
GemStone®

GemBuilder for C

Version 6.6

September 2011

GemStone/S 6.6 GemBuilder for C

2 VMware, Inc. September 2011

INTELLECTUAL PROPERTY OWNERSHIP
This documentation is furnished for informational use only and is subject to change without notice. VMware, Inc., assumes
no responsibility or liability for any errors or inaccuracies that may appear in this documentation.
This documentation, or any part of it, may not be reproduced, displayed, photocopied, transmitted, or otherwise copied in
any form or by any means now known or later developed, such as electronic, optical, or mechanical means, without express
written authorization from VMware, Inc.
Warning: This computer program and its documentation are protected by copyright law and international treaties. Any
unauthorized copying or distribution of this program, its documentation, or any portion of it, may result in severe civil and
criminal penalties, and will be prosecuted under the maximum extent possible under the law.
The software installed in accordance with this documentation is copyrighted and licensed by VMware, Inc. under separate
license agreement. This software may only be used pursuant to the terms and conditions of such license agreement. Any other
use may be a violation of law.
Use, duplication, or disclosure by the Government is subject to restrictions set forth in the Commercial Software - Restricted
Rights clause at 52.227-19 of the Federal Acquisitions Regulations (48 CFR 52.227-19) except that the government agency shall
not have the right to disclose this software to support service contractors or their subcontractors without the prior written
consent of VMware, Inc.
This software is provided by VMware, Inc. and contributors “as is” and any expressed or implied warranties, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall
VMware, Inc. or any contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages
(including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business
interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence
or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

COPYRIGHTS
This software product, its documentation, and its user interface © 1986-2011 VMware, Inc., and GemStone Systems, Inc. All
rights reserved by VMware, Inc.

PATENTS
GemStone software is covered by U.S. Patent Number 6,256,637 “Transactional virtual machine architecture”, Patent Number
6,360,219 “Object queues with concurrent updating”, Patent Number 6,567,905 “Generational garbage collector with
persistent object cache”, and Patent Number 6,681,226 “Selective pessimistic locking for a concurrently updateable database”.
GemStone software may also be covered by one or more pending United States patent applications.

TRADEMARKS
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions.
GemStone, GemBuilder, GemConnect, and the GemStone logos are trademarks or registered trademarks of VMware, Inc.,
previously of GemStone Systems, Inc., in the United States and other countries.
UNIX is a registered trademark of The Open Group in the United States and other countries.
Sun, Sun Microsystems, and Solaris are trademarks or registered trademarks of Oracle and/or its affiliates. SPARC is a
registered trademark of SPARC International, Inc.
HP, HP Integrity, and HP-UX are registered trademarks of Hewlett Packard Company.
Intel, Pentium, and Itanium are registered trademarks of Intel Corporation in the United States and other countries.
Microsoft, MS, Windows, Windows XP, Windows 2003, Windows 7 and Windows Vista are registered trademarks of
Microsoft Corporation in the United States and other countries.
Linux is a registered trademark of Linus Torvalds and others.
Red Hat and all Red Hat-based trademarks and logos are trademarks or registered trademarks of Red Hat, Inc. in the United
States and other countries.
SUSE is a registered trademark of Novell, Inc. in the United States and other countries.
AIX, POWER5, and POWER6 are trademarks or registered trademarks of International Business Machines Corporation.
Apple, Mac, Mac OS, Macintosh, and Snow Leopard are trademarks of Apple Inc., in the United States and other countries.
Other company or product names mentioned herein may be trademarks or registered trademarks of their respective owners.
Trademark specifications are subject to change without notice. VMware cannot attest to the accuracy of all trademark
information. Use of a term in this documentation should not be regarded as affecting the validity of any trademark or service
mark.
VMware, Inc.
15220 NW Greenbrier Parkway
Suite 150
Beaverton, OR 97006

Preface
About This Manual
This manual describes GemBuilder for C — a set of C functions that provide a
bridge between your application’s C code and the application’s database
controlled by GemStone®. These GemBuilder functions provide your C program
with complete access to a GemStone database of objects, and to a virtual machine
on which to execute GemStone Smalltalk code.

Prerequisites
This manual assumes you are familiar with the GemStone Smalltalk programming
language, as described in the GemStone Programming Guide. In addition, you must
know the C programming language, as described in Kernighan and Ritchie’s The
C Programming Language (Prentice Hall, 1978). Finally, you should be familiar with
your C compiler, as described in its user documentation.

You should have the GemStone system installed correctly on your host computer
as described in the GemStone/S Installation Guide for your platform.
September 2011 VMware, Inc. 3

Preface GemStone/S 6.6 GemBuilder for C
How This Manual is Organized
Chapter 1, “Introduction,” describes the GemBuilder functions in general, and
how they are used in application development with GemStone.

Chapter 2, “Building Applications with GemBuilder for C,” introduces the two
versions of GemBuilder and explains how to build applications that bind to
GemBuilder.

Chapter 3, “Writing C Functions To Be Called from GemStone,” describes how to
implement “user action” routines that can be called from GemStone Smalltalk
methods.

Chapter 4, “Compiling and Linking,” describes how to compile and link your C
applications and user actions, and how to install them in a GemStone environment
prior to execution.

Chapter 5, “GemBuilder C Functions — A Reference Guide,” provides a detailed
description of each GemBuilder function, including: synopsis (syntax),
parameters, return value, a general description of what the function does, one or
more examples of its use, and a list of related GemBuilder functions.

Appendix A, “Reserved OOPs,” lists mnemonics for reserved OOPs.

Appendix B, “GemStone C Statistics Interface,” describes the GemStone C
Statistics Interface (GCSI), a library of functions that allow your C application to
collect GemStone statistics directly from the shared page cache.

Appendix C, “Linking to Static User Action Code,” explains how to create user
actions that can link to static libraries on UNIX.

Terminology Conventions
The term “GemStone” is used to refer to the server products GemStone/S and
GemStone/S 64 Bit; the GemStone Smalltalk programming language; and may
also be used to refer to the company, previously GemStone Systems, Inc., now a
division of VMware, Inc.

Other Useful Documents
For more information about the GemStone data management system and its
development tools, see the GemStone Programming Guide. The System Administration
Guide for GemStone/S provides information on running and administering a
4 VMware, Inc. September 2011

GemStone/S 6.6 GemBuilder for C Preface
GemStone installation. The GemStone/S Installation Guides for each platform
include information on supported operating system and compiler versions.

Technical Support

GemStone Website
http://support.gemstone.com
GemStone’s Technical Support website provides a variety of resources to help
you use GemStone products:

 • Documentation for released versions of all GemStone products, in PDF
form.

 • Downloads and Patches, including past and current versions of
GemBuilder for Smalltalk.

 • Bugnotes, identifying performance issues or error conditions you should
be aware of.

 • TechTips, providing information and instructions that are not otherwise
included in the documentation.

 • Compatibility matrices, listing supported platforms for GemStone
product versions.

This material is updated regularly; we recommend checking this site on a regular
basis.

Help Requests
You may need to contact Technical Support directly, if your questions are not
answered in the documentation or by other material on the Technical Support
site. Technical Support is available to customers with current support contracts.

Requests for technical support may be submitted online or by telephone. We
recommend you use telephone contact only for serious requests that require
immediate attention, such as a production system down. The support website is
the preferred way to contact Technical Support.

Website: http://techsupport.gemstone.com
Email: techsupport@gemstone.com
Telephone: (800) 243-4772 or (503) 533-3503
September 2011 VMware, Inc. 5

Preface GemStone/S 6.6 GemBuilder for C
When submitting a request, please include the following information:

 • Your name, company name, and GemStone server license number.

 • The versions of all related GemStone products, and of any other related
products, such as client Smalltalk products.

 • The operating system and version you are using.

 • A description of the problem or request.

 • Exact error message(s) received, if any, including log files if appropriate.

Technical Support is available from 8am to 5pm Pacific Time, Monday through
Friday, excluding VMware/GemStone holidays.

24x7 Emergency Technical Support
GemStone Technical Support offers, at an additional charge, 24x7 emergency
technical support. This support entitles customers to contact us 24 hours a day, 7
days a week, 365 days a year, if they encounter problems that cause their
production application to go down, or that have the potential to bring their
production application down. For more details, contact your GemStone account
manager.

Training and Consulting
Consulting is available to help you succeed with GemStone products. Training for
GemStone software is available at your location, and training courses are offered
periodically at our offices in Beaverton, Oregon. Contact your GemStone account
representative for more details or to obtain consulting services.
6 VMware, Inc. September 2011

Contents
Chapter 1. Introduction 19
1.1 GemBuilder Application Overview. . 19

Deciding Where to Do the Work. . 21
Representing GemStone Objects in C 21
Smalltalk Access to Objects . 21
Calling C Functions from Smalltalk Methods 22

The GemBuilder Functions . 22
1.2 Session Control . 23

Starting and Stopping GemBuilder . 23
Remote Login Setup. . 23
Logging In and Out . 24
Transaction Management. . 24

Committing a Transaction . 24
Aborting a Transaction . 25
Controlling Transactions Manually 25

1.3 Representing Objects in C . 26
GemStone-defined Object Mnemonics 26
Converting Between Special Objects and C Values 27
Byte-swizzling of Binary Floating-point Values 29
September 2011 VMware, Inc. 7

Table of Contents GemStone/S 6.6 GemBuilder for C
1.4 Manipulating Objects in GemStone . 30
Sending Messages to GemStone Objects 30
Executing Code in GemStone . 31
Interrupting GemStone Execution . 32
Modification of Classes. 33

1.5 Manipulating Objects Through Structural Access 34
Direct Access to Metadata . 35

Byte Objects . 35
Pointer Objects. 36
Nonsequenceable Collections (NSC Objects). 38

1.6 Creating Objects . 39
1.7 Fetching and Storing Objects . 40

Efficient Fetching and Storing with Object Traversal 40
How Object Traversal Works 41
The Object Traversal Functions 42

Efficient Fetching And Storing with Path Access 43
Path Representations . 43

1.8 Nonblocking Functions . 44
1.9 Operating System Considerations . 45

Interrupt Handling in Your GemBuilder Application 45
Executing Host File Access Methods . 46

1.10 Error Handling and Recovery . 47
Polling for Errors . 47
Error Jump Buffers . 47
The Call Stack . 48
GemStone System Errors. 49

1.11 Garbage Collection . 49
1.12 Preparing to Execute GemStone Applications 50

GemStone Environment Variables . 51

Chapter 2. Building Applications with
GemBuilder for C 53

2.1 GciRpc and GciLnk. 53
Use GciRpc for Debugging. 54
Use GciLnk for Performance. 54
Multiple GemStone Sessions. 54
8 VMware, Inc. September 2011

GemStone/S 6.6 GemBuilder for C Table of Contents
2.2 The GemBuilder Shared Libraries. . 54
2.3 Binding to GemBuilder at Run Time . 55

Building the Application . 55
Searching for the Library . 56

How UNIX Matches Search Names with Shared Library Files . 56
How Windows Matches Search Names with DLL Files 56

Chapter 3. Writing C Functions
To Be Called from GemStone 59

3.1 Shared User Action Libraries . 59
3.2 How User Actions Work . 60
3.3 Developing User Actions. . 61

Write the User Action Functions. . 61
Create a User Action Library. . 62

The gciua.hf Header File . 62
The Initialization and Shutdown Functions 63
Compiling and Linking Shared Libraries 64
Using Existing User Actions in a User Action Library. 64
Using Third-party C Code With a User Action Library 65

Loading User Actions . 65
Loading User Action Libraries At Run Time 65
Specifying the User Action Library 66
Creating User Actions in Your C Application 67
Verify That Required User Actions Have Been Installed 67

Write the Code That Calls Your User Actions 67
Remote User Actions . 68
Limit on Circular Calls Among User Actions and Smalltalk . . 68

Debug the User Action . 68
3.4 Executing User Actions. . 69

Choosing Between Session and Application User Actions 69
Running User Actions with Applications. 70

With an RPC Application . 70
With a Linked Application . 71

Running User Actions with Gems . 72
Running User Actions with Applications and Gems 74
September 2011 VMware, Inc. 9

Table of Contents GemStone/S 6.6 GemBuilder for C
Chapter 4. Compiling and Linking 75
4.1 Development Environment and Standard Libraries 76
4.2 Compiling C Source Code for GemStone . 76

The C++ Compiler . 76
Compilation Options . 77
Compilation Command Lines . 77

4.3 Linking C Object Code with GemStone . 78
Risk of Database Corruption. 78
GemStone Link Files . 79
The Linker . 80
Link Options. 80
Command Line Assumptions . 80

Linking Applications That Bind to GemBuilder at Run Time . 80
Linking User Actions into Shared Libraries 81

