gem (session to session) signal, and certain events that happen in another
session object, such as the committing of a transaction.

Opening a Session GemBuilder for Java Programming Guide

2-2 GemStone Systems, Inc. October 2006

Each session has a public variable, userData, in which you store session-specific
information, such as context information that you want to be available elsewhere
in the client. Because this variable is of type Object, it must be cast to the
appropriate class when retrieving objects stored in it.

The session communicates with the GemStone server through a Gem process,
which is started by a Session Broker (an instance of GbjBroker) during login, as
described under “The Session Broker” on page 1-3. The Session Broker must be
started before Java clients can use the server.

Opening a Session
One of the first tasks your client needs to perform is to open a session with (log in
to) the appropriate GemStone server. You do that in two steps:

1. Create and fill in an instance of GbjParameters.

2. Use the parameters to create an instance of GbjSession, then connect the
session to the GemStone server.

The GbjSession not only provides a connection with the server, it also provides a
context, such as a name space, object access authorizations, and privileges. Once
the connection is established, your Java application can access GemStone server
objects in any way permitted by the security privileges associated with that
GemStone userId.

Creating the Session Parameters
An instance of GbjParameters defines the GemStone server, userId, and other
information needed to log in to GemStone. The following code sets up parameters
for a session when the user clicks the application’s Connect button.

Communicating With the Server Opening a Session

October 2006 GemStone Systems, Inc. 2-3

Example 2.1 Setting the Session Parameters

import com.gemstone.gbj.*;
GbjParameters params;
params = new GbjParameters();

// required parameters without defaults
params.userName = “DataCurator”;
params.password = “swordfish”;
params.serverName = “gemserver61”;

// parameters that have defaults as shown
params.format = GbjParameters.FORMAT32;
params.brokerMachine = “localhost”;
params.brokerPort = 9090;
params.gemnetName = “gemnetobject”;
params.timeout = 900;
params.connectTimeout = 30;
params.transactionMode = GbjParameters.ManualTransactions;

The userName and password fields must match an existing GemStone userId in
the server. There are no defaults for these fields. You must specify the stone to
which you will connect to in serverName.

The format must match the OOP format of the server. The default, for use with
GemStone/S, is FORMAT32. GemStone/S 64 Bit version 1.x users should use
FORMAT64.1, and GemStone/S 64 Bit version 2.x users should use FORMAT64.2.

In the example, the GemStone server and Session Broker are located on this
machine, so the brokerMachine field can be set to the machine name or to localhost.
In other configurations, the name of a remote machine can be specified. The default
is “localhost”.

You must know, or prompt for, the TCP/IP port (brokerPort) at which the Session
Broker is listening for connection requests. Port 9090 is commonly used, but the
actual port number is set by the configuration file gbj.ini. The default is 9090.

The gemnetName field determines which Gem service start up script is read when
the session starts. For most GemStone installations, the name is gemnetobject
(the default, for Bourne or Korn login shells) or gemnetobjcsh (for users of the
C shell on GemStone/S only).

The timeout field sets the length of time (in seconds) that the server will wait
before it drops an idle session. The default is 900 seconds (15 minutes).

Opening a Session GemBuilder for Java Programming Guide

2-4 GemStone Systems, Inc. October 2006

The connectTimeout field sets the length of time (in seconds) that the Java client
will wait for a response from the Session Broker. The default is 30 seconds.

The transactionMode statement sets the way in which transactions are started in
a GemStone session. The default mode under GemBuilder for Java is
ManualTransactions, in which transactions must be started explicitly.
AutomaticTransactions specifies a chained mode in which a transaction is started
when the session connects to the server and new transactions begin after a
commitTransaction or abortTransaction is processed. For further information, see
“Transaction Modes” on page 5-8.

An RPC login may also require a host operating system user name and password
as parameters (serverOSUserName and serverOSPassword), depending on the
mode in which the NetLDI is running. For further information, see “Effect of
NetLDI Mode” on page 2-7.

NOTE:
Ordinarily, a GemStone NetLDI network server must be running on the
Session Broker's machine so the broker can use it to spawn Gems.

For further information about the NetLDI, refer to the System Administration Guide
for your GemStone server.

Creating the Session and Connecting to the GemStone Server
After you have created and filled in an instance of GbjParameters, the next step is
to create the session instance and connect it to the server. This example is a
continuation of the previous one.

Example 2.2 Connecting to GemStone

GbjSession mySession;
mySession = new GbjSession(params);
mySession.connect();

Launching Tools From Your Application

You can start the GemBuilder for Java Tools from your application to facilitate
debugging from the GemStone session in which the application is running. (The
class definition must include com.gemstone.tools.* in place of, or in addition
to com.gemstone.gbj.*.)

To open a Tools launcher for a new session, embed this code in your application:

Communicating With the Server Opening a Session

October 2006 GemStone Systems, Inc. 2-5

new GbjLauncher();

Alternatively, provide an active, logged in session as an argument to the
constructor:

new GbjLauncher(aGbjSession);

Your application can use a session’s launcher text pane as a transcript by sending
the message transcript() to a launcher instance. Because the transcript is a Java
TextArea, you can use appropriate protocol, such as appendText(). For instance,

this.launcher.transcript().appendText("Done");

Logging of Debugging Information

When you are diagnosing problems involving client-server interaction, it may help
to enable verbose logging on one or both sides. An example would be a situation
in which the server component mysteriously “hangs” with no message to the client
and nothing in the ordinary log.

The GbjSession method setDebuggingOptions() takes two boolean arguments,
verboseClient and verboseServer. These parameters can be set programmatically or
by using File > Settings menu picks in the GemStone Launcher.

When verboseClient is true, API debugging messages are displayed in System.out.

When verboseServer is true, server debugging messages are written to the session
log file, gbjnn.log (for the location of the log files, see “To Locate Log Files” on
page 2-17). If this argument is set prior to logging in, connection messages also
appear in the broker log.

Closing a Session GemBuilder for Java Programming Guide

2-6 GemStone Systems, Inc. October 2006

The following example logs the use of a Workspace to evaluate a GemStone
Smalltalk expression:

Example 2.3

31/01/1997 16:58:49: reading next buffer for message
31/01/1997 16:58:49: reading packet length
31/01/1997 16:58:49: reading 2 bytes:
31/01/1997 16:58:49: aByteArray(0, 25)
…
31/01/1997 17:11:26: Reading next key
31/01/1997 17:11:26: Reading field 24
31/01/1997 17:11:26: value = 'evaluate:inContext:names:values:printing:'
31/01/1997 17:11:26: Reading next key
31/01/1997 17:11:26: Reading field 17
31/01/1997 17:11:26: value = 5
31/01/1997 17:11:26: Reading next key
31/01/1997 17:11:26: Reading field 100
31/01/1997 17:11:26: value = 'System currentSessionNames'

Closing a Session
When the time comes to terminate the session, send the message close() to the
session object, and perform any other housekeeping necessary.

WARNING:
Closing the session logs out the user’s GemStone session. Any uncommitted
changes are lost.

Administering the Server Component
This topic provides information to help you configure the Session Broker and
troubleshoot problems that may arise.

Communicating With the Server Administering the Server Component

October 2006 GemStone Systems, Inc. 2-7

Running the Session Broker
A Session Broker can be run on the GemStone server's machine or on any other
supported platform that has a network connection to the server. The primary
consideration in locating a Session Broker is that the Gems it spawns will be
located on the same machine. There are three parts to consider: the GemStone
server, the Session Broker and Gems, and the Java clients. Each part can be on a
separate machine, so several configurations are possible:

• The Session Broker can run on the Server's machine, and all Gems it spawns
will be on that machine. This configuration is the simplest, and is suitable in
most cases.

• The Session Broker can run on a client's machine, and the Gems will be
spawned on the client's machine. Where necessary, each of several machines
can have its own Session Broker.

• The Session Broker and Gems can run on an separate machine, offloading that
activity from the server and client machines.

NOTE:
Ordinarily, a GemStone NetLDI network server must be running on the
Session Broker's machine so the broker can use it to spawn Gems.

Effect of NetLDI Mode

The mode in which the NetLDI is running affects the ownership of the Gems that
are spawned and the network authentication requirements. In general, the effect is
the same as for other parts of a GemStone installation:

• The default mode requires authentication by way of a host user name and
password on the Session Broker's machine. This information can be provided
as session parameters or by a .netrc file. The Gem is owned by the specified
host user.

• Guest mode makes it unnecessary to provide authentication. Under UNIX,
this mode typically is combined with captive account mode, which causes the
captive account to own the Gem processes. Under Windows NT, guest mode
is the recommended mode; it reduces security but provides increased
convenience.

Administering the Server Component GemBuilder for Java Programming Guide

2-8 GemStone Systems, Inc. October 2006

Configuration Files

You can use a configuration file to provide settings for the Session Broker to use at
startup. The configuration file is optional; if you specify none, the Session Broker
looks for a file in the current directory with the default name gbj.ini. If it finds
no such file, it uses default values.

You can use operating system environment variables in a configuration file. Lines
preceded by a semi-colon are comments. The following example configuration file
explains each parameter:

Example 2.4 Configuration File

; GBJ Broker Configuration Parameters
; start section --
[gbjbroker]
;
; serverPort is the port number to use for the broker’s
; server socket.
; Permissible values: integer > 0.
; serverPort=9090
serverPort=9090
;
; ports are numbers to use for temporary server sockets
; in spawned gems.
; Permissible values: a sequence of integers or
; range of integers, separated by spaces or commas.
; For example: ports= 9091 9093-9094,9096
; ports=9091-9099
ports=9091-9099
;
; fileDirectory is the path name of the log file
; directory -- the location for log files in spawned gems
; and default location for the broker’s log file.
; Permissible values: a valid directory path for
; the host OS.
; Delimit environment variables with $(unix) or %(windows).
; fileDirectory=.
fileDirectory=.
;
; logFile is the name of the broker’s log file.
; If no directory is specified, the file is placed in
; #fileDirectory.
; Delimit environment variables with $(unix) or %(windows).
; The default log file name is ‘gbjbroker<PID>.log’, where
; <PID> is the process ID of the broker process.

Communicating With the Server Administering the Server Component

October 2006 GemStone Systems, Inc. 2-9

; Permissible values: a valid file name for the host OS.
;
; If verbose is true, the broker writes detailed messages
; to the log file. If verbose is false, the broker writes
; error messages only.
; Permissible values: true or false.
; verbose=false
verbose=false
;
; gbjAdministrator and gbjAdministratorPassword are the
; GemStone username and password used by the startgbj and
; stopgbj scripts for starting and stopping a broker.
; Permissible values: valid GemStone username and
; password. The password may be omitted, and specified at
; broker startup time.
gbjAdministrator=DataCurator
gbjAdministratorPassword=swordfish
;
; gbjBrokerConnectToken is the GemStone username for
; connecting to a running broker.
; This need not be a valid GemStone username.
; If the GemStone username in a connection request
; matches #gbjBrokerConnectToken, the broker establishes
; a connection in the broker’s gem. For security, this value
; may be omitted here and specified at broker startup time.
; gbjBrokerConnectToken=GbjAdministrator
gbjBrokerConnectToken=GbjAdministrator
;
; Next are GemStone parameters for spawning gems.
; Permissible values: valid GemStone login parameters.
; Values for password and hostPassword may be omitted here
; and specified at broker startup time.
; Note that you must supply a gemStoneName.
gemStoneName=
username=DataCurator
password=swordfish
hostUsername=
hostPassword=
gemService=gemnetobject
;
; initialGemCount is the number of gems to spawn on
; startup. Gems are spawned as needed. If you know how
; many you will need, starting all at once may save time.
; Permissible values: an integer >= 0 and >=
; #initialGemMinimum.
; initialGemCount=1

Administering the Server Component GemBuilder for Java Programming Guide

2-10 GemStone Systems, Inc. October 2006

initialGemCount=1
;
; initialGemMinimum is the minimum number of gems to
; spawn on startup. If this many gems are not created
; before the number of seconds specified by
; #initialDelay, the broker quits.
; Permissible values: an integer >= 0 and <=
; #initialGemCount.
; initialGemMinimum=1
initialGemMinimum=1
;
; initialDelay is the number of seconds to wait for
; the #initialGemMinimum gems on startup.
; The broker quits if this many seconds pass before
; #initialGemMinimum gems have been created.
; 0 means no time limit.
; Permissible values: an integer >= 0
; initialDelay=180
initialDelay=180
;
; maximumGemCount is the maximum number of gems possible.
; Permissible values: an integer >= 0 and >=
; #maximumIdleGems and >= #initialGemCount.
; Default is the value of the #STN_MAX_SESSIONS GemStone
; configuration option minus one for the broker session.
; 0 means no limit.
; Note: The default value of #STN_MAX_SESSIONS is 40.
; (See GemStone System Administration Guide).
; maximumGemCount=0
;
; maximumIdleGems is the maximum number of idle gems.
; If a gem goes idle, causing the number of idle gems to
; exceed this number, the gem is terminated.
; Permissible values: an integer >= 0 and <=
; #maximumGemCount.
; Default is the value of the #maximumGemCount option.
; 0 means no limit.
; maximumIdleGems=0
;
; eventTimeout sets the number of seconds that a server
; gem’s event loop waits for socket activity when there
; are no events to process. The wait will terminate
; after this number of seconds if it is set to an integer
; greater than or equal to zero. If less than zero it
; will wait indefinitely, but not recommended. The
; eventTimeout should not be set to a value greater

Communicating With the Server Administering the Server Component

October 2006 GemStone Systems, Inc. 2-11

; than the STN_GEM_ABORT_TIMEOUT, otherwise it renders
; this feature ineffective and will not be able to
; respond to sigAborts.
; 0 means no time limit (not recommended).
; Permissible values: an integer >= 0
; eventTimeout=30
eventTimeout=30
;
; if abortOnTimeout is set to true, the GBJ broker will abort each time
; it gets a timeout event. This will allow any outstanding voting to
; complete on idle systems.
; Permissible values: true or false.
; Default: false.
; abortOnTimeout=false
abortOnTimeout=false
;
; End of configuration file.