Chapter 5. GemBuilder
C Functions — A Reference Guide 83

5.1 Function Summary Tables . 83
5.2 GemBuilder Include Files . 92
5.3 GemBuilder Data Types . 93

The Structure for Representing the Date and Time 94
The Error Report Structure. 94
The Object Information Structure . 95
The Object Report Structure . 96
The Object Report Header Structure . 96
The User Action Information Structure. 99

5.4 Structural Access Functions . .100
5.5 UNIX Interrupt Handling . .100
5.6 Reserved Prefixes . .100
5.7 GemBuilder Function and Macro Reference. 101

GciAbort .102
GciAddOopToNsc .103
GciAddOopsToNsc . .104
GciAddSaveObjsToReadSet .105
GciAlteredObjs . .106
10 VMware, Inc. September 2011

GemStone/S 6.6 GemBuilder for C Table of Contents
GCI_ALIGN . 108
GciAppendBytes . 109
GciAppendChars . 110
GciAppendOops. 111
GciBegin . 112
GCI_BOOL_TO_OOP . 113
GciCallInProgress . 114
GciCheckAuth. 115
GCI_CHR_TO_OOP . 117
GciClampedTrav . 118
GciClampedTraverseObjs . 121
GciClassMethodForClass . 123
GciClassNamedSize. 125
GciClearStack . 126
GciCompress . 129
GciCommit . 132
GciContinue . 133
GciContinueWith . 135
GciCreateByteObj . 137
GciCreateOopObj . 139
GciCTimeToDateTime . 141
GciDateTimeToCTime . 142
GciDbgEstablish . 143
GciDirtyObjsInit . 145
GciDirtySaveObjs . 146
GciEnableSignaledErrors . 148
GciEncodedLongToOop . 150
GciErr . 152
GciExecute . 154
GciExecuteFromContext . 156
GciExecuteStr . 158
GciExecuteStrFromContext . 160
GciExecuteStrTrav . 162
GciFetchByte . 165
GciFetchBytes . 167
GciFetchChars. 169
GciFetchClass . 170
GciFetchDateTime . 172
GciFetchNamedOop. 173
September 2011 VMware, Inc. 11

Table of Contents GemStone/S 6.6 GemBuilder for C
GciFetchNamedOops . .175
GciFetchNamedSize .177
GciFetchNameOfClass .178
GciFetchObjImpl . .179
GciFetchObjectInfo . .180
GciFetchObjInfo .182
GciFetchOop .184
GciFetchOops . .186
GciFetchPaths. .188
GciFetchSize .193
GciFetchVaryingOop . .195
GciFetchVaryingOops .198
GciFetchVaryingSize . .200
GciFindObjRep . .202
GciFltToOop .204
GciGetFreeOop . .205
GciGetFreeOops .207
GciGetSessionId .209
GciGsSocketRead. .210
GciGsSocketWrite .212
GciHandleError . .213
GciHardBreak. .215
GciHiddenSetIncludesOop . .216
GciInit. .218
GciInitAppName .219
GciInstMethodForClass. .220
GciInstallUserAction . .222
GciInUserAction .223
GciIsKindOf .224
GciIsKindOfClass. .225
GciIsRemote .226
GCI_IS_REPORT_CLAMPED .227
GciIsSubclassOf .228
GciIsSubclassOfClass. .229
GciIvNameToIdx . .230
GciLoadUserActionLibrary. .232
GciLogin .234
GciLogout. .236
GCI_LONG_IS_SMALL_INT . .237
12 VMware, Inc. September 2011

GemStone/S 6.6 GemBuilder for C Table of Contents
GciLongToOop . 238
GCI_LONG_TO_OOP . 240
GciMoreTraversal . 242
GciNbAbort . 245
GciNbBegin . 246
GciNbClampedTrav . 247
GciNbClampedTraverseObjs . 248
GciNbCommit. 250
GciNbContinue . 251
GciNbContinueWith . 252
GciNbEnd . 253
GciNbExecute . 255
GciNbExecuteStr . 257
GciNbExecuteStrFromContext . 259
GciNbExecuteStrTrav. 261
GciNbMoreTraversal . 263
GciNbPerform. 265
GciNbPerformNoDebug . 267
GciNbPerformTrav . 269
GciNbStoreTrav . 271
GciNbStoreTravDo . 272
GciNbStoreTravDoTrav. 273
GciNbTraverseObjs . 275
GciNewByteObj. 277
GciNewCharObj. 278
GciNewDateTime . 279
GciNewOop . 280
GciNewOops . 281
GciNewOopUsingObjRep . 283
GciNewString . 286
GciNewSymbol . 287
GciNscIncludesOop . 288
GciObjExists . 290
GciObjInCollection . 291
GciObjRepSize . 292
GCI_OOP_IS_BOOL . 294
GCI_OOP_IS_SMALL_INT . 295
GCI_OOP_IS_SPECIAL . 296
GciOopToBool . 297
September 2011 VMware, Inc. 13

Table of Contents GemStone/S 6.6 GemBuilder for C
GCI_OOP_TO_BOOL . .298
GciOopToChr . .299
GCI_OOP_TO_CHR . .300
GciOopToEncodedLong .301
GciOopToFlt .303
GciOopToLong . .305
GCI_OOP_TO_LONG . .307
GciOopToUnsignedLong . .309
GciPathToStr .311
GciPerform .314
GciPerformNoDebug . .316
GciPerformSymDbg .318
GciPerformTrav. .320
GciPerformTraverse .322
GciPollForSignal .325
GciPopErrJump . .327
GciProcessDeferredUpdates .329
GciProduct .330
GciPushErrHandler . .331
GciPushErrJump .332
GciRaiseException .335
GciReleaseAllOops . .336
GciReleaseOops .337
GciRemoveOopFromNsc . .339
GciRemoveOopsFromNsc .341
GciReplaceOops .343
GciReplaceVaryingOops . .345
GciResolveSymbol .346
GciResolveSymbolObj .347
GciRtlIsLoaded . .348
GciRtlLoad .349
GciRtlUnload . .351
GciSaveObjs .352
GciSendMsg .353
GciSessionIsRemote .355
GciSetErrJump .356
GciSetNet . .358
GciSetSessionId. .361
GciSetVaryingSize .362
14 VMware, Inc. September 2011

GemStone/S 6.6 GemBuilder for C Table of Contents
GciShutdown . 364
GciSoftBreak . 365
GciStoreByte . 366
GciStoreBytes . 368
GciStoreBytesInstanceOf . 370
GciStoreChars . 372
GciStoreIdxOop . 374
GciStoreIdxOops . 376
GciStoreNamedOop . 378
GciStoreNamedOops . 380
GciStoreOop. 382
GciStoreOops . 384
GciStorePaths . 387
GciStoreTrav . 392
GciStoreTravDo . 396
GciStoreTravDoTrav . 399
GciStrKeyValueDictAt . 400
GciStrKeyValueDictAtObj . 401
GciStrKeyValueDictAtObjPut . 402
GciStrKeyValueDictAtPut . 403
GciStrToPath . 404
GciSymDictAt. 407
GciSymDictAtObj. 408
GciSymDictAtObjPut . 409
GciSymDictAtPut . 410
GciTraverseObjs . 411
GciUncompress . 417
GciUnsignedLongToOop . 420
GciUserActionInit . 421
GciUserActionShutdown . 422
GCI_VALUE_BUFF . 423
GciVersion . 425
September 2011 VMware, Inc. 15

Table of Contents GemStone/S 6.6 GemBuilder for C
Appendix A. Reserved OOPs 427

Appendix B. GemStone C Statistics Interface 429
B.1 Developing a GCSI Application .429

Required Header Files .429
The GCSI Shared Library .430
Compiling and Linking .430
Connecting to the Shared Page Cache 430
The Sample Program . .431

B.2 GCSI Data Types . .431
The Structure for Representing the GCSI Function Result432
GcsiAllStatsForMask . .434
GcsiAttachSharedCache .435
GcsiAttachSharedCacheForStone .436
GcsiDetachSharedCache .437
GcsiFetchMaxProcessesInCache . .438
GcsiInit .439
GcsiShrPcMonStatAtOffset .440
GcsiStnStatAtOffset .441
GcsiStatsForGemSessionId . .442
GcsiStatsForGemSessionWithName . .443
GcsiStatsForPgsvrSessionId .444
GcsiStatsForProcessId .445
GcsiStatsForShrPcMon . .446
GcsiStatsForStone .447
GCSI Errors . .448

Appendix C. Linking to Static User Action Code 449
C.1 Creating the Custom Gem .449
C.2 Deploying Static User Actions for Custom Gems 450

How GemStone Starts Gem Processes 451
Starting a Private Custom Gem Under UNIX 452

C.3 Name Conflicts with Dynamic User Actions 453
16 VMware, Inc. September 2011

Chapter

1 Introduction
GemBuilder for C is a set of C functions that provide your C application with
complete access to a GemStone repository and its programming language,
Smalltalk1. The GemStone object server contains your schema (class definitions)
and objects (instances of those classes), while your C program provides the user
interface for your GemStone application. The GemBuilder functions allow your C
program to access the GemStone repository either through structural access (the C
model) or by sending messages (the Smalltalk model). Both of these approaches
are discussed in detail later in this chapter.

1.1 GemBuilder Application Overview
Figure 1.1 illustrates the role of GemBuilder in developing a GemStone
application. In effect, developing your GemStone application consists of two
separate efforts: creating Smalltalk classes and methods, and writing C code.

1. GemStone embeds a variety of the Smalltalk language within the repository. It is
separate from but similar to other varieties of Smalltalk that are sold commercially.
Smalltalk serves as the data definition and data manipulation language for GemStone, and
provides the repository with its ability to identify, access, and manipulate objects
internally. When this manual mentions Smalltalk, it generally is referring to GemStone’s
internal language.
September 2011 VMware, Inc. 19

GemBuilder Application Overview GemStone/S 6.6 GemBuilder for C
Figure 1.1 The Role of GemBuilder in Application Development

GemBuilder CallsC Application
GemStone

GemStone
Objects

C Data
Structures

Repository

Flow of Control
User Input/Output

Transaction Management
Execute Smalltalk code
Send messages to objects
Structural Access

We recommend the following steps for developing your hybrid application:

Step 1. Define the application’s external interface.

Any GemBuilder application must manage its user interface through custom
modules written in C.

Step 2. Decide where to perform the work.

Applications that are a hybrid of C functions and Smalltalk classes pose
interesting problems to the designer: Where is the best place to perform the
application’s work? Is it better to import the representation of an object into
your C program and perform the work there, or to send a message which
invokes a Smalltalk method? In the next section, we’ll examine this question in
more detail.

Step 3. Implement and debug the application.

After you’ve developed a satisfactory design, you can implement and test the
C-based functions using familiar techniques and tools (editor, C compiler, link
editor, debugger). For information about implementing applications, see
Chapter 2, “Building Applications with GemBuilder for C.”

Step 4. Compile and link the application.

For instructions about compiling and linking your application, please see
Chapter 4, “Compiling and Linking.” For full details, see your C compiler user
documentation.
20 VMware, Inc. September 2011

Chapter 1 - Introduction GemBuilder Application Overview
Deciding Where to Do the Work
As mentioned above, you will need to decide how much of the application’s work
to perform in C functions and how much in Smalltalk methods. The following
paragraphs discuss both approaches.

Representing GemStone Objects in C

You may choose to implement C functions that access GemStone objects for
manipulation in your C program. In such cases, a representation of each object
must be imported from GemStone into your C program before the C function is
executed. GemBuilder provides functions for importing objects from GemStone to
your C program, creating new GemStone objects, directly accessing and modifying
the internal contents of objects, and exporting objects to the GemStone repository.

Of course, if you import an object to your C program and modify it, or if you create
a new object within your C program, your application must export the new or
modified object to GemStone before it can commit the changes to the repository.

Here are some advantages of using GemBuilder structural access functions to
modify objects:

 • It may be more efficient to perform a function in C than in Smalltalk.

 • The function may need to be closely linked with I/O functions for the user
interface.

 • The function may already exist in a standard library. In this case, the data must
be transported from GemStone to that function.

The section “Manipulating Objects Through Structural Access” on page 34 defines
exactly how objects are represented in C as address space, and defines the
GemBuilder functions for exchanging these structures between GemStone and C.

Smalltalk Access to Objects

In many cases, you will choose to perform your GemStone work directly in
Smalltalk. GemBuilder provides C functions for defining and compiling Smalltalk
methods for a class, and for sending a message to an object (invoking a Smalltalk
method). Here are some advantages of writing a function directly in Smalltalk:

 • The integrity of the data encapsulation provided by the object metaphor is
preserved.

 • Functions in Smalltalk are more easily shared among multiple applications.
September 2011 VMware, Inc. 21

GemBuilder Application Overview GemStone/S 6.6 GemBuilder for C
 • Functions in Smalltalk may be easier to implement. There is no need to worry
about moving objects between C and Smalltalk or about space management.

 • The overhead of transporting objects between C and Smalltalk is avoided.

 • Classes or methods may already exist which exhibit behavior similar to the
desired behavior. Thus, less effort will be required to implement a new
function in Smalltalk.