To Start the Session Broker

You can start the Session Broker using either the startup script provided, or Topaz
(GemStone's command line programming environment).

Using startgbj script

The startgbj script has the following syntax:

startgbj [<iniFile>][-h][-a <gbjAdministratorPassword>]
 [-d <brokerLogDirectory>][-p <password>]
 [-P <hostPassword>][-T <gbjBrokerConnectToken>]

<iniFile> the path to a valid GBJ initialization file. Defaults to "gbj.ini" in the
current working directory.

-h display this message and exit.

-a <gbjAdministratorPassword> the GemStone password for the
GbjAdministrator account.

-d <brokerLogDirectory> the directory for holding the broker log.

-p <password> the GemStone password for spawning gems.

-P <hostPassword> the host password for launching gems.

Administering the Server Component GemBuilder for Java Programming Guide

2-12 GemStone Systems, Inc. October 2006

-T <gbjBrokerConnectToken> the GemStone userId for connecting to a
running broker.

Since the configuration file is not secure, rather than including passwords in the
configuration file, you may specify them at startup using the -a, -p, -P, and -T
options. If these parameters are not included in the configuration file, and not
specified in the command line, the script will prompt you to enter them.

For example, to run the startup script when the passwords and GemStone
connecting userId are not included in the configuration file, enter the following at
the operating system command prompt:

prompt> startgbj gbj.ini -a swordfish -p swordfish -T
GbjAdministrator

You can substitute another file name for gbj.ini if you wish to use a different
configuration file. If you supply no file name, GemBuilder for Java looks for a file
named gbj.ini in the current directory. If it finds no such file, the script fails.

An additional optional argument, -h, prints usage information and exits.

Using topaz

To use the command line:

1. Log in to the GemStone server as any user, using Topaz (GemStone's
command line programming environment).

2. To use the default settings, enter at the command line:

topaz 1> doit
GbjBroker new startup
%

3. Note the port number and the log directory that are displayed. You can
minimize the window, but don’t close it — that would halt the Session Broker.

To start a Session Broker from the command line using a different configuration
file, enter:

topaz 1> doit
(GbjBroker newOnFile: 'mygbj.ini') startup
%

The GbjBroker class also provides methods to override specific configuration
settings, either from a configuration file or the defaults. To override the server port
setting, for example, enter:

topaz 1> doit

Communicating With the Server Administering the Server Component

October 2006 GemStone Systems, Inc. 2-13

(GbjBroker newOnFile: 'gbj.ini')
serverPort: 9080;
startup
%

For related information, see “Configuration Files” on page 2-8.

To Halt the Session Broker

You can halt the Session Broker using either the shutdown script provided, or by
connecting to the Session Broker as described in the next topic.

Using stopgbj script

The shutdown process must log into the system, so configuration information is
also required. The syntax for the stopgbj script is as follows:

stopgbj [<iniFile>][-h][-a <password>][-i|-t <timeout>]
 [-T <gbjBrokerConnectToken>]

<iniFile> the path to a valid GBJ initialization file. Defaults to "gbj.ini" in the
current working directory.

-h display this message and exit.

-i immediate shutdown, even if clients are logged in.

-t <timeout> wait <timeout> seconds for users to logoff before attempting
to shutdown the broker.

-a <password> the GemStone password for the GbjAdministrator account.

-P <hostPassword> the host password for launching gems.

-T <gbjBrokerConnectToken> the GemStone userId for connecting to a
running broker.

Since the configuration file is not secure, rather than including passwords in the
configuration file, you may specify them during shutdown using the -a, -p, -P, and
-T options. If these parameters are not included in the configuration file, and not
specified in the command line, the stopgbj script will prompt you to enter them.

For example, to run the stopgbj script when the passwords and GemStone
connecting userId are not included in the configuration file, enter the following at
the operating system command prompt:

prompt> stopgbj gbj.ini -a swordfish -T GbjAdministrator

This shuts down only if all Gems are idle. If some Gems are active, use either the
-i or -t option.

Administering the Server Component GemBuilder for Java Programming Guide

2-14 GemStone Systems, Inc. October 2006

The -i option shuts down the Session Broker immediately, even if Gems are still
active.

Follow -t with an integer representing a number of seconds. This option disables
logins and then shuts down Gems as soon as they are idle, until the specified
number of seconds has passed. If some Gems are still active, the Session Broker is
not shut down and logins are reenabled.

An additional optional argument, -h, prints usage information and exits.

You can substitute another file name for gbj.ini if you’re using a different
configuration file. If you supply no file name, GemBuilder for Java looks for a file
named gbj.ini in the current directory. If it finds no such file, the script fails.

NOTE:
It is not possible to resume execution of the Session Broker after pressing
Control-C.

Connecting to the Session Broker Gem

You can connect to the Session Broker’s gem in order to shut it down, or to perform
other administrative tasks. Doing so requires that you use a configuration file.

Logging In

Log in through GemBuilder for Java with a GemStone UserId that matches the
gbjBrokerConnectToken parameter in the configuration file. The default is
GbjAdministrator. No password is needed.

Shutting Down the Session Broker

Once connected to the Session Broker’s Gem, you can shut it down by sending any
of several messages either to the GbjBroker class, or to the current instance of
GbjBroker.

For example:

GbjBroker shutdown

or

GbjBroker current shutdown

The shutdown messages available are:

shutdown Stops the Session Broker if all Gems
are unconnected.

Communicating With the Server Administering the Server Component

October 2006 GemStone Systems, Inc. 2-15

To Run Multiple Session Brokers

You can run more than one Session Broker on a single machine, although there is
no need to do so (you can connect to any local GemStone server through a single
Session Broker). You must be careful to use separate ports and log directories for
each broker on the same machine.

1. Choose a set of unused TCP/IP ports and a log directory for the new broker.

2. Make a copy of the gbj.ini configuration file (in the GemBuilder for Java
server directory) under another name.

3. Edit the copy to substitute the chosen ports and log directory. The lines you
need to change look like these:

serverPort=9090
ports=9091-9099
fileDirectory=.

4. Follow the instructions for starting a Session Broker, logging in to a different
server and using the modified configuration file.

shutdownImmediate Stops the Session Broker immediately,
whether Gems are unconnected or
busy, terminating all Gems.

shutdownWait Logins are disabled. The Session
Broker waits for all Gems to
disconnect before shutting down.

shutdownWait: Takes an integer argument specifying
the number of seconds to wait for all
Gems to become idle before stopping
the Session Broker. Logins are
disabled immediately, except for
other logins to the Session Broker
Gem. If the number of seconds
specified elapses and some Gems are
still busy, logins are reenabled and
the Session Broker is not shut down.
To specify that the Session Broker
must wait indefinitely, supply a
negative number as an argument.

shutdownCancel Stops the shutdown process started
by shutdownWait:.

Administering the Server Component GemBuilder for Java Programming Guide

2-16 GemStone Systems, Inc. October 2006

Maintaining the Log Directory
You should plan to remove old log files periodically from the file directory
specified in gbj.ini. The files that the Session Broker and each Gem create in this
directory are not deleted automatically.

1. The Session Broker log, gbjbrokernn.log, continues to grow until the
Broker is restarted, at which time the previous log file is replaced by a new one.

2. Each Gem creates a log file having the name gbjnn.log, where nn is a unique,
sequential number that begins at 1 and increments until the Session Broker is
restarted, at which time the number is reset to a value of 1.

CAUTION:
Depending on the frequency at which clients are started, the length of time
the Session Broker has been running, and the chosen degree of logging detail
(verbosity), it is possible for the log files to fill the disk.

Troubleshooting
If you have trouble connecting to the server, first make sure the Session Broker is
running and that you have the correct machine name and port number. These can
be verified by reviewing information displayed at the time the broker was started
or by examining the broker's log file.

You might find it helpful to examine the broker's log file for clues. If a problem
persists, try restarting the broker under verbose logging so more information is
available.

To Determine if a Session Broker Is Running

execute gslist -v at the command line. You will see a line similar to the
following:

OK 6.1.5 username Aug 28 16:42 broker GBJ@port9090-gemserver61

The first element is the status. “OK” indicates the broker is running. If there is no
entry for the broker, or if the status is “Frozen” or “Killed”, you will need to
restart the broker.

You may also check the broker’s log file.

To Restart a Session Broker

1. Make sure the previous Session Broker was terminated cleanly. If in doubt,
stop the broker as described under “To Halt the Session Broker” on page 2-13.

Communicating With the Server Administering the Server Component

October 2006 GemStone Systems, Inc. 2-17

2. Start a new Session Broker. You can use the same port numbers.

It is not possible to resume operation of a broker that has been halted.

For related information, see “To Start the Session Broker” on page 2-11.

To Locate Log Files

The log files for the Session Broker and the Gems are located in the directory
specified by the fileDirectory instance variable of the GemStone GbjBroker.
This variable is set by the broker configuration file, gbj.ini.

• Invoking the server utility gslist -x will report the location of log files for
all server processes, including the broker.

• If the broker was started from topaz, check the window in which the Session
Broker is running. The current value of fileDirectory is displayed at the
time you start the Session Broker.

• If necessary, check the configuration file to determine the setting that was
used. Its initial location is the GemBuilder for Java server directory.

• If the NetLDI is running under a captive account, the session log files
(gbjnn.log) are created in the home directory of the captive account or as
otherwise specified when the NetLDI was started.

To Enable Verbose Logging

1. Open the file gbj.ini (in the server directory) for editing.

2. Change the line that controls verbose logging so it looks like this:

verbose=true

3. If the Session Broker is running, halt it.

4. Restart the broker.

For related information, see “To Halt the Session Broker” on page 2-13 and “To
Start the Session Broker” on page 2-11.

You can enable verbose logging for a particular session by choosing File > Settings
>Verbose Client or Verbose Server.

Administering the Server Component GemBuilder for Java Programming Guide

2-18 GemStone Systems, Inc. October 2006

Chapter

October 2006 GemStone Systems, Inc. 3-1

3 Interacting with
Server Objects

Overview
GemBuilder for Java (GBJ) provides a message-forwarding interface through which
your Java client can interact with objects in the GemStone server. Your client code
explicitly obtains stubs, which are client Java objects (instances of GbjObject or its
subclasses) that represent objects in the GemStone server. A stub knows which
GemStone server object it represents, and it responds to all messages in its protocol
by passing them to the appropriate GemStone server object.

TERMINOLOGY NOTE:
Users of GemBuilder for Smalltalk will notice the term stub as used here
differs from that to which they are accustomed and corresponds to what they
would call a forwarder. This difference in terminology is unavoidable
because it is anchored in the Java literature.

Because almost any message sent to a GemStone server object is capable of raising
an exception in the server, a portion of your Java code will be devoted to catching
and handling these exceptions when they are returned to the client. Ordinary Java
techniques are appropriate, and there is a GBJ-specific subclass, GbjException.

Overview GemBuilder for Java Programming Guide

3-2 GemStone Systems, Inc. October 2006

The Message-forwarding Interface
Once a connection to the server has been established, your client can use the
session to interact with persistent objects. The process typically involves two
fundamental steps:

1. locating the object by name, which returns a stub representing the server
object, and

2. sending a message through the stub and receiving a reply in the form of
another stub representing the result returned in the server. In the case of
simple data types, the stub acts as a Java wrapper for a cached value (see
“Accessing a Stub’s Cached Value” on page 3-14).

Figure 3.1 Stubs Representing GemStone Server Objects

aGbjObject
(stub)

GemStone/S
Object

GemStone/S
Result

aGbjObject
(stub)

Object

Java GemStone

Representational relationships

Interacting with Server Objects Overview

October 2006 GemStone Systems, Inc. 3-3

Each stub is an instance of GbjObject or one of its subclasses. GbjObject has three
members, all public:

Using Stub Protocol to Send Messages
GbjObject implements methods corresponding to the fundamental ones in the
server's class Object. As a result, these are inherited by your stubs without
additional effort. Here are a few examples of commonly used methods (for a
complete list, see the class description):

The class GbjCollection, a subclass of GbjObject, defines additional fundamental
methods common to server Collection classes. For information, see “Working with
Collections” on page 3-18.

NOTE:
A Java stub must explicitly implement all of the methods it wishes to forward.
Java does not have a mechanism similar to Smalltalk’s doesNotUnderstand:.

Member Description

oop the object identifier (OID) of the server object it represents

session the GbjSession instance this stub uses to communicate with
the server

cachedValue if the stub represents a server object that corresponds to a
fundamental Java data type, a DateTime, or a serialized
collection of proxies, the cachedValue member holds that
object; if not, cachedValue is null

at()
atPut()
equals()
in()
isKindOf()
notNil()

remoteEqualsIdentical()
remoteSize()
segment()
sendMsg()
toString()

Overview GemBuilder for Java Programming Guide

3-4 GemStone Systems, Inc. October 2006

Sending Dynamic Messages
The method sendMsg() in GbjObject lets you send GemStone Smalltalk
messages to server objects without implementing corresponding protocol in Java.

The following example uses the server message firstName in a selection block to
retrieve the first customer found with that name, then uses sendMsg() to send the
message lastName to that instance. The method detect() is defined in
GbjCollection. The object returned by sendMsg() is a GbjObject, and since the
name is a simple data type, its value can be obtained from the stub's cachedValue
member by using stringValue().

Example 3.1 Sending a Message to a Server Object

GbjCollection myCollStub;
GbjObject aCust;

myCollStub = (GbjCollection) mySession.doit("HR_Customer allCustomers");
aCust = myCollStub.detect("[:cust | cust firstName = ’Fred’]");
System.out.println("Last Name is " +
 aCust.sendMsg("lastName").stringValue());

Class GbjObject implements sendMsg() several ways with different method
signatures. Here is a partial list:

and so forth up to a message with five keywords. For instance:

GbjObject obj = mySession.doit("Array new: 10");
obj.sendMsg("size");
obj.sendMsg("at:", new Integer(1));
obj.sendMsg("at:", new Integer(1), "put:", Boolean.TRUE);

Method Signature Use

sendMsg(String) unary message

sendMsg(String, Object) one-keyword message or binary
message

sendMsg(String, Object, String,
Object)
...

two-keyword message

Interacting with Server Objects Overview

October 2006 GemStone Systems, Inc. 3-5

Because the last two examples take Java String/Object pairs, the int argument
must be wrapped in an Integer object. GemBuilder for Java automatically converts
this Java Integer to a GemStone Integer (SmallInteger or LargeInteger) as part of
the marshaling process.

The GbjObject method perform() occasionally is a useful alternative to sendMsg()
because it takes a user-specified number of arguments and the arguments can be
treated as a unit.

This example builds an Array of arguments needed to create a new engineer
instance, then uses the Array as an argument to perform(), which creates the
new instance in the server. Finally, sendMsg() adds the instance to the existing
Collection. The client class Engineer was previously registered as a stub for the
corresponding server class.

Example 3.2 Using GbjObject.perform With an Argument List

 GbjObject engClass = null;
 Object args[] = {eml, firstNm, lastNm, ph};

 // get stub for the class
 engClass = sess.objectNamed("HR_Engineer");
 HR_Engineer eng = null;
 try {
 eng = (HR_Engineer) engClass.perform(
 "email:firstName:lastName:phone:", args, 4);
 } catch (GbjEventException e) {
 new gemstone.tools.GbjDebugger(e);
 }
 engClass.sendMsg("addEngineer:", eng);

Handling Server Exceptions
When interaction with the GemStone server causes an error to be raised,
notification is returned to the client in the form of an instance of GbjException,
which extends java.lang.RuntimeException. The compiler ignores GbjException
when enforcing catch-throw semantics. Therefore, a method that calls another
method that throws a GbjException is not forced either to catch the exception, or
to declare in its header that it throws the exception.

Here is a typical scenario: (1) the client object sends a message to a stub, which (2)
the stub forwards to the server. If this message results in an error in the server, (3)

Overview GemBuilder for Java Programming Guide

3-6 GemStone Systems, Inc. October 2006

the GemStone error information is sent back to the GemBuilder for Java, which (4)
throws it as a GbjException.

Figure 3.2 Throwing a GbjException

Typical code to handle the GbjException is similar to that for any other Java
exception:

Example 3.3 Handling a GbjException

 public String firstName() {
 String nm = null;
 try {
 nm = this.sendMsg("firstName").stringValue();
 } catch (GbjEventException e) {
 System.err.println("GemStone event exception occurred"
 + e.getMessage());
 } catch (GbjException e) {
 System.err.println("HR_Engineer>firstName() GemStone exception: "

+ e.getMessage());
 }
 return nm;
 }

NOTE:
Most methods that access the server can cause an error to be raised in the
server. Because try{}catch{} statements should be part of your GemBuilder for
Java coding practice, they appear frequently in the examples in this
documentation.

Java
Object

API Gem

1. Message

4. GbjException 3. Error Information

2. Message

Interacting with Server Objects Overview

October 2006 GemStone Systems, Inc. 3-7

You can determine the nature of the exception by examining its category and
number members. The class GbjGemStoneErrors provides variables for all of the
GemStone kernel class error numbers (that is, for those associated with
GbjExceptions that have category GemStoneError). The instance variable
GbjException.kernel also holds this list. For instance, to find out whether a lock
you obtained on an object in GemStone is dirty (that is, whether the object has
changed since you started the current transaction), you could use this test:

Example 3.4 Catching a Specific GemStone Error

try {
 // obtain a lock in the server
}
catch (GbjException e) {
 if (e.number ==
 GbjException.kernel.LOCK_ERR_OBJ_HAS_CHANGED) {
 // handle dirty lock
 }
 // else throw e
}

However, developers can catch more specific error conditions in GemStone using
any of the following subclasses of GbjException. These subclasses correspond to
the exception categories in GbjGemStoneErrors.java:

• GbjCompilerException

• GbjRuntimeException

• GbjAbortingException

• GbjFatalException

• GbjInternalException

• GbjEventException

• GbjNonKernelException

Overview GemBuilder for Java Programming Guide

3-8 GemStone Systems, Inc. October 2006

To Invoke a Debugger on an Exception

1. Have the class import com.gemstone.tools.*.

2. To open the debugger on a particular exception, use the GbjDebugger
constructor with the exception as an argument. For instance:

catch (GbjException e) {
new com.gemstone.tools.GbjDebugger(e);
}

How Objects are Marshaled
When a message is sent to a GemStone server object, the arguments to the message
can be any kind of Object. GemBuilder for Java marshals these objects (serializes
them into a stream) and transmits them with the message. Marshaling performs
these conversions between Java and GemStone in either direction:

True and false are objects in GemStone (instances of Boolean) but not in Java. In
Java, you must wrap true or false in a Boolean object, which is then marshaled as
shown above.

Instances of GemStone DecimalFloat, ScaledDecimal, and Fraction don't have
direct counterparts in Java. Any of these objects are marshaled as a GbjObject
reference. You can send these objects a conversion message in the server to obtain
a binary Float, which will be marshaled according to the preceding table.

Java Object GemStone Smalltalk Equivalent

Byte SmallInteger

Integer Integer (may be Small or Large)

Long Integer (may be Small or Large)

Float SmallFloat

Double Float

Character Character

Boolean Boolean

null nil

Date DateTime

String (one-byte strings) String (one-byte strings)

DoubleByteString (two-byte strings) DoubleByteString

Interacting with Server Objects Overview

October 2006 GemStone Systems, Inc. 3-9

Using GemStone's DoubleByteString

GemBuilder for Java assumes Java String and StringBuffer objects are single-byte
strings, which matches GemStone's implementation of String. If one of these client
objects actually holds a two-byte string, you must specify that by wrapping the
object in an instance of com.gemstone.gbj.DoubleByteString. This class is
comparable to wrappers like Integer that are provided in java.lang for wrapping
Java primitive data types. For instance:

new DoubleByteString(aJavaString)

Unless a Java String containing two-byte characters is wrapped in a
DoubleByteString, only the low byte of each character will be transferred to the
server. The server will see a GemStone String, which inherently is a single-byte
string.

Both GemStone's String and DoubleByteString classes are ultimately mapped to
the Java String class, since it can be used for either. The cachedValue of a stub for
a GemStone DoubleByteString will hold a Java DoubleByteString wrapper. Clients
must use dbStringValue() to access the String object held in a stub for a GemStone
DoubleByteString.

Controlling How Objects Are Marshaled
Argument marshaling in both the client and server allows objects to control how
they are marshaled. Client and server both use the same concepts, but require
slightly different implementations due to the nature of the two languages. On both
client and server, the object must implement an externalization interface whose
methods read and write state to and from an object stream.

In Java a class must implement the GbjExternalizable interface. This interface has
three methods:

• gbjServerObject()

• gbjWriteExternal()

• gbjReadExternal()

Writing the State of an Object to Send to the Server

The method gbjServerObject() returns the name of a class or object on the server
that implements the method #gbjReadExternal: to read the externalized state of a
Java object. gbjServerObject() can return a GbjObject stub for such a server object,
instead of a name.

Overview GemBuilder for Java Programming Guide

3-10 GemStone Systems, Inc. October 2006

If the method returns an object name, it is resolved in the server’s symbol list. If a
class name is returned, the class is sent the message #new in the server. The #new
method must return an object to perform the unmarshaling. To perform the
unmarshaling, GemBuilder for Java sends the unmarshaling object the message
#gbjReadExternal: with a Smalltalk GbjObjectInputStream as an argument.
Methods in GbjObjectInputStream are used to read the state of the object.

The method gbjWriteExternal() is used to write the state of the object to the
marshaling stream when sending a message to the server. The GBJ API uses the
class GbjObjectOutputStream for marshaling. An instance of this class is sent as an
argument to gbjWriteExternal(). Public methods in GbjObjectOutputStream are
used to write the state of the object. The protocol is similar to the Java Object
Serialization ObjectOutputStream class.

Reading the State of an Object Sent from the Server

The method gbjReadExternal() is used for reading the state of the object. An
instance of GbjObjectInputStream is sent as an argument. Public methods in this
class are used to read the exact state, no more and no less, that was written for the
object in the server.

NOTE:
Because gbjServerObject(), gbjWriteExternal(), and gbjReadExternal()
methods are sent during message marshaling and unmarshaling, the
communications channel to the server is busy while these methods are
executing. Therefore, avoid sending messages to GemStone, fetching objects
from GemStone, or any other use of the server in the implementation of these
methods.

Writing the State of an Object to Send to the Client

In the server, an object that reimplements the method #gbjExternalizable to return
true must write its state to the client. The object must also implement the methods:

• #gbjClientObject

• #gbjReadExternal:

• #gbjWriteExternal:

The method #gbjClientObject returns a reference to a client object to be used for
unmarshaling. This can be either a fully qualified name of a class that implements
GbjExternalizable, or a client forwarder to an instance of such a class. If the name
of a class is returned, an instance of this class is created in the client to perform the
unmarshaling.

Interacting with Server Objects Representing Server Objects in the Client

October 2006 GemStone Systems, Inc. 3-11

The API uses the method #gbjWriteExternal: to write the state of the Smalltalk
object. It is passed an instance of the Smalltalk class GbjObjectOutputStream.
Public methods in this class are used to write the state of the object.

Reading the State of an Object Sent from the Client

The method #gbjReadExternal: is used to read the object state written by a Java
object in its gbjWriteExternal() method as described above. An instance of the
Smalltalk class GbjObjectInputStream is used to retrieve the object state.

NOTE:
Make sure you marshal and unmarshal the same variables in the same order,
so that the server reads exactly what the client has written to the stream, no
more and no less.

The marshaling mechanism described here is based on concepts from the Java
Object Serialization Specification, Revision 1.3, JDK 1.1, February, 1997.

You can find examples of marshaling and unmarshaling in the Examples
installation directory. See the files EFlattener.gs, EFlattener.java, and
EFlattenerTest.java, as well as EVector.gs, EVector.java, and
EVectorTest.java.

CAUTION:
The file EFlattener.gs defines the GemStone Smalltalk classes EFlattener
and Address in the Published dictionary. Filing in this example will replace
an existing Address class is that dictionary.

Representing Server Objects in the Client

Deciding Which Objects to Represent
GemBuilder for Java uses stubs (instances of GbjObject and its subclasses) to
represent objects stored in GemStone to your Java client.

Because of the hierarchical structure of complex objects, you should begin by
identifying the subsystems in your application that define persistent objects, and
then identify a root object in each subsystem. The root objects of an application are
the persistent objects from which other persistent objects can be reached by
transitive closure; that is, either by direct reference or indirectly through any
number of layers of references.

Representing Server Objects in the Client GemBuilder for Java Programming Guide

3-12 GemStone Systems, Inc. October 2006

Each root object in the GemStone server in effect represents all other objects to
which that object refers, such as its instance variables. And because those instance
variables are represented, their instance variables are also represented, and so on,
until you reach atomic objects that refer to no others, such as characters, integers,
strings, booleans, or nil. The entire network of related objects forms a tree structure
whose leaves are the final objects reached.

Obtaining a stub for the root object makes the entire subsystem in the server
accessible to the client, since you can easily get stubs for other elements once you
have a stub for the root. The most common kinds of root objects in the server are:

• global variables

• class variables

• class instance variables.

Obtaining GbjObject Stubs
There are three basic ways to obtain stubs:

• by looking up a named object in the server

• by sending a message to a server object through its stub and saving the stub
that represents the object returned in the server

• by registering a Java class as a stub class for a corresponding server class

For related information, see “Accessing a Stub’s Cached Value” on page 3-14 and
“Effect of Multiple Class Versions” on page 3-15.