The section “Manipulating Objects in GemStone” on page 30 defines the
GemBuilder functions that allow C applications to send Smalltalk messages to
objects and execute Smalltalk code.

Calling C Functions from Smalltalk Methods

Even though you may choose to perform your GemStone work in Smalltalk, you
may find that you need to access some functions written in C. GemBuilder allows
you to link your user-written C functions to a GemStone session process, and
subsequently call those functions from Smalltalk. For example, operations that are
computationally intensive or are external to GemStone can be written as C
functions and called from within a Smalltalk method (whose high-level structure
and control is written in Smalltalk). This is similar to the concept of “user-defined
primitives” offered by other object-oriented systems. Here are some advantages of
calling C functions from Smalltalk:

 • For computationally intensive portions of a GemStone operation, C functions
may execute faster than the same functions written in Smalltalk.

 • Operating system services, or services of other software systems, can be
accessed without the overhead of spawning a subprocess. In addition, using C
functions to access such services provides greater flexibility for passing
arguments and returning results.

Chapter 3, “Writing C Functions To Be Called from GemStone,” describes how to
implement “user action” routines that can be called from Smalltalk methods, and
how to link those routines into a GemBuilder application or a Gem (GemStone
session) process.

The GemBuilder Functions
The remainder of this chapter introduces you to many of the GemBuilder C
functions.

 • First, we’ll look at functions used in managing GemStone sessions: logging
into (and out of) GemStone, switching between multiple sessions, and
committing and aborting transactions.
22 VMware, Inc. September 2011

Chapter 1 - Introduction Session Control
 • Next, we’ll look at functions that allow your C program to manipulate objects
by sending Smalltalk messages or executing Smalltalk code fragments.

 • Finally, we’ll examine those functions that perform “structural access” upon
the representation of objects within your C program.

1.2 Session Control
All interactions with the GemStone repository monitor occur within the scope of a
user’s GemStone session, which may encapsulate one or more individual
transactions. GemBuilder provides functions for obtaining and managing
GemStone repository sessions, such as logging in and logging out, committing and
aborting transactions, and connecting to a different session.

Starting and Stopping GemBuilder
The functions GciInitAppName and GciInit initialize GemBuilder. When it is used,
your application should call GciInitAppName before calling GciInit. Your C
application must not call any other GemBuilder functions until it calls GciInit.

The function GciShutdown logs out all sessions that are connected to the Gem and
deactivates GemBuilder. Your C application should call GciShutdown before
exiting, in order to guarantee that the process deallocates its resources.

Remote Login Setup
There are several ways to prepare for remote login to a GemStone repository:

1. First, you use a netldi that is running in guest mode, attached to the Stone
process. Guest mode provides easy access in situations where it is not
considered necessary to authenticate users in the network environment before
permitting them to log in.

2. Second, you can use the kerberos system for authenticating users. See your
kerberos documentation and man pages for details.

3. Otherwise, you need to have a .netrc file in your $HOME directory. This file
contains remote login data: the name of your host machine, your login name,
and your host machine password, in the following format:

machine host_machine_name username name password passwd

If you will be using more than one host machine, you will need a separate
entry in this file for each machine, with each entry on its own line.
September 2011 VMware, Inc. 23

Session Control GemStone/S 6.6 GemBuilder for C
You may also wish to set the GEM_RPCGCI_TIMEOUT configuration parameter
in the GemStone configuration file you use when starting a remote Gem. This
parameter sets a timeout limit for the remote Gem; if the Gem remains inactive too
long, GemStone logs out the session and terminates the Gem process. See the
System Administration Guide for GemStone/S for more details.

Logging In and Out
 Before your C application can perform any useful repository work, it must create
a session with the GemStone system by calling GciLogin. That function uses the
network parameters initialized by GciSetNet.

If your application calls GciLogin again after you are already logged in,
GemBuilder will create an additional, independent, GemStone session for you.
Multiple sessions can be attached to the same GemStone repository, or they can be
attached to different repositories. The maximum number of sessions that may be
logged in at one time depends upon your version of GemStone and the terms of
your license agreement.

From the point of view of GemBuilder, only a single session is active at any one
time. It is known as the current session. Any time you execute code that
communicates with the repository, it talks to the current session only. Other
sessions are unaffected.

Each session is assigned a number by GemBuilder as it is created. Your application
can call GciGetSessionId to inquire about the number of the current session, or
GciSetSessionId to make another session the current one. Your application is
responsible for treating each session distinctly.

An application can terminate a session by calling GciLogout. After that call returns,
the current session no longer exists.

Transaction Management

Committing a Transaction

The GemStone repository proceeds from one stable state to the next by
continuously committing transactions. In Smalltalk, the message
System commitTransaction attempts to commit changes to the repository.
Similarly, when your C application calls the function GciCommit, GemStone will
attempt to commit any changes to objects occurring within the current session.

A session within a transaction views the repository as it existed when the
transaction started. By the time you are ready to commit a transaction, other
24 VMware, Inc. September 2011

Chapter 1 - Introduction Session Control
sessions or users may have changed the state of the repository through intervening
commit operations. Your application can call GciAlteredObjs to determine which
objects must be reread from the repository in order to make its view current. Then,
to reread those objects, use whatever kind of GemBuilder fetch or traversal
functions best suits your needs.

If an attempt to commit fails, your application must call GciAbort to discard the
transaction. If it does not do so, subsequent calls to GciCommit will not succeed.

As mentioned earlier, if your C code has created any new objects or has modified
any objects whose representation you have imported, those objects must be
exported to the GemStone repository in their new state before the transaction is
committed. This ensures that the committed repository properly reflects the
intended state.

Aborting a Transaction

By calling GciAbort, an application can discard from its current session all the
changes to persistent objects that were made since the last successful commit or
since the beginning of the session (whichever is later). This has exactly the same
effect as sending the Smalltalk message

System abortTransaction.

After the application aborts a transaction, it must reread any object whose state has
changed.

Controlling Transactions Manually

Under automatic transaction control, a transaction is started when a user logs in to
the repository. The transaction then continues until it is either committed or
aborted. The call to GciAbort or GciCommit automatically starts a new transaction
when it finishes processing the previous one. Thus, the user is always operating
within a transaction.

Automatic transaction control is the default control mode in GemStone. However,
there is some overhead associated with transactions that an application can avoid
by changing the transaction mode to manual:

GciExecuteStr(
"System transactionMode: #manualBegin", OOP_NIL);

The transaction mode can also be returned to the automatic default:

GciExecuteStr(
"System transactionMode: #autoBegin", OOP_NIL);
September 2011 VMware, Inc. 25

Representing Objects in C GemStone/S 6.6 GemBuilder for C
In manual mode, the application starts a new transaction manually by calling the
GciBegin function. The GciAbort and GciCommit functions complete the current
transaction, but do not start a new transaction. Thus, they leave the user session
operating outside of a transaction, without its attendant overhead. The session
views the repository as it was when the last transaction was completed, or when
the mode was last reset, whichever is later.

Since automatic transaction control is the default, a transaction is always started
when a user logs in. To operate outside a transaction initially, an application must
first set the mode to manual, and then either abort or commit the transaction.

1.3 Representing Objects in C
An important feature of the GemStone data model is its ability to preserve an
object’s identity distinct from its state. Within GemStone, each object is identified
by a unique 32-bit object-oriented pointer, or OOP. Whenever your C program
attempts to access or modify the state of a GemStone object, GemStone uses its
OOP to identify it. Both the OOP and a representation of the object’s state may be
imported into an application’s C address space.

Within your C program, object identity is represented in variables of type OopType
(object-oriented pointer). The GemBuilder include file gci.ht defines type
OopType, along with other types used by GemBuilder functions. For more
information, see “GemBuilder Include Files” on page 92.

GemStone-defined Object Mnemonics
The GemBuilder include file gcioop.ht defines C mnemonics for all of the kernel
classes in the GemStone repository, as well as the GemStone objects nil, true, and
false, and the GemStone error dictionary.

In addition to the predefined objects mentioned above, the GemBuilder include
file gcioop.ht also defines the C mnemonic OOP_ILLEGAL. That mnemonic
represents a value that will never be used to represent any object in the repository.
You can thus initialize the state of an OOP variable to OOP_ILLEGAL, and test
later in your program to see if that variable contains valid information.

NOTE
Bear in mind that your C program can only use predefined OOPs, or
OOPs that it has received from the GemStone. Your C program cannot
create new OOPs directly — it must ask GemStone to create new OOPs
for it.
26 VMware, Inc. September 2011

Chapter 1 - Introduction Representing Objects in C
Converting Between Special Objects and C Values
Some Smalltalk classes encode their objects’ states directly in their OOPs:

 • SmallInteger objects (for example, the number 5)

 • AbstractCharacter and its subclasses, JISCharacter and Character (for
example, the letter ‘b’)

 • Boolean values (true and false)

 • Instances of class UndefinedObject (such as nil)

The following GemBuilder functions and macros allow conversion between
Character, SmallInteger, or Boolean objects and the equivalent C values:

GCI_BOOL_TO_OOP — (MACRO) Convert a C Boolean value to a GemStone
Boolean object.

GCI_CHR_TO_OOP — (MACRO) Convert a C character value to a GemStone
Character object.

GciLongToOop — Find a GemStone object that corresponds to a C long integer.

GCI_LONG_TO_OOP — (MACRO) Find a GemStone object that corresponds to a
C long integer.

GciOopToBool — Convert a Boolean object to a C Boolean value.

GCI_OOP_TO_BOOL — (MACRO) Convert a Boolean object to a C Boolean
value.

GciOopToChr — Convert a Character object to a C character value.

GCI_OOP_TO_CHR — (MACRO) Convert a Character object to a C character
value.

GciOopToLong — Convert a Gemstone object to a C long integer value.

GCI_OOP_TO_LONG — (MACRO) Convert a GemStone object to a C long
integer value.

GciUnsignedLongToOop — Find a GemStone object that corresponds to a C
unsigned long integer.

In addition, the following functions allow conversion between Float objects and
their equivalent C values. Although a Float’s OOP does not encode its state, these
functions are listed here for your convenience.
September 2011 VMware, Inc. 27

Representing Objects in C GemStone/S 6.6 GemBuilder for C
GciFltToOop — Convert a C double value to a Float object.

GciOopToFlt — Convert a Float object to a C double value.

The following macros are for testing OOPs:

GCI_LONG_IS_SMALL_INT — (MACRO) Determine whether or not a long can
be translated into a SmallInteger.

GCI_OOP_IS_BOOL — (MACRO) Determine whether or not a GemStone object
represents a Boolean value.

GCI_OOP_IS_SMALL_INT — (MACRO) Determine whether or not a GemStone
object represents a SmallInteger.

GCI_OOP_IS_SPECIAL — (MACRO) Determine whether or not a GemStone
object has a special representation.

The GemBuilder include file gcioop.ht uses the C mnemonics OOP_TRUE,
OOP_FALSE, and OOP_NIL to represent the GemStone objects true, false, and nil,
respectively.

In Example 1.1, assume that you have defined a Smalltalk class called Address that
represents a mailing address. If the class has five instance variables, the OOPs of
one instance of Address can be imported into a C array called address. Example 1.1
assumes that this is done in the “intervening code”. Finally, assume that the fifth
instance variable represents the zip code of the address.

The fifth element of address is the OOP of the SmallInteger object that represents
the zip code, not the zip code itself. Example 1.1 imports the value of the zip code
object to the C variable zip.

Example 1.1

OopType address[5];
long zip;

/* Intervening code goes here, in place of this comment */

zip = GciOopToLong (address[4]);

/* zip now contains a long integer which has the same
 value as the GemStone object represented by address[4] */
28 VMware, Inc. September 2011

Chapter 1 - Introduction Representing Objects in C
Byte-swizzling of Binary Floating-point Values
If an application is running on a different machine than its Gem, the byte ordering
of binary floating-point values may differ on the two machines. To ensure the
correct interpretation of floating values when they are transferred between such
machines, the bytes need to be reordered (swizzled) to match the machine to which
they are transferred. GemBuilder handles all necessary byte swizzling for an
application automatically and transparently.

In GemStone, a binary float is an instance of class Float (eight bytes) or SmallFloat
(four bytes). The size of binary float objects is fixed by GemStone and cannot be
changed. The programmer must supply all the bytes for a binary floating object
when creating or storing it.

The following GemBuilder functions provide automatic byte swizzling for binary
floats:

GciClampedTraverseObjs — Traverse an array of objects, subject to clamps.

GciCreateByteObj — Create a new byte-format object.

GciFetchObjInfo — Fetch information and values from an object.

GciMoreTraversal — Continue object traversal, reusing a given buffer.

GciNbClampedTraverseObjs — Traverse an array of objects, subject to clamps
(nonblocking).

GciNbMoreTraversal — Continue object traversal, reusing a given buffer
(nonblocking).

GciNbStoreTrav — Store multiple traversal buffer values in objects (nonblocking).

GciNbTraverseObjs — Traverse an array of GemStone objects (nonblocking).

GciNewOopUsingObjRep — Create a new GemStone object from an existing object
report.

GciPerformTraverse — First send a message to a GemStone object, then traverse
the result of the message.

GciStoreBytesInstanceOf — Store multiple bytes in a byte object.

GciStoreTrav — Store multiple traversal buffer values in objects.

GciStoreTravDo — Store multiple traversal buffer values in objects, execute the
specified code, and return the resulting object.
September 2011 VMware, Inc. 29

Manipulating Objects in GemStone GemStone/S 6.6 GemBuilder for C
GciTraverseObjs — Traverse an array of GemStone objects.

The following GemBuilder functions raise an error if you pass a binary float object
to them:

GciAppendBytes — Append bytes to a byte object.

GciStoreByte — Store one byte in a byte object.

GciStoreBytes — (MACRO) Store multiple bytes in a byte object.

GciStoreChars — Store multiple ASCII characters in a byte object.

The GciFetchBytes function does not raise an error if you pass a binary float object
to it, but it also does not provide automatic byte swizzling. It is intended primarily
for use with other kinds of byte objects, such as strings. If you wish to use it with
binary floats, you must perform your own byte swizzling as needed.

1.4 Manipulating Objects in GemStone
GemBuilder provides functions that allow C applications to execute Smalltalk
code in the repository and to send messages directly to GemStone objects. This
section describes these functions in more detail.

Sending Messages to GemStone Objects
GemBuilder provides two functions, GciSendMsg and GciPerform, that send a
message to a GemStone object. When GemStone receives a message, it invokes and
executes the method associated with that message. Thus, the code execution occurs
in the repository, not in the application.

Example 1.2 illustrates differences in syntax for these functions. However, each
statement would have the same effect when executed: to place someValue at
someKey location within someDict object.
30 VMware, Inc. September 2011

Chapter 1 - Introduction Manipulating Objects in GemStone
Example 1.2

OopType someDict, someKey, someValue, someArgList[2];
someArgList[0] = someKey;
someArgList[1] = someValue;

/* Intervening code goes here, in place of this comment */

/* Two statements that have the same effect when executed */
oop = GciSendMsg(someDict, 4, "at:", someKey, "put:",
 someValue);
oop = GciPerform(someDict, "at:put:", someArgList, 2);

Each function has its own advantages over the other. The GciSendMsg syntax lists
the GemStone message elements explicitly, which may make your C code more
readable (and therefore easier to maintain). On the other hand, GciPerform does
not need to piece together the message elements for GemStone, and hence it runs
somewhat faster. Nevertheless, your application may need to do the same work
itself in order to use GciPerform, in which case GciSendMsg is the better choice,
since it does this work automatically and reliably. Where these tradeoffs are
important to your application, your choice may well be determined by how much
reuse the program can make of the argument list for GciPerform.

Executing Code in GemStone
Your C application can execute Smalltalk code by calling any of the following
GemBuilder functions:

GciExecute — Execute a Smalltalk expression contained in a String object.

GciExecuteFromContext — Execute a Smalltalk expression contained in a String
object as if it were a message sent to another object.

GciExecuteStr — Execute a Smalltalk expression contained in a C string.

GciExecuteStrFromContext — Execute a Smalltalk expression contained in a C
string as if it were a message sent to an object.

The GemBuilder function GciExecuteStr allows your application to send a C string
containing Smalltalk code to GemStone for compilation and execution. The
Smalltalk code may be a message expression, a statement, or a series of statements;
in sum, any self-contained unit of code that you could execute within a Topaz
PrintIt command.
September 2011 VMware, Inc. 31

Manipulating Objects in GemStone GemStone/S 6.6 GemBuilder for C
GemStone uses the specified symbol list argument to bind any symbols contained
in the Smalltalk source. If the symbol list is OOP_NIL, GemStone uses the symbol
list associated with the currently logged-in user. Example 1.3 demonstrates the use
of this GemBuilder function.

Example 1.3

/*
Pass the String to GemStone for compilation and execution.
If it succeeds, return the OOP "objSize" (the size of the
object).
*/
objSize = GciExecuteStr(" ^ myObject size ", OOP_NIL);

Your Smalltalk code has the same format as a method, and may include
temporaries. In addition, although the circumflex (^) character is used in the above
example to return a value after GemStone has executed Smalltalk code (myObject
size), the circumflex is not required. GemStone returns the result of the last
Smalltalk statement executed.

The other functions work similarly, with variations. Before you call GciExecute or
GciExecuteFromContext, you must create or modify a GemStone String object to
contain the Smalltalk text to be executed. The GciExecuteFromContext and
GciExecuteStrFromContext functions execute the Smalltalk code within the
context (scope) of a specified GemStone object, which implies that the code can
access the object’s instance variables.

Interrupting GemStone Execution
GemBuilder provides two ways for your application to handle repository
interrupts:

 • A soft break interrupts the Smalltalk virtual machine only. The only
GemBuilder functions that can recognize a soft break are GciSendMsg,
GciPerform, GciContinue, GciExecute, GciExecuteFromContext,
GciExecuteStr, and GciExecuteStrFromContext.

 • A hard break interrupts the Gem process itself, and is not trappable through
Smalltalk exceptions.

Issuing a soft break may be desirable if, for example, your application sends a
message to an object (via GciSendMsg or GciPerform), and for some reason the
invoked Smalltalk method enters an infinite loop.
32 VMware, Inc. September 2011

Chapter 1 - Introduction Manipulating Objects in GemStone
In order for GemBuilder functions in your program to recognize interrupts, your
program usually needs an interrupt routine that can call the functions
GciSoftBreak and GciHardBreak. Since GemBuilder generally does not relinquish
control to an application until it has finished its processing, soft and hard breaks
are then initiated from an interrupt service routine. Alternatively, if you are calling
the non-blocking GemBuilder functions, you can service interrupts directly within
your event loop, while awaiting the completion of a function.

If GemStone is executing when it receives the break, it replies with an error
message. If it is not executing, it ignores the break.

Modification of Classes
Some class definitions are more flexible than others. With respect to modification,
classes fall into three categories:

kernel classes — Predefined kernel classes cannot be modified. You can, however,
create a subclass of a kernel class and redefine your subclass’s behavior.

invariant classes — Once a class has been fully developed, it is normally invariant.
Class invariance does not imply that it is impervious to all change. You can
add or remove methods, method categories, class variables, or pool variables
to any class except a predefined kernel class. You can also create instances of
an invariant class.

modifiable classes — You can also create specially modifiable classes, a feature
that can be useful (for example) while you are defining schema or
implementing the classes. You can modify these classes in the same ways as
invariant classes, but you can also add or remove named instance variables or
change constraints on instance variables. However, you cannot create an
instance of a modifiable class. To create an instance, you must first change the
class to invariant.

The GemStone Behavior class provides several methods for changing the
characteristics of modifiable classes. Use only these predefined methods — do
not use structural access to modify classes.
September 2011 VMware, Inc. 33

Manipulating Objects Through Structural Access GemStone/S 6.6 GemBuilder for C
1.5 Manipulating Objects Through Structural Access
As mentioned earlier in this chapter, GemBuilder provides a set of C functions that
enable you to do the following:

 • Import objects from GemStone to your C program

 • Create new GemStone objects

 • Directly access and modify the internal contents of objects through their C
representations

 • Export objects from your C program to the GemStone repository

You may need to use GemBuilder’s “structural access” functions for either of two
reasons:

 • Speed

Because they call on GemStone’s internal object manager without using the
Smalltalk virtual machine, the structural access functions provide the most
efficient possible access to individual objects.

 • Generality

If your C application must handle GemStone objects that it did not create,
using the structural access functions may be the only way you can be sure that
the components of those objects will be accessible to the application. A user
might, for example, define a subclass of Array in which at: and at:put: were
disallowed or given new meanings. In that case, your C application could not
rely on the standard GemStone kernel class methods to read and manipulate
the contents of such a collection.

Despite their advantages, you should use these structural access functions only if
you’ve determined that Smalltalk message-passing won’t do the job at hand.
GemBuilder’s structural access functions violate the principles of abstract data
types and encapsulation, and they bypass the consistency checks encoded in the
Smalltalk kernel class methods. If your C application unwisely alters the structure
of a GemStone object (by, for example, storing bytes directly into a floating-point
number), the object will behave badly and your application will break.

For the same reason, do not use structural access to change the characteristics of
modifiable classes. Use GciSendMsg to invoke the Smalltalk methods defined
under class Behavior for this specific purpose.

For security reasons, the GemStone object AllUsers cannot be modified using
structural access. If you attempt to do so, GemStone raises the
RT_ERR_OBJECT_PROTECTED error.
34 VMware, Inc. September 2011

Chapter 1 - Introduction Manipulating Objects Through Structural Access
Direct Access to Metadata
Your C program can use GemBuilder’s structural access functions to request
certain data about an object:

 • Class

Each object is an instance of some class. The class defines the behavior of its
instances. To find an object’s class, call GciFetchClass.

 • Format

GemStone represents the state of an object in one of four different
implementations (formats): byte, pointer, NSC (non-sequenceable collection),
or special. (These implementations are described in greater detail in the
following section.) To find an object’s implementation, call GciFetchObjImpl.

 • Size

The function GciFetchNamedSize returns the number of named instance
variables in an object, while GciFetchVaryingSize returns the number of
unnamed instance variables in an object. GciFetchSize returns the object’s
complete size (the sum of its named and unnamed variables).

The result of GciFetchSize depends on the object’s implementation (“format”).
For byte objects (such as instances of String or Float), GciFetchSize returns the
number of bytes in the object’s representation. For pointer and NSC objects,
this function returns the number of OOPs that represent the object. For
“special” objects (such as nil, or instances of SmallInteger, Character, and
Boolean), the size is always 0.

Byte Objects

GemStone byte objects (for example, instances of class String or Symbol) can be
manipulated in C as arrays of characters. The following GemBuilder functions
enable your C program to store into, or fetch from, GemStone byte objects such as
Strings:

GciAppendBytes — Append bytes to a byte object.

GciAppendChars — Append a C string to a byte object.

GciFetchByte — Fetch one byte from an indexed byte object.

GciFetchBytes — Fetch multiple bytes from an indexed byte object.

GciFetchChars — Fetch multiple ASCII characters from an indexed byte object.
September 2011 VMware, Inc. 35

Manipulating Objects Through Structural Access GemStone/S 6.6 GemBuilder for C
GciStoreByte — Store one byte in a byte object.

GciStoreBytes — (MACRO) Store multiple bytes in a byte object.

GciStoreChars — Store multiple ASCII characters in a byte object.

Although instances of Float are implemented within GemStone as byte objects, use
the functions GciOopToFlt and GciFltToOop to convert between Float objects and
their equivalent C values.

Assume that the C variable suppId contains an OOP representing an object of class
String. Example 1.4 imports that String into the C variable suppName:

Example 1.4

long size;
OopType suppId;
char suppName[MAXLEN + 1];

/* Intervening code goes here, in place of this comment */

size = GciFetchSize(suppId);
GciFetchBytes (suppId, 1L, suppName, size);
suppName[size] = '\0';
/* suppName now contains the GemStone object referenced
 by suppId */

Pointer Objects

In your C program, a GemStone pointer object is represented as an array of OOPs.
The order of the OOPs within the GemStone pointer object is preserved in the C
array. GemStone represents the following kinds of objects as arrays of OOPs:

Objects with Named Instance Variables

Any object with one or more named instance variables is represented as an array
of OOPs. You can determine the positional mapping of instance variables to
indexes within the OOP array by calling the GemBuilder function
GciIvNameToIdx. The following GemBuilder functions allow your C program to
store into, or fetch from, GemStone pointer objects with named instance variables:

GciFetchNamedOop — Fetch the OOP of one of an object’s named instance
variables.
36 VMware, Inc. September 2011

Chapter 1 - Introduction Manipulating Objects Through Structural Access
GciFetchNamedOops — Fetch the OOPs of one or more of an object’s named
instance variables.

GciStoreNamedOop — Store one OOP into an object’s named instance variable.

GciStoreNamedOops — Store one or more OOPs into an object’s named instance
variables.

Indexable Objects

Any indexable object not implemented as a byte object is represented as an array
of OOPs. The following GemBuilder functions allow your C program to store into,
or fetch from, indexable pointer objects:

GciFetchVaryingOop — Fetch the OOP of one unnamed instance variable from an
indexed pointer object or NSC.

GciFetchVaryingOops — Fetch the OOPs of one or more unnamed instance
variables from an indexed pointer object or NSC.

GciStoreIdxOop — Store one OOP in a pointer object’s unnamed instance variable.

GciStoreIdxOops — Store one or more OOPs in a pointer object’s unnamed
instance variables.

In each of the following functions, if the indexable object contains named instance
variables, pointers to the named instance variables precede pointers to the indexed
instance variables.