Looking Up a Named Object in the Server

Performing an explicit name lookup in the server returns an instance of GbjObject
representing the server object. This lookup is performed in the context of the
current session logged in to GemStone; that is, it uses that session’s symbol list for
name resolution. For instance, where AllEngineers has been defined previously as
a global variable in the server:

Example 3.5 Resolving a Named Object

GbjObject myStub;
myStub = mySession.objectNamed("AllEngineers");
// use the stub as desired
System.out.println("Size: " +myStub.sendMsg("size").intValue());

Interacting with Server Objects Representing Server Objects in the Client

October 2006 GemStone Systems, Inc. 3-13

Saving a Returned Stub

Sending a message to the server returns an instance of GbjObject (that is, a stub) to
which you can send messages if appropriate. For instance, this code obtains a stub
by using server class protocol to access AllEngineers; the stub is cast to type
GbjCollection to make available the additional protocol defined for that class:

Example 3.6 Using the Result of GbjSession.doit

GbjCollection myCollStub;
myCollStub = (GbjCollection) mySession.doit("HR_Engineer allEngineers");
// use the stub as desired
System.out.println("Size: " +myCollStub.sendMsg("size").intValue());

The result that is represented need not be a persistent object (one which is part of
the committed repository).

Registering a Custom Stub

Registering a custom stub creates a correspondence between specific Java and
GemStone classes, which can provide for more natural coding within your
application. The stub class must be a subclass of GbjObject or GbjCollection.
Message sends to the server that correspond to the designated GemStone class
return a stub that is instantiated in Java as an instance of the stub class.

Registration can be performed during static initialization or on an session-specific
basis at runtime. For instance, to register the Java class Engineer (a subclass of
GbjObject) as a stub for the server class of the same name:

mySession.registerStaticStub(new Engineer(), "Engineer");

At runtime, you could use inherited GbjObject protocol to send messages to an
instance of the class. For instance, this expression in class Engineer makes the
engineer available to accept an assignment:

this.execute("self available: true");

The method execute() is inherited from GbjObject, and available: is an instance
method defined by the server class.

By implementing the method available() in the Java class itself, the expression
could become more natural:

this.available(true);

Representing Server Objects in the Client GemBuilder for Java Programming Guide

3-14 GemStone Systems, Inc. October 2006

Implement available() as shown below:

Example 3.7 Adding Server Protocol to the Java Side

 public void available(boolean avail) {
 if (avail)
 this.execute("self available: true");
 else
 this.execute("self available: false");
 }

For more information about registering custom stubs, see “Obtaining Application-
specific Stubs” on page 3-23.

Accessing a Stub’s Cached Value

When a result of a request is retrieved from GemStone, and that GemStone server
object is a kind of one of the classes listed under “How Objects are Marshaled” on
page 3-8, the resulting Java object holds the pre-fetched value of the GemStone
server object it represents. This action minimizes the number of round trips to the
server needed to get a usable form of the result.

GbjObject provides methods for getting at this cached value. The value itself is
stored in the GbjObject variable cachedValue, which is public and may be accessed
directly. GbjObject also supplies the following methods to retrieve a cachedValue
in an appropriate way:

Note that if the cachedValue member is directly accessed and holds an integer, an
Integer wrapper is what will actually be found. This is also true of the other non-
object values that are held in cachedValue. The cachedValue of a stub for a
GemStone DoubleByteString holds a com.gemstone.gbj.DoubleByteString

booleanValue() floatValue()

charValue() intValue()

dateValue() longValue()

dbStringValue() stringValue()

doubleValue() stringBufferValue()
(cachedValue holds a String that is
converted to a StringBuffer)

Interacting with Server Objects Executing Ad-hoc Smalltalk Code

October 2006 GemStone Systems, Inc. 3-15

wrapper. Clients must use dbStringValue() to access the String object held in
a stub for a GemStone DoubleByteString.

Effect of Multiple Class Versions

GemBuilder for Java considers both the server class's classHistory and its class
hierarchy in deciding which server objects a stub represents. For instance, a stub
obtained for Engineer also represents any version of class Engineer as well as any
subclasses of Engineer and its various versions.

Executing Ad-hoc Smalltalk Code
GemBuilder for Java provides two ways to execute ad-hoc code in the server, code
that is not an existing compiled method.

The most general approach is to send doit() to a session object, which causes the
code to be executed in that session's environment on the server. This example
creates a key and value in the SymbolDictionary UserGlobals. The expression is
sent to the session object for evaluation. The expression may contain temporaries
and ^ (return) statements, but it may not contain refer to self or super.

Example 3.8 Executing Ad-hoc Code in the Server

mySession.doit(
"UserGlobals at: #AllEngineers put: (HR_Engineer allEngineers)"
);

Alternatively, the method GbjObject.execute() permits you to send an ad
hoc message to an object. The receiver, the server object represented by the
instance of GbjObject to which the message is addressed, is the execution context.
The message may use self to refer to the receiver and may directly reference
instance variables of the receiver.

Accessing Complex Objects Efficiently GemBuilder for Java Programming Guide

3-16 GemStone Systems, Inc. October 2006

Accessing Complex Objects Efficiently
While a stub provides access to all server objects reachable by a transitive closure
on that object, it can be inefficient to access a number of instance variables
individually. You should consider these approaches, either individually or in
combination:

• Transfer all named instance variables in one request.

• Flatten the instance variables into an Array of fundamental Java data types,
which are automatically stored in the stub's cachedValue elements.

• Create a holder object as a proxy for the server object. Have the holder store
explicit replicates of a few frequently needed instance variables as simple data
types, and include the stub itself so you can access instance variables when
necessary.

The above techniques also provide the building blocks for handling collections
efficiently. For further information, see “Working with Collections” on page 3-18.

Getting All Named Instance Variables
The method namedInstanceVariables() returns all of an object’s named instance
variables in an Array of GbjObjects (stubs), including those instance variables
inherited from superclasses. Instance variables that are simple data types in Java
are stored in the stub's cachedValue element.

The instance variables are in the order determined by the GemStone message
Behavior >> allInstVarNames.

This example first obtains a stub by sending the message myUserProfile to server
class System, which is represented by a variable in GbjKernelObjects. Next, stubs
for all of the UserProfile's named instance variables are obtained in a single
request.

Example 3.9 Getting All Named Instance Variables

GbjObject uprofStub, uprofVars[];

uprofStub = mySession.kernel.System.sendMsg("myUserProfile");
uprofVars = uprofStub.namedInstanceVariables();
System.out.println("UserID: " +uprofVars[1].stringValue());

Interacting with Server Objects Accessing Complex Objects Efficiently

October 2006 GemStone Systems, Inc. 3-17

Flattening Objects in the Server
Many applications will want to pull information from the GemStone server to
display in windows or otherwise use for user interfaces.

The recommended approach to accomplishing this task is to serialize simple data
objects on the server side into sequenceable collections (such as Arrays or
OrderedCollections) that can then be efficiently pulled into the client for
processing.

This example gets information about one of the Customer objects, where
thisCustomer is a previously obtained stub representing a particular customer. The
method allElements() returns an array of GbjObjects holding the contents of
the array constructed in the server.

Example 3.10 Flattening a Server Object

GbjObject fields[] = null;
fields = ((GbjCollection) thisCustomer.execute(
 "#[firstName, lastName, emailAddress]")).allElements();
String firstNameField = fields[0].stringValue();
String lastNameField = fields[1].stringValue();
String emailField = fields[2].stringValue();
System.out.println("Name: " +lastNameField +", " +firstNameField);

Replicating Objects Using Holders
An efficient way to handle complex server objects is to create a holder object in Java.
Populate the holder with Java objects that replicate selected server instance
variables in the form in which you need them. The holder can also store the stub
itself for ease in sending additional messages to the server object. The concept
explained here is particularly useful when it is extended to collections (see
“Working with Collections” on page 3-18).

This example modifies the previous one on flattening objects by drawing on an
additional class. MyHolder is a Java class with one instance variable that combines
the separate first and last names in the server, and a stub instance variable. Where
the previous example simply displayed the instance variables in a dialog, this
example stores them in a holder. The stub can be used later for such tasks as
retrieving the emailAddress instance variable by sending it the appropriate
message.

Working with Collections GemBuilder for Java Programming Guide

3-18 GemStone Systems, Inc. October 2006

Example 3.11 MyHolder.java

import gemstone.gbj.*;

public class MyHolder {
 public String name;
 public GbjObject stub;

// ...
}

Example 3.12 Replicating an Object in MyHolder

GbjObject fields[] = null;
MyHolder thisCustomerHolder = new MyHolder();
fields = ((GbjCollection) thisCustomerStub.execute(
 "#[firstName, lastName, emailAddress]")).allElements();
thisCustomerHolder.name = fields[0].stringValue() + ’ ’ +

fields[1].stringValue();
thisCustomerHolder.stub = thisCustomerStub;

Working with Collections
Collections typically are the core of an application using the GemStone server, so
it is important that Java clients deal with them efficiently. The class GbjCollection
provides additional protocol for that purpose.

In general, most interaction with large collections should be by way of remote
message sends, GemStone Smalltalk code that is executed in the server. Smaller
collections, or selected portions of larger ones, may be explicitly replicated in the
client using this two-phase approach:

1. Serialize the desired objects in the server so elements can be brought to the
client efficiently. Typically, this step involves selecting and flattening the
desired instances, then bringing them together in a new collection.

2. In the client, iterate over the resulting collection, placing a replicate of each
server object into a Java holder.

Interacting with Server Objects Working with Collections

October 2006 GemStone Systems, Inc. 3-19

The GbjCollection Protocol
The GbjCollection class implements most of the protocol that is common to all
Collection classes in GemStone. Your client can invoke these methods directly
from Java, letting GemBuilder for Java forward the appropriate Smalltalk message.
Here are some representative methods; for a complete list, see the description of
GbjCollection.

Protocol Category Representative Methods

Adding add()
addAll()

Converting asArray()
asBag()
asIdentitySet()
asSortedCollection()

Enumerating collect()
detect()
reject()
select()

Removing remove()
removeAll()
removeIdentical()

Searching includes()
occurrencesOf()

Sorting sortAscending()
sortDescending()
sortWith()

Working with Collections GemBuilder for Java Programming Guide

3-20 GemStone Systems, Inc. October 2006

Protocol Examples

The example below (shown in the example “Using GbjObject.perform With an
Argument List” on page 3-5) uses GbjCollection protocol to add a new instance of
Engineer.

Example 3.13 Using GbjCollection.add()

/* Create the object in the server. */
GbjObject engClass = mySession.objectNamed("HR_Engineer");
Object args[] = {"johnd", "John", "Doe", "(555) 123-4567"};
GbjObject newEngStub =

engClass.perform("email:firstName:lastName:phone:", args, 4);

/* Get stub for server collection and add object. */
GbjCollection allEngineers = (GbjCollection)

engClass.sendMsg("allEngineers");
allEngineers.add(newEngStub);

Some methods in GbjCollection require arguments that implicitly involve
messages to server objects. Selection blocks are one example; for instance, class
Engineer on the server implements the messages firstName and lastName. In the
following code, the block argument to detect: sends the message "firstName" to
each element of the collection until it obtains a match, then removes that element.

Example 3.14 Sending Method Arguments to the Server

GbjCollection allEng = (GbjCollection)
mySession.doit("HR_Engineer allEngineers");

GbjObject anEngr = allEng.detect("[:eng | eng firstName = ’John’]");
allEng.remove(anEngr);
System.out.println("Removed John");

Serializing the Collection in the Server
The recommended approach to copying small collections to the client is to traverse
them in the server, serializing the objects into a stream that GemBuilder for Java
can transmit to the client in the minimum number of request round trips. For
instance, this part could be encapsulated in a Smalltalk method in the server:

Interacting with Server Objects Working with Collections

October 2006 GemStone Systems, Inc. 3-21

Example 3.15 Serializing a Collection

serializeCustomers
^allCustomers inject: Array new into: [:array :each |
 array add: each;
 add: (each firstName); add: (each lastName);...;
 yourself]

The resulting Array contains the series customer1, firstName1, lastName1, ...,
customer2, firstName2, lastName2, and so forth. Notice that the first array element
for each customer is the customer object itself; in the client, this element will
become a stub representing that customer. Apart from the element stubs, each field
should be one of the simple data types that can be stored in a stub's cachedValue
field.

Another approach (used in Customer) is to formulate a String to be sent as an ad-
hoc message to the current session. In this example, the message causes the server
to sort the customers and return two elements for each, the customer's name (by
concatenating firstName and lastName) and the instance itself. Because most of
the work is performed in the server, the method that sends the String is a doit().

Example 3.16 Serializing the AllCustomers Collection

 static String execString =
 " | custs custsAndNames | " +
 " custs := HR_Customer allCustomers asSortedCollection: [:a :b | " +
 " (a lastName < b lastName) or: " +
 " [(a lastName = b lastName) and: [a firstName < b firstName]]] ." +
 " custsAndNames := OrderedCollection new." +
 " custs do: [:cust | " +
 " custsAndNames add: " +
 " (cust firstName + Character space + cust lastName)." +
 " custsAndNames add: cust.]." +
 " custsAndNames ";

/**
 * Return a stub representing the result of performing the
 * above String in the server.
 */

 public static GbjCollection allCustomers(GbjSession sess) {
 return (GbjCollection) sess.doit(execString);
 }

Working with Collections GemBuilder for Java Programming Guide

3-22 GemStone Systems, Inc. October 2006

Unpacking the Collection in the Client
Once the fields have been serialized in the server, GbjCollection provides two
ways to access them from the client:

• The method elements() returns a Java Enumeration of GbjObjects
(java.util.Enumeration).

• The method allElements() returns an array of GbjObjects.

These approaches differ primarily in the interface they provide; the underlying
transport mechanism is much the same except that elements() caches a buffer
of elements at a time, while allElements() retrieves all remaining elements in
one trip.

To Enumerate the Collection

The method elements() in GbjCollection creates an Enumeration that performs
efficient caching of the server object's contents for minimal client-server traffic
during the enumeration operation.

In our example, the method allCustomers() in class CustomerHolder creates a
holder object for each customer, unpacking into it the customer's name and the
stub for the server element. Each holder becomes an element of a Vector that is
returned. The call to Customer.allCustomers() performs the serialization on the
server side, as shown previously. Customer has been registered as a stub class.

Example 3.17 Enumerating the Serialized AllCustomers

 public static Vector allCustomers(GbjSession sess) {
 GbjCollection allCustsStub;
 HR_Customer custStub;
 Vector allCustomers = new Vector();
 String name;

 allCustsStub = HR_Customer.allCustomers(sess);
 for (Enumeration e = allCustsStub.elements(); e.hasMoreElements();)
{
 name = ((GbjObject) e.nextElement()).stringValue();
 custStub = (HR_Customer) e.nextElement();
 allCustomers.addElement(new CustomerHolder(name, custStub));
 }

Interacting with Server Objects Obtaining Application-specific Stubs

October 2006 GemStone Systems, Inc. 3-23

 return allCustomers;
 }

To Unpack the Collection from an Array

The method allElements() in GbjCollection returns an array of GbjObject
stubs. The following would iterate over such an array of customer fields, creating
a CustomerHolder for each pair of elements and placing the holders in a Vector.
The result would be much the same as using the Enumeration interface. Again, the
call to Customer.allCustomers() performs the serialization on the server
side, as shown previously.

Example 3.18 Unpacking AllCustomers from an Array

 public static Vector allCustomers(GbjSession sess) {
 GbjCollection allCustsStub;
 HR_Customer custStub;
 GbjObject fields[];
 Vector allCustomers = new Vector();
 allCustsStub = HR_Customer.allCustomers(sess);
 fields = allCustsStub.allElements();
 for (int i=0; i<fields.length; i+=2) {
 allCustomers.addElement(new CustomerHolder(
 fields[i].stringValue(), (HR_Customer) fields[i+1]));
 }
 return allCustomers;
 }

Obtaining Application-specific Stubs
You can supplement the GbjObject and GbjCollection classes provided by creating
your own Java classes and registering them as stubs representing specific
GemStone classes. Two mechanisms are provided so you can register the stubs at
initialization time (called static stubs) or at runtime (called session-specific stubs).
Because these mechanisms build a correspondence between a Java class and a
GemStone class, they permit you to code your Java client in a more natural way.

Obtaining Application-specific Stubs GemBuilder for Java Programming Guide

3-24 GemStone Systems, Inc. October 2006

Registering Stubs at Static Initialization

During static initialization, you can register a class correspondence by providing
an instance of the client (stub) class and the name of the server class. All sessions
will have access to these stubs. The client class must be a subclass of GbjObject as
shown below.

Example 3.19 Registering a Static Stub

public class Engineer extends GbjObject {
 // other useful code
 static {
 //during static initialization, register class as a stub
 GbjSession.registerStaticStub(new Engineer(),
 "Engineer");
 }
}

When a session connects to the server, GemBuilder for Java creates a registry
specific to that session to map instances of Engineer and its subclasses in the server
to the client stub class, using a hierarchy returned by the GemBuilder for Java
server component. The server class must be in the session's symbol list.

GemBuilder for Java considers both the server class's classHistory and its class
hierarchy in deciding which stub class to use in representing the server object. For
instance, setting the stub class for Engineer also sets the stub class for any version
of class Engineer as well as for any subclasses of Engineer and their various
versions.

Because the stub registry is based on the inheritance hierarchy returned at connect
time, it is reinitialized if the session is disconnected and then reconnected. Clients
that modify the class hierarchy at runtime do not see the stub mapping change
until they disconnect and reconnect the session.

Registering Stubs at Runtime

You can register a stub at runtime, but the stub will exist only in sessions where it
is registered explicitly. To ensure that the mappings are handled correctly, they
should be registered just after connection to the server. The registry cannot be
created or modified while the session is in an unconnected state.

Interacting with Server Objects Putting Client Data into the Server

October 2006 GemStone Systems, Inc. 3-25

Two method signatures are available:

• registerStub(GbjObject, String) is similar to registerStaticStub() in that it takes
the name of the server class as String.

• registerStub(GbjObject, GbjObject) takes a stub reference to the server class,
which allows the mapping to a server class that is not in the session's symbol
list. For instance, the following obtains the class stub by sending the message
remoteClass() to an instance of that class.

GbjObject objStub, classStub;
objStub = mySession.objectNamed("someObject");
classStub = objStub.remoteClass();
mySession.registerStub((new SomeClass(), classStub);

Putting Client Data into the Server
There are several ways by which your client can place data in the GemStone server,
all involving explicit action:

• Sending a message to a stub is the typical way to add an object to an existing
Collection or update an anonymous instance variable. GbjObject and
GbjCollection provide a number of methods for this purpose, such as atPut()
and add(). If the existing object is persistent (that is, part of the committed
repository), the addition also becomes persistent when the transaction is
committed.

• The method putInServer() in class GbjSession places its argument in the server
and returns a GbjObject representing it. This action by itself does not make the
object persistent. To make it persistent, you must name it or make it reachable
from a named object.

• Ad-hoc GemStone Smalltalk code, such as that executed by GbjSession.doit(),
returns an object in the server, which GemBuilder for Java represents by a
GbjObject. Again, this action by itself does not make the object persistent. To
make it persistent, you must name it or make it reachable from a named object.

GemBuilder for Java maintains a Saved Objects set in which it tracks non-
persistent objects that have been exported by the server to the client. The purpose
of this set is to keep the objects from being garbage collected during the lifetime of
the session. (It is analogous to the Export Set of certain other GemBuilder
products.). GbjSession provides methods for examining and modifying this set,
and GbjObject provides convenience methods for adding or removing a particular
object.

Putting Client Data into the Server GemBuilder for Java Programming Guide

3-26 GemStone Systems, Inc. October 2006

Chapter

October 2006 GemStone Systems, Inc. 4-1

4 Forwarding Server
Messages to Client
Objects

Overview
A typical server message scenario begins with a message from a client object to a
server object, which GemBuilder for Java translates into a Smalltalk message. If the
client message results in a server message back to the client, GemBuilder for Java
(GBJ) must translate that Smalltalk message into an appropriate Java message and
see that the message reaches the proper receiver.

Figure 4.1 Sending a Server Message to a Client Object

Java
Object

GemBuilder
GemStone/S

Object

1. Client Message 2. Client Message

3. Server Message4. Server Message

for Java

Using Reflection GemBuilder for Java Programming Guide

4-2 GemStone Systems, Inc. October 2006

To do so, GemBuilder for Java uses the Java 1.3 Reflection API to find a matching
Java method.

Alternatively, messages from server objects to client objects can be processed by a
Java object that implements the GbjClientAdapter interface. The single method
constituting this interface, dispatchGemStoneMessage(), translates the GemStone
server message into a Java message and sends it.

Whichever mechanism you choose, GemBuilder for Java provides default
mappings for certain basic methods:

If GBJ cannot find a method, it first checks to see if the selector matches one of
these. It throws an exception only if the selector does not.

Using Reflection
Reflection is used to make Java method names from Smalltalk message selectors as
follows:

• Smalltalk unary and binary message selectors are used without alteration as
the Java method name.

• Smalltalk keyword selectors drop all but the first keyword; this, without the
colon, is used as the Java method name.

With the resulting method name, GemBuilder for Java makes two tries at method
lookup. The first uses object wrapper classes for unmarshaled arguments, such as
Java class Double for an instance of GemStone Float. If this fails, the second try uses
the Java primitive data type, such as double for an instance of GemStone Float.
Arguments that cannot be converted to Java types are passed as instances of
GbjObject.

To preserve the integrity of Java objects and to avoid illegal execution, GemBuilder
for Java uses the public reflection interface. Therefore, method invocation is
restricted to those methods published in the public Java reflection mechanism.

GemStone Selector Java Method

= equals()

== ==

hashCode hashCode()

getClass getClass()

toString toString()

Forwarding Server Messages to Client Objects Implementing the Adapter Interface

October 2006 GemStone Systems, Inc. 4-3

Implementing the Adapter Interface
If reflection is not appropriate for your application, two other mechanisms provide
for messages coming from the server:

• The receiving object in the client can implement the GbjClientAdapter
interface itself, thereby serving as its own adapter.

• The client can register another class as an adapter, in which case the adapter
class must implement GbjClientAdapter and must know to how to forward an
appropriate message to the receiving object.

The GbjClientAdapter interface requires one method to be implemented,
dispatchGemStoneMessage().

The client adapter receives the following Java objects from GemBuilder for Java:

• the session (a GbjSession)

• the receiver (an Object)

• the method selector (a String)

• the arguments (a Vector)

Registering a Client Adapter
Your client can register an adapter during static initialization or at runtime:

• The static form establishes the adapter for all sessions.

Adapter engAdapter = new Adapter();
GbjmySession.registerStaticAdapter("Engineer",
 engAdapter);

• The runtime form is effective only for the particular session in which it is
invoked.

Adapter engAdapter = new Adapter();
mySession.registerAdapter("Engineer", engAdapter);

Dealing with Multithreading
Each message received from the server for local processing causes GemBuilder for
Java to create a separate thread in which to handle it. This action is necessary
because the client thread that sent a message to the GemStone server is blocked
waiting for a response.

Message-sends in the Server GemBuilder for Java Programming Guide

4-4 GemStone Systems, Inc. October 2006

CAUTION:
The creation of a separate thread to handle each server message makes
applications that use client adapters inherently multithreaded. You must
exercise appropriate caution to process the message in the correct context.

Because the GemStone server is not multithreaded itself, GemBuilder for Java
limits access to the server from application threads so only one application thread
is allowed into the communications layer at a time. Adapter threads are allowed to
recursively send messages back to the server and are not blocked. Application
threads are put to sleep while a message to the server from another application
thread is being processed.

Message-sends in the Server
All server messages intended for a client object must be directed to a particular
client forwarder, an instance of the private GemStone class GbjForwarder. In a
typical scenario, the client forwarder is created from the client message that
initiates the sequence.

For example, suppose much of the user interface knowledge resides in the server
instead of being confined to the client. The client dialog class might implement
something like the following to add an element to AllEngineers:

Forwarding Server Messages to Client Objects Message-sends in the Server

October 2006 GemStone Systems, Inc. 4-5

Example 4.1 Notifying Client from Server

String firstName, lastName, email, phone;
GbjCollection EngineersStub;
GbjObject result;
// code here to get data from text fields.

// now, add entry in server, close dialog if true returned:
try {
 result = EngineersStub.sendMsg("addEngrNotifying:", this,
 "firstName:", firstName, "lastName:", lastName, "email:",
 email);
 if (result.booleanValue()) {
 this.close();
 }
catch (GbjException e) {
 // handle exception
}

When the referent of “this” (the object to be notified) is unmarshaled in the server,
the object will be represented by an instance of GbjForwarder because it is neither
a stub object nor one of the simple data types for which value is cached. If the
server code needs to return an error message to the client, it directs the message to
this GbjForwarder. The server method might be implemented like this:

Example 4.2 Sending Notification from the Server

addEngrNotifying: dialog firstName: first lastName: last email: email
 | msg |
 msg := self validateFields: #[first, last, email].
 msg notNil ifTrue: [
 dialog displayError: msg. "requires a client adapter"
 ^false].
 [System beginTransaction .
 "add engineer to AllEngineers class variable"
 System commitTransaction
] whileFalse .
 ^true

If the server detects invalid input, it forwards a message to the client.

Exceptions Raised in the Client GemBuilder for Java Programming Guide

4-6 GemStone Systems, Inc. October 2006

If you’re using reflection, you must write a method named displayError() that
takes an argument of type String. GemBuilder for Java will find this method using
reflection and invoke it. Here’s how you can code displayError():

Example 4.3 Handling the Message Using Reflection

public void displayError(String msg) {
 System.err.println(msg);
}

If you have registered an adapter, the client object (or an instance of the registered
adapter class) will receive dispatchGemStoneMessage() with the final arguments
being the String “displayError:” and an array containing the contents of the server
temporary variable “msg”. Here’s how you can code dispatchGemStoneMessage()
to receive the message from the server:

Example 4.4 Handling the Message Using a Registered Adapter

public Object dispatchGemStoneMessage(GbjSession aSession, Object receiver,
String selector, Object args[]) {
 if (selector.equals("displayError:")) {
 this.displayError(args[0]);
 }
}

The GbjSession instance keeps an export set of objects represented by
GbjForwarders to ensure they are not garbage-collected. GbjSession includes
methods to examine and modify the export set; see, for instance,
exportedReferences().