GciFetchOop — Fetch the OOP of one instance variable of an object.

GciFetchOops — Fetch the OOPs of one or more instance variables of an object.

GciStoreOop — Store one OOP into an object’s instance variable.

GciStoreOops — Store one or more OOPs into an object’s instance variables.

Assume that the C variable currSup contains an OOP representing an object of class
Supplier (which defines seven named instance variables). Example 1.5 imports the
state of the Supplier object (that is, the OOPs of its component instance variables)
into the C variable instVar:
September 2011 VMware, Inc. 37

Manipulating Objects Through Structural Access GemStone/S 6.6 GemBuilder for C
Example 1.5

OopType currSup;
OopType instVar[7];

/* Intervening code goes here, in place of this comment */

GciFetchNamedOops (currSup, 1L, instVar, 7);
/* instVar now contains the OOPs of the seven instance
 variables of the GemStone object referenced by currSup
*/

Nonsequenceable Collections (NSC Objects)

In addition to byte objects and pointer objects, GemStone exports objects
implemented as nonsequenceable collections (NSCs). NSC objects (for example,
instances of class Bag, Set, and Dictionary) reference other objects in a manner
similar to pointer objects, except that the notion of order is not preserved when
objects are added to or removed from the collection.

The following GemBuilder functions allow your C program to store into, or fetch
from, GemStone NSC objects:

GciAddOopToNsc — Add an OOP to the unordered variables of a
nonsequenceable collection.

GciAddOopsToNsc — Add multiple OOPs to the unordered variables of a
nonsequenceable collection.

GciFetchOop — Fetch the OOP of one instance variable of an object.

GciFetchOops — Fetch the OOPs of one or more instance variables of an object.

GciRemoveOopFromNsc — Remove an OOP from an NSC.

GciRemoveOopsFromNsc — Remove one or more OOPs from an NSC.

GciReplaceVaryingOops — Replace all unnamed instance variables in an NSC
object.

Note that GemStone preserves the position of objects in an NSC only until the NSC
is modified, or until the session is terminated (whichever comes first). Although
you may use the functions GciFetchOops or GciFetchOop (defined for pointer
objects) to retrieve the OOPs of an NSC’s elements, you must use one of the
38 VMware, Inc. September 2011

Chapter 1 - Introduction Creating Objects
GciAddOopToNsc functions to modify an NSC. (The GciStoreOop functions cannot
be used with NSCs.)

Assume that the C variable mySuppSet contains an OOP representing an object of
class SupplierSet (a large set of Supplier objects). Example 1.6 exports the contents
of the C variable newSupp (a Supplier object) into that SupplierSet:

Example 1.6

OopType mySuppSet;
OopType newSupp;

/* Intervening code goes here, in place of this comment */

GciAddOopToNsc (mySuppSet, newSupp);
/* The GemStone Set referenced by mySuppSet now contains

the OOP of the object newSupp */

1.6 Creating Objects
The following GemBuilder functions allow your C program to create instances of
Smalltalk classes:

GciNewOop — Create a new GemStone object.

GciNewOops — Create multiple new GemStone objects.

GciNewOopUsingObjRep — Create a new GemStone object from an existing object
report.

Your C application may also create a new object by executing some Smalltalk code
that creates new objects as a side-effect.

Once your application has created a new object, it can export the object to the
repository by performing the following steps:

Step 1. Modify a previously committed object in the repository so that it
references the new object. This may be accomplished with a call to one of the
GciStore... functions, or by sending a Smalltalk message with the new object as
an argument, where the invoked method changes a committed object to
reference the new object.

Step 2. Give the new object some meaningful state.
September 2011 VMware, Inc. 39

Fetching and Storing Objects GemStone/S 6.6 GemBuilder for C
Step 3. Commit a transaction. (As mentioned earlier in this chapter, your C
program must first export the object to the GemStone repository before
attempting to commit the transaction.)

1.7 Fetching and Storing Objects

Efficient Fetching and Storing with Object Traversal
The functions described in the preceding sections allow your C program to import
and export the components of a single GemStone object. When your application
needs to obtain information about multiple objects in the repository, it can
minimize the number of network calls by using GemBuilder’s object traversal
functions.

NOTE:
If you are using GciLnk (the “linkable” GemBuilder), object traversal
will be of little benefit to you. For details, see “GciRpc and GciLnk” on
page 53.

Suppose, for example, that you had created a GemStone Employee class like the
one in Example 1.7:

Example 1.7

Object subclass: 'Employee'
instVarNames: #('name' 'empNum' 'jobTitle'

'department' 'address'
'favoriteTune')

classVars: #()
poolDictionaries: #()
inDictionary: UserGlobals
constraints: #[#[#name, Name],

#[#empNum, SmallInteger],
#[#jobTitle, String],
#[#department, Department],
#[#address, Address],
#[#favoriteTune, String]]

isInvariant: false.
40 VMware, Inc. September 2011

Chapter 1 - Introduction Fetching and Storing Objects
Notice the constraints on Employee’s instance variables. Department, name, and
address are all constrained to contain instances of other complex classes.

Now imagine that you needed to write C code to make a two-column display of
job titles and favorite tunes. By using GemBuilder’s “object traversal” functions,
you can minimize the number of network fetches and avoid running the Smalltalk
virtual machine.

How Object Traversal Works

To understand the object traversal mechanism, think of each GemStone pointer
object as the root of a tree (for now, ignore the possibility of objects containing
themselves). The branches at the first level go to the object’s instance variables,
which in turn are connected to their own instance variables, and so on.

Figure 1.2 illustrates a piece of the tree formed by an instance of Employee.

Figure 1.2 Object Traversal and Paths

departmentname address

myEmp

'Bob'

first

'Jones'

last

'welding'

deptName

'3333'

phone

'Elm'

street

'97333'

zip

'Am I Blue'

favoriteTune

'welder'

jobTitle

'255'

empNum

In a single call, GemStone’s internal object traversal function walks such a tree
post-depth-first to some specified level, building up a “traversal buffer” that is an
array of “object reports” describing the classes of the objects encountered and the
values of their contents. It then returns that traversal buffer to your application for
selective extraction and processing of the contents.

Thus, to make your list of job titles and favorite tunes with the smallest possible
amount of network traffic per employee processed, you could ask GemStone to
traverse each employee to two levels (the first level is the Employee object itself
September 2011 VMware, Inc. 41

Fetching and Storing Objects GemStone/S 6.6 GemBuilder for C
and the second level is that object’s instance variables). You could then pick out the
object reports describing jobTitle and favoriteTune, and extract the values stored by
those reports (welder and Am I Blue respectively).

This approach would minimize network traffic to a single round trip.

One further optimization is possible: instead of fetching each employee and
traversing it individually to level two, you could ask GemStone to begin traversal
at the collection of employees and to descend three levels. That way, you would get
information about the whole collection of employees with just a single call over the
network.

The Object Traversal Functions

The function GciTraverseObjs traverses object trees rooted at a collection of one or
more GemStone objects, gathering object reports on the specified objects into a
traversal buffer.

Each object report provides information about an object’s identity (its OOP), class,
size (the number of instance variables, named plus unnamed), segment,
implementation (byte, pointer, NSC, or special), and the values stored in its
instance variables.

When the amount of information obtained in a traversal exceeds the amount of
available memory, your application can break the traversal into manageable
amounts of information by issuing repeated calls to GciMoreTraversal. Generally
speaking, an application can continue to call GciMoreTraversal until it has
obtained all requested information.

Your application can call GciFindObjRep to scan a traversal buffer for an
individual object report. Before it allocates memory for a copy of the object report,
your program can call GciObjRepSize to obtain the size of the report.

The function GciStoreTrav allows you to store values into any number of existing
GemStone objects in a single network round trip. That function takes a traversal
buffer of object reports as its argument.

The function GciStoreTravDo is even more parsimonious of network resources. In
a single network round trip, you can store values into any number of existing
GemStone objects, then execute some code; the function returns a pointer to the
resulting object. That function takes a structure as its argument, which defines
traversal buffer of object reports and an execution string or message. After the
function has completed, the structure also contains information describing the
GemStone objects that have changed.
42 VMware, Inc. September 2011

Chapter 1 - Introduction Fetching and Storing Objects
Efficient Fetching And Storing with Path Access
As you’ve seen, object traversal is a powerful tool for fetching information about
multiple objects efficiently. But writing the code for parsing traversal buffers and
object reports may not always be simple. And even if you can afford the memory
for importing unwanted information, the processing time spent in parsing that
information into object reports may be unacceptable.

Consider the Employee object illustrated in the Figure 1.2. If your job were to
extract a list of job titles and favorite tunes from a set of such Employees, it would
be reasonable to use GemBuilder’s object traversal functions (as described above)
to get the needed information. The time spent in building up object reports for the
unwanted portions would probably be negligible. Suppose, however, that there
were an additional 200 instance variables in each Employee. Then the time used in
processing wasted object reports would far exceed the time spent in useful work.

Therefore, GemBuilder provides a set of path access functions that can fetch or
store multiple objects at selected positions in an object tree with a single call across
the network, bringing only the desired information back. The function
GciFetchPaths lets you fetch selected components from a large set of objects with
only a single network round trip. Similarly, your program can call GciStorePaths
to store new values into disparate locations within a large number of GemStone
objects.

Path Representations

There are two ways of representing a path describing the position of an object to
be fetched from within an object tree.

In Smalltalk, the path leading to an Employee’s zip code would be expressed as
’address.zip’, and the path leading to his favorite tune would simply be
’favoriteTune’.

By contrast, the path access functions also use a non-symbolic form of these paths
in which each step along the path is represented by an integral offset from the
beginning of an object. The path to an Employee’s zip code would be represented
by an array containing the integers 5 and 2. The first element, 5, is the offset of the
address instance variable, and the second element, 2, is the offset of zip within an
Address. The path to an Employee’s favorite tune would be represented by a one-
element array containing the integer 6.

Your program can call the GciPathToStr and GciStrToPath functions to convert
between the two path representations.
September 2011 VMware, Inc. 43

Nonblocking Functions GemStone/S 6.6 GemBuilder for C
1.8 Nonblocking Functions
Under most circumstances, when an application calls a GemBuilder function, the
operation that the function specifies is completed before the function returns
control to the application. That is, the GemBuilder function blocks the application
from proceeding until the operation is finished. This effect guarantees a strict
sequence of execution.

Nevertheless, in most cases a GemBuilder function calls upon GemStone (that is,
the Gem) to perform some work. If the Gem and the application are running in
different processes, especially on different machines, blocking implies that only
one process can accomplish work at a time. GemBuilder’s nonblocking functions
were designed to take advantage of the opportunity for concurrent execution in
separate Gem and application processes.

The results of performing an operation through a blocking function or through its
nonblocking twin are always the same. The difference is that the nonblocking
function does not wait for the operation to complete before it returns control to the
session. Since the results of the operation are probably not ready when a
nonblocking function returns, all nonblocking functions but one (GciNbEnd)
return void.

While a nonblocking operation is in progress an application can do any kind of
work that does not require GemBuilder. In fact, it can also call a limited set of
GemBuilder functions, listed as follows:

GciCallInProgress
GciErr
GciGetSessionId
GciHardBreak
GciNbEnd
GciSetSessionId
GciShutdown
GciSoftBreak

If the application first changes sessions, and that session has no nonblocking
operation in progress, then the application can call any GemBuilder function,
including a nonblocking function. GemBuilder supports one repository request at
a time, per session. However, nonblocking functions do not implement threads,
meaning that you cannot have multiple concurrent repository requests in progress
within a single session. If an application calls any GemBuilder function besides
those listed here while a nonblocking operation is in progress in the current
session, the error GCI_ERR_OP_IN_PROGRESS is generated.
44 VMware, Inc. September 2011

Chapter 1 - Introduction Operating System Considerations
Once a nonblocking operation is in progress, an application must call GciNbEnd at
least once to determine the operation’s status. Repeated calls are made if
necessary, until the operation is complete. When it is complete, GciNbEnd hands
the application a pointer to the result of the operation, the same value that the
corresponding blocking call would have returned directly.

Nonblocking functions are not truly nonblocking if they are called from a linkable
GemBuilder session, because the Gem and GemBuilder are part of the same
process. However, those functions can still be used in linkable sessions. If they are,
GciNbEnd must still be called at least once per nonblocking call, and it always
indicates that the operation is complete.

All error handling features are supported while nonblocking functions are used.
Errors may be signalled either when the nonblocking function is called or later
when GciNbEnd is called.

1.9 Operating System Considerations
Like your C application, GemBuilder for C is, in itself, a body of C code. Some
aspects of the interface must interact with the surrounding operating system. The
purpose of this section is to point out a few places where you must code with
caution in order to avoid conflicts.