Exceptions Raised in the Client
Sending a message from the server to the client leads to the possibility of an
exception being raised in the client. Such an exception will be returned to the
server, where it may be transformed yet again into a Java GbjException that
GemBuilder for Java throws to the client.

The following figure extends one used previously (in “Overview” on page 4-1).
The sequence continues in the lower grouping, beginning with step 5 in which the
Java object throws an exception in response to the server message. GemBuilder for
Java catches this exception and (6) transmits it to the server. The server transforms

Forwarding Server Messages to Client Objects Exceptions Raised in the Client

October 2006 GemStone Systems, Inc. 4-7

the exception information and (7) signals an error, #RT_ERR_CLIENT_FWD. The
arguments are the detail text of the Java exception, and the Java stack. Unless the
signal is handled in the server, the error information is sent back to the client (8),
where GemBuilder for Java transforms it into a GbjException and (9) throws it to
the application thread that started the sequence.

Figure 4.2 How a Client Exception Propagates to Calling Thread

You can install an exception handler in the server with code like this:

Example 4.5 Installing an Exception Handler

Exception
 category: GbjSignals
 number: clientForwarderError
 do: [:ex :cat :num :args |
 ex remove.
 ^0].

Java
Object

GemBuilder
GemStone/S

Object

Java
Object

GemBuilder
GemStone/S

Object

1. Client Message 2. Client Message

3. Server Message4. Server Message

5. Exception 6. Error Information

9. GbjException 8. Error Information

7. Server
Signal

for Java

Exceptions Raised in the Client GemBuilder for Java Programming Guide

4-8 GemStone Systems, Inc. October 2006

Chapter

October 2006 GemStone Systems, Inc. 5-1

5 Managing Server
Transactions

Overview
The GemStone server provides an environment in which many users can share the
same persistent objects. The server maintains a central repository of shared objects.
When a GemBuilder for Java (GBJ) application needs to view or modify shared
objects, it logs in to the GemStone server, starting a session as described in
“Opening a Session” on page 2-2.

A GemBuilder for Java session creates a private view of the GemStone repository
containing views of shared objects for the application’s use. The application can
perform computations, retrieve objects, and modify objects, as though it were
working with private objects. When appropriate, the application propagates its
changes to the shared repository so those changes become visible to other users.

In order to maintain consistency in the repository, GemBuilder for Java
encapsulates a session’s operations (computations, fetches, and modifications) in
units called transactions. Any work done while operating in a transaction can be
submitted to the server for incorporation into the shared object repository. This is
called committing the transaction.

Operating Inside a Transaction GemBuilder for Java Programming Guide

5-2 GemStone Systems, Inc. October 2006

During the course of a logged-in session, an application can submit many
transactions to the GemStone server. In a multiuser environment, concurrency
conflicts will arise that can cause some commit attempts to fail. Aborting (rolling
back) the transaction refreshes the session’s view of the repository in preparation
for further work.

In order to reduce operating overhead, a session by default runs outside a
transaction, thereby temporarily relinquishing its ability to commit. A session
running outside a transaction, called manual transaction mode, must explicitly begin
a transaction before making changes that it will commit. Manual transaction mode
is the default for GemBuilder for Java sessions, although the Development Tools
override this default during login by placing the session in automatic transaction
mode.

GemBuilder for Java provides ways of avoiding the concurrency conflicts that can
cause a commit to fail. Optimistic concurrency control risks higher rates of commit
failure in exchange for reduced transaction overhead and higher concurrency,
while pessimistic concurrency control uses locks of various kinds to improve a
transaction’s chances of successfully committing. GBJ also offers reduced-conflict
classes that are similar to familiar Smalltalk collections, but are especially designed
for the demands of multiuser applications.

This chapter explains each of the topics mentioned here: transactions, committing
and aborting, running outside a transaction, automatic and manual transaction
modes, optimistic and pessimistic concurrency control, and reduced-conflict
classes. Be sure to refer to the related topics in the GemStone/S Programming Guide
for a full understanding of these transaction management concepts.

Separate topics explain each of the concepts mentioned here: transactions,
committing and aborting, running outside a transaction, automatic and manual
transaction modes, optimistic and pessimistic concurrency control, and reduced-
conflict classes. Be sure to refer to the related topics in the GemStone/S Programming
Guide for a full understanding of these transaction management concepts.

Operating Inside a Transaction
While a session is logged in to the GemStone server, GemBuilder for Java
maintains a private view of the shared object repository for that session in the
Gem. To prevent conflicts that can arise from operations occurring simultaneously
in different sessions in the multi-user environment, GBJ encapsulates each
session’s operations in a transaction. Only when the session initiates a commit of
its transaction does GemStone try to merge the modified objects in that session’s
view with the main, shared repository.

Managing Server Transactions Operating Inside a Transaction

October 2006 GemStone Systems, Inc. 5-3

This figure shows a client and its repository, along with a common sequence of
operations: (1) accessing an object from the shared repository, (2) creating an
explicit replicate in the client, (3) modifying an object in the private view
maintained in the Gem, and (4) committing the object’s changes to the shared
repository.

Figure 5.1 GemStone Application Workspace

The private GemStone view starts each transaction as a snapshot of the current
state of the repository. As the client creates and modifies shared objects,
GemBuilder for Java updates the private GemStone view to reflect the client's
changes. When your client commits a transaction, the repository is updated with
the changes held in your client's private GemStone view.

For efficiency, GBJ does not duplicate the entire contents of the server into the
Gem. GemBuilder for Java contains only those objects that have been accessed
from the server or created by your client for sharing with the server. This action
minimizes the amount of data that moves across the boundary from the server to
the Gem.

CAUTION:
Because GemBuilder for Java does not update objects in the Java client at
transaction boundaries, information copied into the client may no longer
reflect the current state of the repository. Whenever you commit or abort a
transaction, you should reinitialize copies of server objects to their current
state in the Gem and shared repository. Alternatively, object change
notification can be used for this purpose.

ServerGemClient 2. Access
through Stub

1. Fault from
Server

4. Commit to
Server

3. Update
through Stub

Operating Inside a Transaction GemBuilder for Java Programming Guide

5-4 GemStone Systems, Inc. October 2006

Committing a Transaction
When a client submits a transaction to the GemStone server for inclusion in the
shared repository, it is said to commit the transaction. To commit a transaction,
send the message:

aGbjSession.commitTransaction()

or, in the GemStone Browser, choose Session > Commit.

When the commit succeeds, the method returns true. Successfully committing a
transaction has two effects:

• It copies the client's new and changed objects to the shared object repository,
where they are visible to other users.

• It refreshes the client's private GemStone view by making visible any new or
modified objects that have been committed by other users. You should
reinitialize objects you have copied to the client.

A commit request fails if the server detects a concurrency conflict with the work of
other users. When the commit fails, the commitTransaction() method returns false.

In order to commit, the session must be operating within a transaction. An attempt
to commit while outside a transaction raises an exception.

Aborting a Transaction
A session refreshes its view of the shared object repository by aborting its
transaction. Despite the terminology, a session need not be operating inside a
transaction in order to abort. To abort, send the message:

aGbjSession.abortTransaction()

or, in the GemStone Browser, choose Session > Abort.

Aborting has these effects:

• The transaction (if any) ends. If the session’s transaction mode is automatic,
GemBuilder for Java starts a new transaction. If the session’s transaction mode
is manual (the default), the session is left outside of a transaction.

• Temporary Smalltalk objects remain unchanged.

• The session’s private view of the GemStone shared object repository is
updated to match the current state of the repository. You should reinitialize
objects you have copied to the client.

Managing Server Transactions Operating Outside a Transaction

October 2006 GemStone Systems, Inc. 5-5

Handling Commit Failures
If an attempt to commit fails because of a concurrency conflict, the
commitTransaction() method returns false.

Following a commit failure, your session's private view of persistent objects may
differ from its pre-commit state:

• The current transaction is still in effect. Nevertheless, you must end the
transaction and start a new one before performing computations and before
you can successfully commit.

• Temporary Smalltalk objects remain unchanged.

• Modified GemStone server objects remain unchanged.

• Unmodified GemStone server objects are updated with new values from the
shared repository. You should reinitialize objects you have copied to the client.

Following a commit failure, your session must refresh its private view of the
repository by aborting the current transaction. The uncommitted transaction
remains in effect so you can save some of its contents, if necessary, before aborting.

A common strategy for handling such a failure is to abort, then reinvoke the
method in which the commit occurred. Depending on your application, you may
simply choose to discard the transaction and move on, or you may choose to
remedy the specific transaction conflict that caused the failure, then initiate a new
transaction and commit.

If you want to know why a transaction failed to commit, you can send the message:

aGbjSession.doit("System transactionConflicts")

This expression returns a stub representing a symbol dictionary whose keys
indicate the kind of conflict detected and whose values identify the objects that
incurred each kind of conflict. (See “Managing Concurrent Transactions” on
page 5-11 for more discussion of the kinds of conflicts that can arise.)

Operating Outside a Transaction
Operating inside of a transaction involves a certain amount of overhead because
GemBuilder for Java monitors the operations that occur, gathering all the
necessary information required to prepare the transaction to be committed.

Operating Outside a Transaction GemBuilder for Java Programming Guide

5-6 GemStone Systems, Inc. October 2006

Operating outside of a transaction, however, saves some of the overhead of tracking
changes, which may be significant in some applications. The session can view the
repository, browse the objects it contains, and even make computations based
upon their values, but it cannot commit any new or changed GemStone server
objects. A session operating outside a transaction can, at any time, begin a
transaction.

No session is overhead-free: even a session operating outside a transaction uses
GemStone resources to manage its objects and its view of the repository. For best
system performance, all sessions, even those running outside a transaction, must
periodically refresh their views of the repository by committing or aborting.

These methods in GbjSession support running outside of a transaction:

To begin a transaction, send the message:

aGbjSession.beginTransaction()

or, in the GemStone Browser, choose Session > Begin.

This message gives you a fresh view of the repository and starts a transaction.
When you abort or successfully commit this new transaction, you will again be
outside of a transaction until you either explicitly begin a new one or change
transaction modes.

Method Description

beginTransaction() Aborts and begins a transaction

isAutomaticTransactionModeSet() Returns true if the server is in
automatic transaction mode and
false if not

setTransactionMode(“autoBegin”) Sets the transaction mode to
automatic (chained transactions,
with an implicit begin after a
commit or abort)

setTransactionMode(“manualBegin”) Sets the transaction mode to manual
(explicit beginTransaction required)

setTransactionMode(“transactionless”) Sets the transaction mode to
transactionless (aborting the current
transaction, if any)

Managing Server Transactions Operating Outside a Transaction

October 2006 GemStone Systems, Inc. 5-7

If you are not currently in a transaction, but still want a fresh view of the
repository, you can send the message aGbjSession.abortTransaction(). This
message aborts your current view of the repository and gives you a fresh view, but
does not start a new transaction.

Being Signaled to Abort
When you are in a transaction, GemStone waits until you commit or abort to
reclaim storage for objects that have been made obsolete by your changes. When
you are running outside of a transaction, however, you are implicitly giving
GemStone permission to send your Gem session a signal requesting that you abort
your current view so that GemStone can reclaim storage when necessary. When
this happens, you must respond within the time period specified in GemStone's
STN_GEM_ABORT_TIMEOUT configuration parameter. If you do not, GemStone
forces an abort and sends your session an abortErrLostOtRoot signal
(GbjGemStoneErrors.ABORT_ERR_LOST_OT_ROOT), which means that your
view of the repository was lost, and any objects your client had copied may no
longer be valid. When your client receives abortErrLostOtRoot, the session has
been aborted; your client must reinitialize all of its data from the Gem to reflect the
current state of the GemStone repository.

You can detect an abortErrLostOtRoot signal and control what happens when you
receive a signal to abort by implementing GbjObserver.update().

Transaction Modes GemBuilder for Java Programming Guide

5-8 GemStone Systems, Inc. October 2006

For example

Example 5.1

public void update(GbjObservable aSession, String aString, Object arg)
{
 if (aString.equals("event")) {
 GbjException e = (GbjException) arg;
 if (e.number == GbjException.kernel.RT_ERR_SIGNAL_ABORT) {
 aSession.abortTransaction();
 // refetch objects from Gem
 try {
 //re-enable generation of the error
 aSession.doit("System enableSignaledAbortError");
 }
 catch (GbjException ex) {
 System.out.println(ex.getMessage());
 }
 }
 if (e.number == GbjException.kernel.ABORT_ERR_LOST_OT_ROOT) {
 // refetch objects from Gem
 }
 } else {
 System.out.println(aString + " " + arg);
 }
}

This causes your GemBuilder for Java session to abort when it receives a signal to
abort, and then to reinitialize copies of server objects in the client. If an
abortErrLostOtRoot signal is received, the client detects it and reinitializes its
copies.

Transaction Modes
A GemBuilder for Java session, by default, always is outside a transaction when it
logs in. After logging in, the session can operate in either of three transaction
modes: manual, automatic, or transactionless.

Managing Server Transactions Transaction Modes

October 2006 GemStone Systems, Inc. 5-9

Manual Transaction Mode
In manual transaction mode, the session remains outside a transaction until you
begin a transaction. This is the default mode in GemBuilder for Java. In manual
transaction mode, a transaction begins only as a result of an explicit request. When
you abort or commit successfully, the session remains outside a transaction until a
new transaction is initiated.