Interrupt Handling in Your GemBuilder Application
Under UNIX, it is important that interrupts be enabled when your code calls
GemBuilder functions. Disabling interrupts has the effect of disabling much of the
error handling within GemBuilder. Because signal handlers usually disable
interrupts during their execution, your application’s signal handling code should
not call any GemBuilder functions other than GciCallInProgress, GciSoftBreak,
and GciHardBreak. These three functions can be called from within an interrupt
handler.

When you initialize the GciLnk version of GemBuilder on UNIX platforms, GciInit
establishes its own handler for SIGIO interrupts. The handler is installed only once
and never uninstalled. GciInit handles the following signals, treating them as
fatal:

SIGQUIT SIGILL SIGABRT SIGBUS
SIGSYS SIGTERM SIGXFSZ SIGXCPU
SIGSEV SIGEMT SIGLOST
September 2011 VMware, Inc. 45

Operating System Considerations GemStone/S 6.6 GemBuilder for C
The handler for fatal signals is not called during a spinlocks critical region. GciInit
handles SIGCHLD and SIGFPE and treats them as fatal, unless they already have
a signal handler installed. GciInit ignores SIGPIPE, SIGHUP, and SIGDANGER,
unless they already have a signal handler installed.

You can establish your own handler for SIGIO if you like, but the application needs
to coordinate the UNIX signal handlers installed by the application, GemBuilder,
and any third-party software compiled into the application.

Observe this precaution: When you call GciInit and then call signal() to establish
your own handler, save the return value of the signal() call. This is the address of
the GemBuilder SIGIO handler. Then, at any time during the execution of your
own SIGIO handler, make sure the GemBuilder handler is invoked. This assures
proper and predictable behavior of subsequent GemBuilder calls.

If you install your handler and then call GciInit, the GemBuilder handler chains the
invocation of your handler with its own.

If all of your application’s handlers are installed only once and make an effort to
chain to the previously installed handler, the order of their installation should not
be significant. If you have third-party signal handlers that do not chain, however,
then you should delay the call to GciInit until after those handlers are installed.
Routinely installing and de-installing a handler is discouraged, because it makes
chaining of handlers impossible.

Executing Host File Access Methods
If you use GciPerform, GciSendMsg, or any of the GciExecute... functions to execute
a Smalltalk host file access method (as listed below), and you do not supply a full
file pathname as part of the method argument, the default directory for the
Smalltalk method depends on the version of GemBuilder that you are running.

 • With GciLnk, the default directory is the directory in which the Gem
(GemStone session) process was started.

 • With GciRpc, the default directory is the home directory of the host user
account, or the #dir specification of the network resource string.

 The affected Smalltalk methods include System class>>performOnServer:
and the file accessing methods implemented in GsFile. See the file I/O
information in the GemStone Programming Guide.
46 VMware, Inc. September 2011

Chapter 1 - Introduction Error Handling and Recovery
1.10 Error Handling and Recovery
Your C program is responsible for processing any errors generated by GemBuilder
function calls. GemStone errors and message creation information are handled by
a GemStone language dictionary known as its error category. The OOP of this
dictionary is available as a mnemonic, OOP_GEMSTONE_ERROR_CAT, that is
defined in GemBuilder include file gcioop.ht.

The GemBuilder include file gcierr.ht documents and defines mnemonics for
all GemStone errors. Search the file for the mnemonic name or error number to
locate an error in the file. The errors are divided into five groups: compiler, run-
time (virtual machine), aborting, fatal, and event.

GemBuilder provides functions that allow you to poll for errors or to use error
jump buffers. The following paragraphs describe both of these techniques.

Polling for Errors
Each call to GemBuilder can potentially fail for a number of reasons. Your program
can call GciErr to determine whether the previous GemBuilder call resulted in an
error. If so, GciErr will obtain full information about the error. If an error occurs
while Smalltalk code is executing (in response to GciPerform, GciSendMsg, or one
of the GciExecute... functions), your program may be able to continue Smalltalk
execution by calling GciContinue.

Error Jump Buffers
When your program makes 3 or more GemBuilder calls in sequence, jump buffers
provide significantly faster performance than polling for errors.

When your C program calls setjmp, the context of the current C environment is
saved in a jump buffer designated by your program. Just as your C program can
take advantage of the C runtime library’s setjmp/longjmp error handling
mechanism, it can call GciPushErrJump to push the jump buffer onto an error
jump stack maintained by GemBuilder. The corresponding function
GciPopErrJump pops buffers from the stack.

When an error occurs during a GemBuilder call, the GemBuilder function causes a
longjmp to the buffer currently at the top of GemBuilder’s error jump stack, and
pops that buffer from the stack. At that time, the previous environment is restored.

For functions with local error recovery, your program can call GciSetErrJump to
temporarily disable the error handling mechanism (and to re-enable error
handling afterwards).
September 2011 VMware, Inc. 47

Error Handling and Recovery GemStone/S 6.6 GemBuilder for C
Whenever the jump stack is empty, the application must use GciErr to poll for any
GemBuilder errors.

The setjmp and longjmp functions are described in your C runtime library
documentation.

GciPushErrHandler also pushes a jump buffer onto the stack of GemBuilder jump
buffers. The block of code to which a longjmp on this jump buffer will go must call
GciHandleError instead of GciErr. Its jump buffer must be of type
GCI_SIG_JMP_BUF_TYPE, and it must be used with the GCI_SETJMP and
GCI_LONGJMP macros instead of setjmp and longjmp.

For linkable GemBuilder applications, the combination of GciHandleError and
GciPushErrHandler offer performance gains over GciErr and GciPushErrJump.
(See page 213 for an example of this function’s use.)

To determine whether the previous GemBuilder function call resulted in an error,
your application program can call GciHandleError. If an error has occurred, this
function provides information about the error and about the state of the GemStone
system. The gcierr.ht include file lists the various errors that may be returned
by GemBuilder functions.

WARNING:
If you use a long jump call, especially in an interrupt handler, you should
be sure that you do not jump around GemBuilder calls; stay within your
own code. GemBuilder functions, once entered, must be allowed to
complete. Otherwise, GemBuilder could be left in an inconsistent state
that can cause your application to fail.

The Call Stack
The Smalltalk virtual machine creates and maintains a call stack that provides
information about the state of execution of the current Smalltalk expression or
sequence of expressions. The call stack includes an ordered list of activation
records related to the methods and blocks that are currently being executed. The
virtual machine ordinarily clears the call stack before each new expression is
executed.

If a soft break or an unexpected error occurs, the virtual machine suspends
execution, creates a Process object, and raises an error. The Process object
represents both the Smalltalk call stack when execution was suspended and any
information that the virtual machine needs to resume execution. If there was no
fatal error, your program can call GciContinue to resume execution. Call
GciClearStack instead if there was a fatal error, or if you do not want your program
to resume the suspended execution.
48 VMware, Inc. September 2011

Chapter 1 - Introduction Garbage Collection
GemStone System Errors
If your application receives a GemStone system error while linked with GciLnk,
relink your application with GciRpc and run it again with an uncorrupted copy of
your repository. Your GemStone system administrator can refer to the repository
backup and recovery procedures in the System Administration Guide for GemStone/S.

If the error can be reproduced, contact GemStone Customer Support. Otherwise,
the error is in your application, and you need to debug your application before
using GciLnk again.

1.11 Garbage Collection
GemStone performs automatic garbage collection for all GemStone objects,
whether persistent or not. You can find a full discussion of removal of persistent
objects in the chapter “GemStone Garbage Collection” in the System Administration
Guide for GemStone/S.

Before removing any objects, the GemStone garbage collector checks the export set
in the user session’s workspace. Any object in this set is considered to be marked
for saving. In this context, saving does not mean “writing to disk”. Instead, objects
are saved from garbage collection and retained for use by the application.

The garbage collector does not remove objects that are in the export set, or objects
that are referenced by a persistent object. It also does not remove any additional
objects that they refer to, or more objects that those additional objects refer to, and
so on.1 The export set is used to avoid having an unreferenced object disappear
from your session before you can create your own reference to it.

If left unguarded, new or temporary objects could be vulnerable to garbage
collection, since no other object might reference them. On the other hand,
persistent objects must have a reference already when you import them into an
application.

A C application can create new objects by using any of the GciNew... or GciCreate...
functions, or by calling the GciStoreTrav function with the
GCI_STORE_TRAV_CREATE flag. New objects may also be returned from calls to
the GciErr and GciHandleError functions. The application can also send messages

1. Mathematically speaking, the set of saved objects is the transitive closure over references
of the union of the export set with all objects that are referenced by at least one persistent
object.
September 2011 VMware, Inc. 49

Preparing to Execute GemStone Applications GemStone/S 6.6 GemBuilder for C
to existing GemStone objects and execute code in GemStone by using any of the
GciSendMsg, GciPerform..., or GciExecute... functions.

All of these functions return their results to the C application in the form of one or
more OOPs (objects), through either return values or output parameters. To
protect these result objects from premature garbage collection, GemBuilder
automatically adds all of them to the export set. However, it adds them only when
the application calls the functions; it does not add them when a user action calls
the functions.

NOTE
GemBuilder applications with long-running user actions are vulnerable
to OOP map bloat. Unless the application exits the user action from time
to time (which allows the temporary objects to be scavenged), the
temporary object cache will ultimately overflow to POM.

Objects that are created while in a user action call are protected from
garbage collection until that user action exits and returns to Smalltalk
— even if the objects are created when the user action code invokes a
Smalltalk method. The new objects are not added to the export set; they
are protected internally and are released as part of the code that unwinds
the user action call.

GemBuilder does not automatically add other objects to the export set. It
specifically does not add objects that it imports from the repository. The danger of
premature removal (by other sessions) of an object that is already persistent is
likely to be very small. And if the set becomes larger than is really necessary,
garbage tends to accumulate in the repository, and GemStone slows down.

By default, GemBuilder thus strikes a reasonable balance between the need for
performance and the preservation of objects needed by an application. The
application can improve performance further by calling the GciRelease... functions
at appropriate times, to reduce the export set’s size and permit garbage collection
of obsolete temporaries. The application should also be careful to call the
GciSaveObjs function when it needs to be sure to retain an object that is not already
in the export set.

1.12 Preparing to Execute GemStone Applications
The following information includes the requirements and recommendations for
preparing your environment to execute C applications for GemStone. Your
application may have additional requirements, such as environment variables that
it uses.
50 VMware, Inc. September 2011

Chapter 1 - Introduction Preparing to Execute GemStone Applications
GemStone Environment Variables
Anyone who runs a GemStone application or process is responsible for setting the
following environment variables:

GEMSTONE — A full pathname to your GemStone installation directory.

PATH — Add the GemStone bin directory to your path.

The following environment variables influence the behavior of GemStone and
GemBuilder. You may wish to supply values or defaults for them when you or
your users run your application or a Gem.

GEMSTONE_EXE_CONF — (not for RPC applications) A full path to a special
GemStone configuration file for an executable, if any. See the System Administration
Guide for GemStone/S for details.

GEMSTONE_SYS_CONF — (not for RPC applications) A full path to a special
GemStone configuration file for your system, if any. See the System Administration
Guide for GemStone/S for details.

GEMSTONE_NRS_ALL — A network resource string — a means for identifying
certain GemStone file and process information. See the System Administration Guide
for GemStone/S for details.

GEMSTONE_LANG — A means of identifying the language to use for messages.
Under UNIX, it is a full pathname to a file containing message text. Under
Windows, it is the name of the language, such as “german” or “spanish”. See the
System Administration Guide for GemStone/S for more details.

GCIUSER_DLL — (Windows only) A name or path that identifies a DLL file
containing user actions.
September 2011 VMware, Inc. 51

Preparing to Execute GemStone Applications GemStone/S 6.6 GemBuilder for C
52 VMware, Inc. September 2011

Chapter

2 Building Applications
with
GemBuilder for C
This chapter explains how to use GemBuilder to build your C application. Two
versions of GemBuilder for C are available to you: GciLnk (the linked version) and
GciRpc (the RPC version).

2.1 GciRpc and GciLnk
With GciRpc, your application exists in a process separate from the Gem. The two
processes communicate through remote procedure calls. With GciLnk, your
application and default Gem (the GemStone session) exist as a single process. Your
application is expected to provide the main entry point. You can also run RPC
Gems when you use GciLnk.

With GciRpc, because networking software is used for the remote procedure call
to the Gem process, there’s a fixed overhead (many milliseconds) associated with
each GemBuilder call, independent of whatever object access is performed or
Smalltalk code is executed.

The function GciIsRemote reports whether your application was linked with
GciRpc — the “remote procedure call” version of GemBuilder — or GciLnk. The
following paragraphs explain some of the differences between these two versions
of GemBuilder.
September 2011 VMware, Inc. 53

The GemBuilder Shared Libraries GemStone/S 6.6 GemBuilder for C
Use GciRpc for Debugging
When debugging a new application, you must use GciRpc. You should use GciLnk
only after your application has been properly debugged.

When using an RPC Gem, you usually achieve the best performance by using
functions such as GciTraverseObjs, GciStoreTrav, and GciFetchPaths. Those
functions are designed to reduce the number of network round-trips through
remote procedure calls.