A new transaction always begins with an abort to refresh the session’s private view
of the repository. Local objects that customarily survive an abort operation, such
as temporary results you have computed while outside a transaction, can be
carried into the new transaction where they can be committed, subject to the usual
constraints of conflict-checking. If you begin a new transaction while already
inside a transaction, the effect is the same as an abort.

In manual transaction mode, as in automatic mode, an unsuccessful commit leaves
the session in the current transaction until you take steps to end the transaction by
aborting.

Automatic Transaction Mode
In automatic transaction mode, committing or aborting a transaction automatically
starts a new transaction. In this mode, the session operates within a transaction the
entire time it is logged into GemStone. To run this way, a session must switch to
automatic transaction mode or specify that mode in the login parameters.

Being in a transaction incurs certain costs related to maintaining a consistent view
of the repository at all times for all sessions. Objects that the repository contained
when you started the transaction are preserved in your view, even if you are not
using them and other users' actions have rendered them meaningless or obsolete.
For this reason, lengthy transactions can impede garbage collection of objects in
the repository that are otherwise unneeded.

Depending upon the characteristics of your particular installation (such as the
number of users, the frequency of transactions, and the extent of object sharing),
this burden can be trivial or significant. If it is significant at your site, you may
want to reduce overhead by using sessions that run outside transactions, which is
the default mode in GemBuilder for Java.

Transaction Modes GemBuilder for Java Programming Guide

5-10 GemStone Systems, Inc. October 2006

Transactionless Mode
In transactionless mode, the session remains outside a transaction. If all you need
to do is browse the repository or make changes to objects in the client only,
transactionless mode can be a more efficient use of system resources, because
GemBuilder for Java does not need a commit page, nor will it elicit garbage
collection.

Starting transactionless mode always causes an abort to refresh the session’s
private view of the repository.

Choosing Which Mode to Use
Use manual transaction mode if the work you are doing requires looking at objects
in the repository, but only seldom requires committing changes to the repository.
You will have to start a transaction manually before you can commit your changes
to the repository, but the system will be able to run with less overhead.

Use automatic transaction mode if the work you are doing requires committing to
the repository frequently, because you can make permanent changes to the
repository only when you are in a transaction.

Use transactionless mode if the work you are doing requires looking at objects in
the repository only.

Switching Between Modes
To find out if you are currently in a transaction, execute

aGbjSession.inTransaction()

This returns true if you are in a transaction and false if you are not.

To change to automatic transaction mode, execute the expression:

aGbjSession.setTransactionMode(“autoBegin”)

This message automatically aborts the transaction, if any, changes the transaction
mode, and starts a new transaction.

To change to manual transaction mode, execute the expression:

aGbjSession.setTransactionMode(“manualBegin”)

This message automatically aborts the current transaction and changes the
transaction mode to manual. It does not start a new transaction, but it does provide
a fresh view of the repository.

Managing Server Transactions Managing Concurrent Transactions

October 2006 GemStone Systems, Inc. 5-11

To change to transactionless mode, execute the expression:

aGbjSession.setTransactionMode(“transactionless”)

This message automatically aborts the current transaction, if any, changes the
mode to transactionless, and provides a fresh view of the repository.

Managing Concurrent Transactions
When you tell GemStone to commit your transaction, it checks to see if doing so
presents a conflict with the activities of any other users.

• It checks to see whether other concurrent sessions have committed
transactions of their own, modifying an object that you have also modified
during your transaction. If they have, then the resulting modified objects can
be inconsistent with each other.

• It checks to see whether other concurrent sessions have committed
transactions of their own, modifying an object that you have read during your
transaction, while at the same time you have modified an object that the other
session has read.

• It checks for locks set by other sessions that indicate the intention to modify
objects that you have read or to read objects you have modified in your view.

If it finds no such conflicts, GemStone commits the transaction, and your work
becomes part of the permanent, shared repository. Your view of the repository is
refreshed and any new or modified objects that other users have recently
committed become visible in any dictionaries that you share with them.

Read and Write Operations
It is customary to consider the operations that take place within a transaction as
reading or writing objects. Any operation that accesses any instance variable of an
object reads that object, as do operations that fetch an object’s size, class, or other
descriptive information about that object. An object also is read in the process of
being stored into another object.

An operation that stores a value in one of an object’s instance variables writes the
object. While you can read without writing, writing an object always implies
reading it, because GemStone must read the internal state of an object in order to
store a value in it.

Managing Concurrent Transactions GemBuilder for Java Programming Guide

5-12 GemStone Systems, Inc. October 2006

In order to detect conflict among concurrent users, GemStone maintains two
logical sets for each session: a set containing objects read during a transaction and
a set containing objects written. These sets are called the read set and the write set.
Because writing implies reading, the read set is always a superset of the write set.

The following conditions signal a possible concurrency conflict:

• An object in your write set is also in another transaction’s write set (a
write/write conflict).

• An object in your write set is in another transaction’s read set and an object in
your read set is in that transaction’s write set (a read/write conflict).

Optimistic and Pessimistic Concurrency Control
The GemStone/S server provides two approaches to managing concurrent
transactions: optimistic and pessimistic, controlled via the GemStone/S server
configuration parameter CONCURRENCY_MODE. GemStone/S 64 Bit always
operates with a CONCURRENCY_MODE of FULL_CHECKS, which is pessimistic
concurrent transaction management. The following discussion applies only to
GemStone/S.

Optimistic concurrency control means that you simply read and write objects as if
you were the only session, letting GemStone/S detect conflicts with other sessions
only when you try to commit a transaction.

Pessimistic concurrency control means that you act as early as possible to prevent
conflicts by explicitly requesting locks on objects before you modify them. When
an object is locked, other users may be unable to lock the object or commit changes
to it.

Optimistic concurrency control is easy to implement in an application, but you run
the risk of having to re-do the work you’ve done if conflicts are detected and you’re
unable to commit. When GemStone/S looks for conflicts only at commit time, your
chances of being in conflict with other users increase with the time between
commits and the size of your read and write sets. Under optimistic concurrency
control, GemStone/S detects conflict by comparing your read and write sets with
those of all other transactions committed since your transaction began.

Running under optimistic concurrency control is the most convenient and efficient
mode of operation when:

• you are not sharing data with other sessions, or

• you are reading data but not writing, or

Managing Server Transactions Managing Concurrent Transactions

October 2006 GemStone Systems, Inc. 5-13

• you are writing a limited amount of shared data and you can tolerate not being
able to commit your work sometimes.

If you take a pessimistic approach, you act as early as possible to prevent conflicts
by explicitly requesting locks on objects before you modify them. When an object
is locked, other people are unable to lock the object, and they cannot optimistically
commit changes to the object. Also, when you encounter an object that someone
else has locked, you can abort the transaction immediately instead of wasting time
on work that can’t be committed.

Locking improves one user's chances of committing, but at the expense of other
users, so you should use locks sparingly to prevent an overall degradation of
system performance. Still, if there is a lot of competition for shared objects in your
application, or if you can’t tolerate even an occasional inability to commit, then
using locks might be your best choice.

Locks do not prevent read-only access to objects, so read-only query transactions
are not affected by modification transactions.

Setting the Concurrency Mode
Any shared object that is not explicitly locked is treated optimistically. For objects
under optimistic concurrency control, GemStone/S’s level of checking for
concurrency conflicts is configurable. You can set the level of checking for
concurrency conflicts by specifying one of the following values for the
CONCURRENCY_MODE configuration parameter in your application’s
configuration file. There are two levels:

• FULL_CHECKS (the default mode), which checks for both write/write and
read/write conflicts. If either type of conflict is detected your transaction cannot
commit.

• NO_RW_CHECKS, which performs write/write checking only.

Locking methods override the configured optimistic CONCURRENCY_MODE by
stating explicitly the kind of pessimistic control they implement.

Setting Locks
GemBuilder for Java provides locking protocol that allows application developers
to write client Java code to lock objects.

A GbjObject or one of its subclasses is the receiver of all lock requests. Locks can
be requested on a single object or on a collection of objects.

Managing Concurrent Transactions GemBuilder for Java Programming Guide

5-14 GemStone Systems, Inc. October 2006

Single lock requests are made with the following statements:

aGbjObject.readLock()
aGbjObject.writeLock()
aGbjObject.exclusiveLock()

Note
GemStone/S 64 Bit does not support exclusiveLocks; this type of lock may
only be used with GemStone/S servers.

The above messages request a particular type of lock on aGbjObject. If the lock is
granted, the method returns the receiver. (Lock types are described in the
GemStone/S Programming Guide.) If you don’t have the proper authorization, or if
another session already has a conflicting lock, an exception will be thrown.

When you request an exclusive lock, an exception will be thrown if another session
has committed a change to aGbjObject since the beginning of the current
transaction. In this case, the lock is granted despite the exception, but it is seen as
“dirty.” A session holding a dirty lock cannot commit its transaction, but must
abort to obtain an up-to-date value for aGbjObject, then refetch its value through
the stub. The lock will remain, however, after the transaction is aborted.

NOTE:
GemStone Smalltalk provides a number of locking methods in the server for
which there is no corresponding implementation in GemBuilder for Java. For
information, refer to the image comments and the GemStone/S Programming
Guide.

Once you lock an object, it normally remains locked until you either log out or
explicitly remove the lock; unless you specify otherwise, locks persist through
aborts and commits. In general, you should remove a lock on an object when you
have used the object, committed the resulting values to the repository, and no
longer anticipate a need to maintain control of the object.

The following method removes a specific lock:

aGbjObject.removeLock()

To clear all locks for the session if the transaction is successfully committed, send
this message:

aGbjSession.commitAndReleaseLocks()

Managing Server Transactions Reduced-Conflict Classes

October 2006 GemStone Systems, Inc. 5-15

Reduced-Conflict Classes
At times GemStone will perceive a conflict when two users are accessing the same
object, when what the users are doing actually presents no problem. For example,
GemStone may perceive a write/write conflict when two users are simultaneously
trying to add an object to a Bag that they both have access to because this is seen
as modifying the Bag.

GemStone provides some reduced-conflict classes that can be used instead of their
regular counterparts in applications that might otherwise experience too many
unnecessary conflicts. These classes include RcCounter, RcIdentityBag,
RcKeyValueDictionary, and RcQueue.

Use of these classes can improve performance by allowing a greater number of
transactions to commit successfully without locks, but they do carry some
overhead.

For one thing, they use more storage than their ordinary counterparts. Also, you
may find that your application takes longer to commit transactions when you use
instances of these classes. Finally, you should be aware that under certain
circumstances, instances of these classes can hide conflicts from you that you
indeed need to know about.

Here are brief descriptions of the reduced-conflict classes. For details about these
classes and their usage, see the GemStone/S Programming Guide and comments in
the GemStone image.

• RcCounter maintains an integral value that can be incremented or
decremented. A single instance of RcCounter can be shared among multiple
concurrent sessions without conflict.

• RcIdentityBag provides the same functionality as IdentityBag, except that no
conflict occurs on instances of RcIdentityBag when a number of users read
objects in the bag or add objects to the bag at the same time. Nor is there a
conflict when one user removes an object from the bag while other users are
adding objects, or when a number of users remove objects from the bag at the
same time, so long as no more than one of them tries to remove the last
occurrence of an object.

• RcKeyValueDictionary provides the same functionality as
KeyValueDictionary except that no conflict occurs on instances of
RcKeyValueDictionary when users read values in the dictionary or add keys
and values to it (unless one tries to add a key that already exists) or when users
remove keys from the dictionary at the same time (unless more than one user
tries to remove the same key at the same time).

Reduced-Conflict Classes GemBuilder for Java Programming Guide

5-16 GemStone Systems, Inc. October 2006

• Conflict occurs only when more than one user tries to modify or remove the
same key from the dictionary at the same time.

• RcQueue represents a first-in-first-out (FIFO) queue. No conflict occurs on
instances of RcQueue when multiple users read objects in or add objects to the
queue at the same time, or when one user removes an object from the queue
while other users are adding objects. However, if more than one user removes
objects from the queue, they are likely to experience a write/write conflict.

Chapter

October 2006 GemStone Systems, Inc. 6-1

6 Observing Session
and Server Events

Overview
GemBuilder for Java (GBJ) provides two interfaces to support monitoring of
events: GbjObserver and GbjObservable.

The GbjObserver interface consists of a single method, update(), through which
objects are notified of events transpiring in other objects of interest. Each class that
will be an observer must implement this interface. The action to be taken depends
largely on whether the object being observed is a GemBuilder for Java session or
an entity in the server.

The GbjObservable interface consists of methods that manipulate the list of
observers to be notified and initiate the notification process. The class GbjSession
implements this interface, and ordinarily it is the only class that needs to do so.

Observing Session Events
Your client can receive notification of significant session events by registering its
interest with the object in which the action takes place. For instance, the Help
Request Browser needs to be notified of a change committed through an editing
dialog open on a particular help request so the browser can update its display.

Observing Session Events GemBuilder for Java Programming Guide

6-2 GemStone Systems, Inc. October 2006

Sessions report client events using the update() message, which has three
parameters: obj (a GbjObservable), notificationMessage (a String), and argument (an
Object). The second and third parameters map to events in the following way:

Observers of session events are notified in the same thread that caused the event
to take place. Notification is received only for events in the client session, not for
similar actions taking place in Smalltalk code being executed in the server. That is,
invoking mySession.commitTransaction() in the client results in
notification to observers, but invoking System Class >>
commitTransaction in the server does not.

The informational message event is used internally for passing verbose
(debugging) information about client and server activity (see “Logging of
Debugging Information” on page 2-5). Client objects can explicitly trigger
informational message events by invoking notifyObservers(), thereby passing
information about events that otherwise would not be subject to notification. For
example, an informational message event could be used programmatically to
provide notification of a commit initiated in the server by means of doit().

To Monitor Session Events

1. Signify interest by sending addObserver() to the current session. For example:

mySession.addObserver(this);

2. Implement GbjObserver to handle the notification. For example, when the
session commits or aborts the current transaction, or begins a transaction in
manual transaction mode, the Help Request Browser calls its method to
reinitialize the display. If the session is closed, the browser closes itself.

Event notificationMessage argument

Transaction commit "commit" null

Transaction abort "abort" null

Transaction begun, in
manual transaction mode

"begin" null

Informational message "message" message string

Close of session "close" null

Observing Session and Server Events Observing Server Events

October 2006 GemStone Systems, Inc. 6-3

Example 6.1 Handling Session Events

public void update(GbjObservable aSession, String message, Object argument)
{
 if ((message.equals("abort")) ||
 (message.equals("commit")) ||
 (message.equals("begin"))) {
 this.reinitialize();
 }
 if ((message.equals("close")) {
 this.sessionClosed();
 }
}

Observing Server Events
Clients can observe events in the server that are of general interest, such as object
change notification and Gem to Gem signals. The process is much the same as for
monitoring session events, except that the notification always is in a different
thread from the one the application is using. (For information about monitoring
session events, see “Observing Session Events” on page 6-1.)

For server events, the update() parameter notificationMessage always has the value
"event", and argument is an instance of GbjException.

NOTE:
Because notification of server events arrives in a different thread,
programmers must ensure actions the observer takes are thread-safe with
respect to the application. Also, since notification of the event does not
suspend execution in GemStone, the observer may have to wait until the
currently executing requests finish.

Although the server events of interest are represented in the GemStone server as
exceptions (as are errors) GemBuilder for Java distinguishes them, notifying
observers of the event rather than throwing them as GbjExceptions.

Clients can identify event circumstances by comparing the number member of the
exception instance with those defined in class GbjGemStoneErrors. This example
obtains the GbjException, then checks whether it represents a Gem-to-Gem signal:

Observing Server Events GemBuilder for Java Programming Guide

6-4 GemStone Systems, Inc. October 2006

Example 6.2 Handling a Server Events

public void update(GbjObservable session, String message, Object arg) {
 if (message.equals("event")) {
 GbjException event = (GbjException)arg;
 if (event.number ==
 GbjException.kernel.RT_ERR_SIGNAL_GEMSTONE_SESSION) {
 // handle signal, then re-enable signal reception
 try {
 event.session.doit("System " +
 "enableSignaledGemStoneSessionError");
 } catch (GbjException e) {
 System.out.println(e.getMessage());
 }
 }
 }
}

Chapter

October 2006 GemStone Systems, Inc. 7-1

7 Deploying Your
Application

Overview
Clients using GemBuilder for Java (GBJ) can be deployed in two ways, as shown
in the accompanying illustration:

• as applets that run in the context of a Java-enabled web browser

• as standalone Java applications

Deployment Steps GemBuilder for Java Programming Guide

7-2 GemStone Systems, Inc. October 2006

Figure 7.1 GemBuilder for Java Deployment

Deployment Steps
This topic explains the steps you should take in deploying your GemBuilder for
Java client as a applet (to be run in a Web browser) and as a standalone application.

To Deploy an Applet

1. Install the HTML page containing the <APPLET> tag on the HTTP server, and
install the applet class file in the location specified in the tag's CODE and
CODEBASE attributes.

2. Install the GemBuilder for Java class library, gbj22.jar, either local to the
browser or in the same location as the applet class file.

3. Start a Session Broker for the GemStone server. The broker can run on the
server's machine or another server platform, but the broker and server
machines must be on the same side of a firewall.

Deploying Your Application Deployment Steps

October 2006 GemStone Systems, Inc. 7-3

4. Unless they are coded in the applet, provide the server's name (such as
gemserver61) and the broker's machine name and well-known port number
(such as 9090) to the user. Also provide a GemStone userId (account name) and
password.

5. Make sure a GemStone NetLDI is running on the broker's machine.

To Deploy a Standalone Application

1. Start a Session Broker for the GemStone server. The broker can run on the
server's machine or another server platform, but the broker and server
machines must be on the same side of a firewall.

2. Unless they are coded in the application, provide the server's name (such as
gemserver61) and the broker's machine name and well-known port number
(such as 9090) to the user. Also provide a GemStone userId (account name) and
password.

3. Make sure a GemStone NetLDI is running on the Session Broker's machine.

4. Make sure the Java runtime system (typically ...\bin\java) is in the user's
path.

5. Install the GemBuilder for Java class library, gbj22.jar, where it will be
accessible to the client, and add the library's location to the CLASSPATH in the
manner required by your runtime Java system.

Deployment Steps GemBuilder for Java Programming Guide

7-4 GemStone Systems, Inc. October 2006

Glossary

October 2006 GemStone Systems, Inc. Glossary-1

Adapter

An object that adapts messages for another object, converting them to a form the
receiving object can understand.

Applet

A Java program that is meant to be run in the context of a Java-compatible browser,
rather than as a standalone program. Another kind of Java program, called an
application, can run independently of a browser.

Enumeration

An object in Java that is used to iterate over the contents of a collection. It is similar
to a Stream object in Smalltalk.

Firewall

A gatekeeper computer that protects a local network by filtering traffic to and from
an external network, such as the Internet.

GemBuilder for Java Programming Guide

Glossary-2 GemStone Systems, Inc. October 2006

Gem

A GemStone server process that provides server access to clients. Currently, each
session connects to the server through a dedicated Gem process.

Marshal

The process of serializing an object into a stream before sending it to another
process.

NetLDI

A GemStone network server process, which provides information services and
spawns other processes for GemStone clients.

Observer

A client object that receives notification of noteworthy events in a session or in the
server.

Persistent Object

An object that is stored in the GemStone server and accessible through a root
object.

Session Broker

A GemStone server object that supervises the connection of a Java client to the
server by connecting the client to a Gem process. A broker is an instance of the
GemStone class GbjBroker.

Simple Data Type

One of the following types, which can be stored in the cachedValue field of a
GbjObject: Integer, Long, Float, Double, Character, Boolean, null, Date, String,
gemstone.gbj.DoubleByteString, or a serialized collection of proxies.

Stone

A GemStone process that oversees other server processes; it is also known as the
repository monitor.

October 2006 GemStone Systems, Inc. Glossary-3

Stub

An object that forwards messages to an object in another program, possibly on a
different computer. GemBuilder for Java uses stubs to forward messages from
client objects to objects in the GemStone server.

GemBuilder for Java Programming Guide

Glossary-4 GemStone Systems, Inc. October 2006

October 2006 GemStone Systems, Inc. Index-1

Index

A
abortErrLostOtRoot 5-7
abortTransaction 2-4, 5-4, 5-7
Adapter Interface 4-3

B
broker

running multiple 2-15
shutting down 2-13, 2-14
starting up 2-11

C
Collections, working with server 3-18
commitTransaction 2-4, 5-4, 6-2
Complex Objects 3-16
Concurrency Control 5-12
concurrency mode 5-2, 5-4, 5-12

configuration file 2-8
shutdown and 2-13

D
Debugger 3-8
Deploying 7-2
DoubleByteString, using GemStone’s 3-9

E
Errors

abortErrLostOtRoot 5-7
Exceptions, handling client 4-6
Exceptions, handling server 3-5
Executing Ad-hoc Smalltalk Code 3-15

G
gbj.ini configuration file 2-8

Index GemBuilder for Java Programming Guide

Index-2 GemStone Systems, Inc. October 2006

GbjBroker 2-2
GbjClientAdapter 4-2
GbjCollection 3-25

example 3-13
GbjException 3-1, 3-7, 4-5, 5-8, 6-3
GbjExternalizable interface 3-9
GbjForwarder 4-4
GbjGemStoneErrors 3-7, 6-3
GbjGemStoneErrors.java 3-7
GbjObject 3-1
GbjObserver 5-7, 6-1
GbjParameters 2-2
GbjSession 2-1, 3-3, 6-1

H
holder 3-16, 3-22

J
java.lang.RuntimeException 3-5

L
Locking server objects 5-13
log files

locating 2-17
logging 2-5, 5-8
logging, verbose 2-17

M
marshaling objects 3-8

controlling details of 3-9
Multiple Session Brokers 2-15

N
NetLDI 2-17

R
reduced-conflict classes 5-2
Reduced-Conflict server classes 5-15
Reflection 4-2
reflection 4-2

default mappings for basic methods 4-2
displayError() 4-6

register 3-23, 4-3
Replicate 3-17, 5-3
RT_ERR_CLIENT_FWD 4-7

S
Session Broker 2-2, 2-6, 2-7

starting 2-11
startgbj script 2-11
stopgbj script 2-13

T
transaction

running outside 5-5
transaction conflict 5-5
Transaction Modes 5-8
transactionless mode 5-5
Troubleshooting 2-16

	Chapter 1. Basic Concepts
	Chapter 2. Communicating With the Server
	Chapter 3. Interacting with Server Objects
	Chapter 4. Forwarding Server Messages to Client Objects
	Chapter 5. Managing Server Transactions
	Chapter 6. Observing Session and Server Events
	Chapter 7. Deploying Your Application
	Glossary
	1 Basic Concepts
	The GemStone Solution
	About the GemStone Server
	About GemBuilder for Java
	Integrating Information across the Enterprise

	GemStone Sessions
	The Session Broker
	Development Strategy
	Using GemBuilder for Java with Your Development Environment
	Development Steps
	Partitioning Your Application

	2 Communicating With the Server
	Overview
	Opening a Session
	Creating the Session Parameters
	Creating the Session and Connecting to the GemStone Server
	Launching Tools From Your Application
	Logging of Debugging Information

	Closing a Session
	Administering the Server Component
	Running the Session Broker
	Effect of NetLDI Mode
	Configuration Files
	To Start the Session Broker
	To Halt the Session Broker
	Connecting to the Session Broker Gem
	To Run Multiple Session Brokers

	Maintaining the Log Directory
	Troubleshooting
	To Determine if a Session Broker Is Running
	To Restart a Session Broker
	To Locate Log Files
	To Enable Verbose Logging

	3 Interacting with Server Objects
	Overview
	The Message-forwarding Interface
	Using Stub Protocol to Send Messages
	Sending Dynamic Messages
	Handling Server Exceptions
	To Invoke a Debugger on an Exception

	How Objects are Marshaled
	Using GemStone's DoubleByteString

	Controlling How Objects Are Marshaled
	Writing the State of an Object to Send to the Server
	Reading the State of an Object Sent from the Server
	Writing the State of an Object to Send to the Client
	Reading the State of an Object Sent from the Client

	Representing Server Objects in the Client
	Deciding Which Objects to Represent
	Obtaining GbjObject Stubs
	Looking Up a Named Object in the Server
	Saving a Returned Stub
	Registering a Custom Stub
	Accessing a Stub’s Cached Value
	Effect of Multiple Class Versions

	Executing Ad-hoc Smalltalk Code
	Accessing Complex Objects Efficiently
	Getting All Named Instance Variables
	Flattening Objects in the Server
	Replicating Objects Using Holders

	Working with Collections
	The GbjCollection Protocol
	Protocol Examples

	Serializing the Collection in the Server
	Unpacking the Collection in the Client
	To Enumerate the Collection
	To Unpack the Collection from an Array

	Obtaining Application-specific Stubs
	Registering Stubs at Static Initialization
	Registering Stubs at Runtime

	Putting Client Data into the Server

	4 Forwarding Server Messages to Client Objects
	Overview
	Using Reflection
	Implementing the Adapter Interface
	Registering a Client Adapter
	Dealing with Multithreading

	Message-sends in the Server
	Exceptions Raised in the Client

	5 Managing Server Transactions
	Overview
	Operating Inside a Transaction
	Committing a Transaction
	Aborting a Transaction
	Handling Commit Failures

	Operating Outside a Transaction
	Being Signaled to Abort

	Transaction Modes
	Manual Transaction Mode
	Automatic Transaction Mode
	Transactionless Mode
	Choosing Which Mode to Use
	Switching Between Modes

	Managing Concurrent Transactions
	Read and Write Operations
	Optimistic and Pessimistic Concurrency Control
	Setting the Concurrency Mode
	Setting Locks

	Reduced-Conflict Classes

	6 Observing Session and Server Events
	Overview
	Observing Session Events
	To Monitor Session Events

	Observing Server Events

	7 Deploying Your Application
	Overview
	Deployment Steps
	To Deploy an Applet
	To Deploy a Standalone Application
	A
	B
	C
	D
	E
	G
	H
	J
	L
	M
	N
	R
	S
	T