Use GciLnk for Performance
You can use the linked, single-Gem configuration to enhance performance
significantly. With GciLnk, a GemBuilder function call is a machine-instruction
procedure call (with overhead measured in microseconds) rather than a remote
call over the network to a different process.

WARNING!
Before using GciLnk, debug your C code in a process that does not
include a Gem! For more information, see section “Risk of Database
Corruption” on page 78.

With GciLnk, you usually achieve the best performance by using the simple
GciFetch... and GciStore... functions instead of the complex object traversal
functions. This makes the application easier to write.

However, you can also run RPC Gems under GciLnk, when you login to GemStone
multiple times. The complex traversal functions should perform better in those
sessions.

Multiple GemStone Sessions
If your application will be running multiple GemStone sessions simultaneously, or
if you will need to run your application and the GemStone session on separate
machines, then you will need to use either the GciRpc (remote procedure call)
version of GemBuilder, or a non-default login session from GciLnk.

2.2 The GemBuilder Shared Libraries
The two versions of GemBuilder are provided as a set of shared libraries. A shared
library is a collection of object modules that can be bound to an executable at run
time. On Windows, shared libraries are known as dynamically linked libraries
54 VMware, Inc. September 2011

Chapter 2 - Building Applications with GemBuilder for C Binding to GemBuilder at Run Time
(DLLs). The contents of a shared library are not copied into the executable.
Instead, the library’s main function loads all of its functions. Only one copy is
loaded into memory, even if multiple client processes use the library at the same
time. Thus, they “share” the library.

On UNIX, the GemBuilder library files libgcirpc66.* and libgcilnk66.*
reside in $GEMSTONE/lib. On Windows, the link files gcilnk.lib and
gcirpc.lib are in $GEMSTONE/lib, but the DLL files themselves,
gcilw66.dll, gcirw66.dll, and gsw66.dll, are in $GEMSTONE/bin.

2.3 Binding to GemBuilder at Run Time
Shared libraries are bound to their application at run time. The binding is done by
code that is part of the application. If that code is not executed, the shared library
is not loaded. With this type of binding, applications can decide at run time which
GemBuilder library to use. They can also unbind at run time and rebind to the
same or different shared libraries. The code is free to handle a run-time-bind error
however it sees fit.

Building the Application
To build an application that run-time-binds to GemBuilder:

1. Include gcirtl.hf (not gci.hf) in the C source code.

However, applications are free to use their own run-time-bind interface
instead of gcirtl, which is meant to be used from C. For example, a Smalltalk
application would use the mechanism provided by the Smalltalk vendor to call
a shared library.

2. Call GciRtlLoad(useRpc, ...) to load the RPC GemBuilder (if useRpc)
or the linked GemBuilder (if not useRpc).

Call GciRtlLoad before any other GemBuilder calls. Call GciRtlUnload to
unload the current version of GemBuilder.

3. Link with gcirtlobj.o, not one of the GemBuilder libraries
(libgcirpc66.* and libgcilnk66.*).

Chapter 4, “Compiling and Linking,” tells how to compile and link your
application.
September 2011 VMware, Inc. 55

Binding to GemBuilder at Run Time GemStone/S 6.6 GemBuilder for C
Searching for the Library
At run time the gcirtl code searches for the GemBuilder library in the following
places:

1. Any directories specified by the application with GciRtlLoad.

2. The $GEMSTONE/lib directory.

3. The normal operating system search, as described in the following sections.

How UNIX Matches Search Names with Shared Library Files

The UNIX operating system loader searches the following directories for matching
file names, in this order:

1. Any path specified by an environment variable:

LD_LIBRARY_PATH Solaris
LIBPATH AIX
LD_LIBRARY_PATH Linux

2. Any path recorded in the executable when it was built.

3. The global directory /usr/lib.

How Windows Matches Search Names with DLL Files

Windows treats a search name as a path to the DLL file it is looking for. However,
the name as given may be an incomplete path, and Windows must complete it to
find the file.

If the search name already has a file extension (even if it is a null extension, “.”),
then Windows retains the extension. Otherwise, it appends “.dll” as the file
extension for the search name. For example, “pgm” has no extension and defaults
to “pgm.dll”, while “pgm.” has a null extension and is used as given.

If the search name (with extension) is a full path, Windows looks for a file at that
full path. Otherwise, it searches a predetermined list of directories for a file of the
given file name (with extension). The search succeeds with the first directory that
has a file whose pathname matches the search name. It fails if no directory has a
match.

Windows searches the following directories for matching file names, in this order:

1. The directory from which the current executable was loaded (where the
executable file for the current process is located).

2. The current directory of the current process.
56 VMware, Inc. September 2011

Chapter 2 - Building Applications with GemBuilder for C Binding to GemBuilder at Run Time
3. The 32-bit Windows system directory, SYSTEM32.

4. The 16-bit Windows system directory, SYSTEM.

5. The Windows installation directory.

6. The directories that are listed in the PATH environment variable, in order.

The three Windows directories are rarely (if ever) used for anything relating to
GemStone. For more information on locating and loading DLLs, consult your
Windows documentation for the LoadLibrary C function.
September 2011 VMware, Inc. 57

Binding to GemBuilder at Run Time GemStone/S 6.6 GemBuilder for C
58 VMware, Inc. September 2011

Chapter

3 Writing C Functions
To Be Called from
GemStone
For certain operations, you may choose to write a C function rather than to
perform the work in GemStone. For example, operations that are computationally
intensive or are external to GemStone can be written as C functions and called from
within a Smalltalk method (whose high-level structure and control is written in
Smalltalk). This approach is similar to the concept of “user-defined primitives”
offered by some other object-oriented systems.

This chapter describes how to implement C user action functions that can be called
from GemStone, and how to call those functions from a GemBuilder application or
a Gem (GemStone session) process.

3.1 Shared User Action Libraries
Although user actions can be linked directly into an application, they are usually
placed in shared libraries so they can be loaded dynamically. The contents of a
library are not copied into the executable. Instead, the library’s main function loads
all of its user actions. Only one copy is loaded into memory, even if multiple client
processes use the library at the same time. See Chapter 2, “Building Applications
with GemBuilder for C,” for more information.
September 2011 VMware, Inc. 59

How User Actions Work GemStone/S 6.6 GemBuilder for C
User action libraries are used in two ways: They can be application user actions,
which are loaded by the application process, or session user actions, which are
loaded by the session process. The operation that is used to load the library
determines which type it is, not any quality of the library itself. Application and
Gem executables can load any library.

Application user actions are the traditional GemStone user actions. They are used
by the application for communication with the Gem or for an interactive interface
to the user.

Session user actions add new functionality to the Gem, something like the
traditional custom Gem. The difference here is that you only need one Gem, which
can customize itself at run time. It loads the appropriate libraries for the code it is
running. The decisions are made automatically within GemStone Smalltalk, rather
than requiring the users to decide what Gem they need before they start their
session.

3.2 How User Actions Work
Here’s a quick overview of the sequence of events when a user action function is
executed:

1. The Gem or your C application program initiates GemStone Smalltalk
execution by calling one of the following functions: GciExecute, GciExecuteStr,
GciExecuteStrFromContext, GciSendMsg, GciPerform, or GciContinue.

2. Your GemStone Smalltalk code invokes a user action function (written in C) by
sending a message of the form:
System userAction: aSymbol args

The args arguments are passed to the C user action function named aSymbol.
(You must have already initialized that function before logging in to
GemStone. See “Loading User Actions” on page 65.)

3. The C user action function can call any GemBuilder functions and any C
functions provided in the application or the libraries loaded by the application
(for application user actions), or provided in the libraries loaded by the Gem
(for session user actions).

Specifically, the C user action function can call GemBuilder’s structural access
functions (GciFetch... and GciStore..., etc.) to read or modify, respectively, any
objects that were passed as arguments to the user action.

If a GemBuilder or other GemStone error is encountered during execution of
the user action, control is returned to the Gem or your GemBuilder application
60 VMware, Inc. September 2011

Chapter 3 - Writing C Functions To Be Called from GemStone Developing User Actions
as if the error had occurred during the call to GciExecute (or whichever
GemBuilder function executed the GemStone Smalltalk code in step 1).

4. The C user action function must return an OopType as the function result, and
must return control directly to the Smalltalk method from which it was called.

NOTE:
Results are unpredictable if the C function uses GCI_LONGJMP
instead of returning control to the GemStone Smalltalk virtual machine.

3.3 Developing User Actions
For your GemStone application to take advantage of user action functions, you do
the following:

Step 1. Determine which operations to perform in C user action functions rather
than in Smalltalk. Then write the user action functions.

Step 2. Create a user action library to package the functions.

Step 3. Provide the code to load the user action library.

 • If the application is to load the library, add the loading code to your
application.

 • If the session is to load the library, use the GemStone Smalltalk method
System class>>loadUserActionLibrary: for loading.

Step 4. Write the Smalltalk code that calls your user action. Commit it to your
GemStone repository.

Step 5. Debug your user action.

The following sections describe each of these steps.

Write the User Action Functions
Writing a C function to install as a user action called from Smalltalk is little
different from writing other C functions. However, one important difference
exists: user actions cannot reliably retain references to objects they create. The
application that called the user action (whether written in C, Java, or Smalltalk)
controls the export set—the set of OOPs to save after execution completes.
Therefore, make sure your C application treats all argument and result objects of a
user action as temporary objects. Don’t save the OOPs in static C variables for use
by a subsequent invocation of the user action or by another C function.
September 2011 VMware, Inc. 61

Developing User Actions GemStone/S 6.6 GemBuilder for C
Don’t rely on GciSaveObjs to make the objects persistent. The application that
called the user action can still call GciReleaseOops on the object that the user action
needs to retain (or GciReleaseAllOops to release all objects at once).

To make a newly created object a permanent part of the GemStone repository, the
user action has two options:

 • Store the OOP of the new object into one of the argument objects known to be
permanent, such as a collection created by the calling application (for example,
a collection created in Smalltalk and committed to the repository).

 • Return the OOP of the object as the function result.

After a user action returns, the persistence of the new object is determined by the
normal semantics of the calling application.

If you are working in GemBuilder for Smalltalk, you can also explicitly save these
user action objects by populating a collection in the user-definable portion of
System sessionState using System > sessionStateAt:put:. Your user
action can retain references to objects that you add to this collection in this way.

Create a User Action Library
Whether you have one user action or many, the way in which you prepare and
package the source code for execution has significant effects upon what uses you
can make of user actions at run time. It is important to visualize your intended
execution configurations as you design the way in which you package your user
actions.

To build a user action library:

1. Include gciua.hf in your C source code.

2. Define the initialization and shutdown functions.

3. Compile with shared library switches.

4. Link with gciualib.o and shared library switches.

5. Install the library in the $GEMSTONE/ualib directory.

The gciua.hf Header File

User action libraries must always include the gciua.hf file, rather than the
gci.hf file. Using the wrong file causes unpredictable results.
62 VMware, Inc. September 2011

Chapter 3 - Writing C Functions To Be Called from GemStone Developing User Actions
The Initialization and Shutdown Functions

A user action library must define the initialization function GciUserActionInit
and the shutdown function GciUserActionShutdown.

Defining the Initialization Function

Example 3.1 shows how the initialization function GciUserActionInit is defined,
using the macro GCIUSER_ACTION_INIT_DEF. This macro must call the
GCI_DECLARE_ACTION macro once for each function in the set of user actions.

Example 3.1

GCIUSER_ACTION_INIT_DEF()
{
 GCI_DECLARE_ACTION("doLogin", doLogin, 1);
 GCI_DECLARE_ACTION("doLogout", doLogout, 1);

.

.
}

The GCI_DECLARE_ACTION macro associates the Smalltalk name of the user
action function userActionName (a C string) with the C address of that function,
userActionFunction, and declares the number or arguments that the function takes.
A call to the macro looks similar to this:

GCI_DECLARE_ACTION("userActionName", userActionFunction, 1)

The macro expands to a block of C statements that install the user action into a
table of such functions that GemBuilder maintains. Once a user action is installed,
it can be called from GemStone.

The name of the user action, “userActionName”, is a case-sensitive, null-terminated
string that corresponds to the symbolic name by which the function is called from
Smalltalk. The name is significant to 31 characters. It is recommended that the
name of the user action be the same as the C source code name for the function,
userActionFunction.

The last argument to the GCI_DECLARE_ACTION macro indicates how many
arguments the C function accepts. This value should correspond to the number of
arguments specified in the Smalltalk message. When it is 0, the function argument
is void. Similarly, a value of 1 means one argument. The maximum number of
arguments is 8. Each argument is of type OopType.
September 2011 VMware, Inc. 63

Developing User Actions GemStone/S 6.6 GemBuilder for C
Your user action library may call GCI_DECLARE_ACTION repeatedly to install
multiple C functions. Each invocation of GCI_DECLARE_ACTION must specify
a unique userActionName. However, the same userActionFunction argument may be
used in multiple calls to GCI_DECLARE_ACTION.

Defining the Shutdown Function

The shutdown function GciUserActionShutdown is defined by the
GCIUSER_ACTION_SHUTDOWN_DEF macro. GciUserActionShutdown is called
when the user action library is unloaded. It is provided so the user action library
can clean up any system resources it has allocated. Do not make GemBuilder C
calls from this function, because the session may no longer exist. In fact,
GciUserActionShutdown can be left empty. Example 3.2 shows a shutdown
definition that does nothing but report that it has been called.

Example 3.2

GCIUSER_ACTION_SHUTDOWN_DEF()
{
 /* Nothing needs to be done. */
 fprintf(stderr, "GciUserActionShutdown called.\n");
}

Compiling and Linking Shared Libraries

Shared user actions are compiled for and linked into a shared library. See
Chapter 4, “Compiling and Linking,” for instructions.

Be sure to check the output from your link program carefully. Linking with shared
libraries does not require that all entry points be resolved at link time. Those that
are outside of each shared library await resolution until application execution
time, or even until function invocation time. You may not find out about incorrect
external references until run time.

Using Existing User Actions in a User Action Library

With slight modifications, existing user action code can be used in a user action
library. You need to include gciua.hf instead of gci.hf. Define a
GciUserActionShutdown, and a GciUserActionInit, if it is not already present.
Compile, link, and install according to the instructions for user action libraries.
64 VMware, Inc. September 2011

Chapter 3 - Writing C Functions To Be Called from GemStone Developing User Actions
Using Third-party C Code With a User Action Library

Third-party C code has to reside in the same process as the C user action code. Link
the third-party code into the user action library itself, and then you can call that
code. It doesn’t matter where you call it from.

Loading User Actions
GemBuilder does not support the loading of any default user action library.
Applications and Gems must include code that specifically loads the libraries they
require.

Loading User Action Libraries At Run Time

Dynamic run-time loading of user action libraries requires some planning to avoid
name conflicts. If an executable tries to load a library with the same name as a
library that has already been loaded, the operation fails.

When user actions are installed in a process, they are given a name by which
GemBuilder refers to them. These names must be unique. If a user action that was
already loaded has the same name as one of the user actions in the library the
executable is attempting to load, the load operation fails. On the other hand, if the
two libraries contain functions with the same implementation but different names,
the operation succeeds.

NOTE
For backward compatibility, an exception to this behavior is made for
name conflicts between application user actions and static user actions
in custom Gems. The application is allowed to load its user action
library, but the static Gem user action is always used. The application
user action with the conflicting name is ignored.

Application User Actions

If the application is to load a user action library, implement an application feature
to load it. The GemStone interfaces provide a way to load user actions from your
application.

 • GemBuilder for C applications: the GciLoadUserActionLibrary call

 • Topaz applications: the loadua command
September 2011 VMware, Inc. 65

Developing User Actions GemStone/S 6.6 GemBuilder for C
 • Smalltalk applications using GemBuilder for Smalltalk:

GBSM loadUserActionLibrary: ualib

NOTE
Application user actions are deprecated in some versions of GemBuilder
for Smalltalk.

The application must load application user actions after it initializes GemBuilder
(GciInit) and before the user logs into GemStone (GciLogin). If the application
attempts to install user actions after logging in, an error is returned.

Session User Actions

A linked or RPC Gem process can install and execute its own user action libraries.
To cause the Gem to do this, use the
System class>>loadUserActionLibrary: method in your GemStone
Smalltalk application code. A session user action library stays loaded until the
session logs out.

The session must load its user actions after the user logs into GemStone (GciLogin).
At that time, any application user actions are already loaded. If a session tries to
load a library that the application has already defined, it gets an error. The loading
code can be written to handle the error appropriately. Two sessions can load the
same user action library without conflict.

Specifying the User Action Library

When writing scripts or committing to the database, you can specify the user
action library as a full path or a simple base name. Always use the base name when
you need portability. The code that GemBuilder uses to load a user action library
expands the base name ua to a valid shared library name for the current platform.

For Solaris, AIX and Linux:

 • libua.so

For Windows:

 • ua.dll

 and searches for the file in the following places in the specified order:

1. The current directory of the application or Gem.

2. The directory the executable is in, if it can be determined.

3. The $GEMSTONE/ualib directory.
66 VMware, Inc. September 2011

Chapter 3 - Writing C Functions To Be Called from GemStone Developing User Actions
4. The normal operating system search, as described in “Searching for the
Library” on page 56.

Creating User Actions in Your C Application

Loading user action libraries at run time is the preferred behavior for GemBuilder
applications. For application user actions, however, you have the option to create
the user actions directly in your C application, not as part of a library. When you
implement user actions this way, include gcirtl.hf or gci.hf in your C source
code, instead of gciua.hf. The GciUserActionInit and GciUserActionShutdown
functions are not required, but the application must call the
GCI_DECLARE_ACTION macro once for each function in the set of user actions.

After your application has successfully logged in to GemStone (via GciLogin), it
may not call GCI_DECLARE_ACTION. If your application attempts to install user
actions after logging in, an error will be returned.

Verify That Required User Actions Have Been Installed

After logging in to GemStone, your application can test for the presence of specific
user actions by sending the following Smalltalk message:

System hasUserAction: aSymbol

This method returns true if your C application has loaded the user action named
aSymbol, false otherwise.

For a list of all the currently available user actions, send this message:

System userActionReport

Write the Code That Calls Your User Actions
Once your application or Gem has a way to access the user action library, your
GemStone Smalltalk code invokes a user action function by sending a message to
the GemStone system. The message can take one of the following forms:

System userAction: aSymbol
System userAction: aSymbol with:arg1 [with:arg2] ...
System userAction: aSymbol withArgs:anArrayOfUpTo8Args

You can use the with keyword from zero to seven times in a message. The aSymbol
argument is the name of the user action function, significant to 31 characters. Each
method returns the function result.

Notice that these methods allow you to pass up to eight arguments to the C user
action function. If you need to pass more than eight objects to a user action, you
September 2011 VMware, Inc. 67

Developing User Actions GemStone/S 6.6 GemBuilder for C
can create a Collection (for example, an instance of Array), store the objects into the
Collection, and then pass the Collection as a single argument object to the C user
action function:

| myArray |
myArray := Array new: 10.
"populate myArray, then send the following message"
System userAction: #doSomething with: myArray.

NOTE
You can also call a user action function directly from your C code, as you
would any other C function.

Remote User Actions

The user action code that is called can be remote (on a different machine) from the
Gem that invokes this method.

Limit on Circular Calls Among User Actions and Smalltalk

From Smalltalk you can invoke a user action, and within the user action you can
do a GciSend, GciPerform, or GciExecute, that may in turn invoke another user
action. This kind of circular function calling is limited in that no more than 47 user
actions may be active at any one time on the current Smalltalk stack. If the limit is
exceeded, GemStone raises an error.

Debug the User Action
Even if you intend to use your library only as session user actions, test them first
as application user actions with an RPC Gem. As with applications, never debug
user actions with linked versions.

WARNING!
Debug your C code in a process that does not include a Gem!
For more information, see section “Risk of Database Corruption” on
page 78.

Use the instructions for user actions in Chapter 4, “Compiling and Linking,” to
compile and link the user action library. Then load the user actions from the RPC
version of your application or Topaz. To load from Topaz, use the loadua
command.
68 VMware, Inc. September 2011

Chapter 3 - Writing C Functions To Be Called from GemStone Executing User Actions
3.4 Executing User Actions
User actions can be executed either in the GemBuilder application (client) process
or in a Gem (server) process, or in both.

Choosing Between Session and Application User Actions
The distinction between application user actions that execute in the application
and session user actions that execute in the Gem is interesting primarily when the
two processes are running remotely, or when the application has more than one
Gem process.

Remote Application and Gem Processes

When the application and Gem run on different machines and the Gem calls an
application user action, the call is made over the network. Computation is done by
the application where the application user action is running, and the result is
returned across the network. Using a session user action eliminates this network
traffic.

On the other hand, for overall efficiency you also need to consider which machine
is more suitable for execution of the user action. For example, assume that your
application acquires data from somewhere and wishes to store it in GemStone.
You could write a user action to create GemStone objects from the data and then
store the objects. It might make more sense to execute the user action in the
application process rather than transport the raw data to the Gem.

Alternatively, assume there is a GemStone object that could require processing
before the application could use it, like a matrix on which you need to perform a
Fast Fourier Transform (FFT). If the Gem runs on a more powerful machine than
the client, you may wish to run an FFT user action in the Gem process and send the
result to your application.

Applications With Multiple Gems

In most situations, session user actions are preferable, because the Gem does not
have to make calls to the application. In the case of a linked application, however,
an application user action is just as efficient for the linked Gem, because the Gem
and application run as one process. Using an application user action guarantees
that if any new sessions are created, they will have access to the same user action
functions as the first session.
September 2011 VMware, Inc. 69

Executing User Actions GemStone/S 6.6 GemBuilder for C
Every Gem can access its own session user actions and the application user actions
loaded by its application. A Gem cannot access another Gem’s session user actions,
however, even when the Gems belong to the same application.

Although a linked application and its first Gem run in the same process, that
process can have session and application user actions, as in Figure 3.1. Application
user actions, loaded by the application’s loading function, are accessible to all the
Gems. Session user actions in the same process, loaded by the
System class>>loadUserActionLibrary: method, are not accessible to
the RPC Gem. Conversely, the RPC Gem’s user actions are not accessible to the
linked Gem.

Figure 3.1 Access to Application and Session User Actions

Linked
Application

application
user actions

Linked Gem

session
user actions

RPC Gem

session
user actions

Starting a second Gem

Calling user actions

The following sections discuss the various possible configurations in detail.

Running User Actions with Applications
User actions can be executed in the user application process under two
configurations of GemStone processes. The configurations differ depending upon
whether the application is linked or RPC.

With an RPC Application

Figure 3.2 illustrates how various architectural components are distributed among
three GemStone processes when a set of user actions executes with an RPC
application.
70 VMware, Inc. September 2011

Chapter 3 - Writing C Functions To Be Called from GemStone Executing User Actions
Figure 3.2 Application User Actions and RPC Applications in GemStone Processes

Gem StoneC App + GciRpc + AppUserActions

In this configuration, the application runs in a separate process from any Gem.
Each time the application calls a GemBuilder C function, the function uses remote
procedure calls to communicate with a Gem. The remote procedure calls are used
whether the Gem is running on the same machine as the application, or on another
machine across the network.

The user actions run in the same process as the application. If they call GemBuilder
functions, those functions also use remote procedure calls to communicate with
the Gem.

In this configuration, all your code executes as a GemStone client (on the
application side). It can thus execute on any GemStone client platform; it is not
restricted to GemStone server platforms. Care should be taken in coding to
minimize remote procedure call overhead and to avoid excessive transportation of
GemStone data across the network. The following list enumerates some of the
conditions in which you may find occasion to use this configuration:

 • The application and/or the user action needs to be debugged or tested.

 • The user action depends on facilities or implement capabilities for the
application environment. Screen management, GUI operations, and control of
specialized hardware are possibilities.

 • The application acquires data from somewhere and wishes to store it in
GemStone. The user action creates the requisite GemStone objects from the
data and then commits them to the repository.

NOTE:
You can run RPC Topaz as the C application in this configuration for
debugging to perform unit testing of user action libraries. Apply a
source-level debugger to the Topaz executable, load the libraries with the
Topaz loadua command, then call the user actions directly from
GemStone Smalltalk.

With a Linked Application

Figure 3.3 illustrates how various architectural components are distributed
between two GemStone processes when a set of user actions executes with a linked
application.
September 2011 VMware, Inc. 71

Executing User Actions GemStone/S 6.6 GemBuilder for C
Figure 3.3 Session User Actions and Linked Applications in GemStone Processes

C App + GciLnk + SessUserActions + Gem Stone

In this configuration, the application, the user actions, and one Gem all run in the
same process (on the same machine). All function calls, from the application to
GemBuilder and between GemBuilder and the Gem, are resolved by ordinary C-
language linkage, not by remote procedure calls.

Since a Gem is required for each GemStone session, the first session uses the
(linked) Gem that runs in your application process. This Gem has the advantages
that it does not incur the overhead of remote procedure calls, and may not incur as
much network traffic. It has the disadvantage that it must run in the same process
as the Gem, so that work cannot be distributed between separate client and server
processes. Since the application cannot continue processing while the Gem is at
work, the non-blocking GemBuilder functions provide no benefit here.

If a linked application user logs in to GemStone more than once, GemStone creates
a new RPC Gem process for each new session. (These sessions would be additions
to the configuration of Figure 3.3.) If one of these sessions invokes a user action, the
user action executes in the same process as the application. If the user action then
calls a GemBuilder function, that call is serviced by the linked Gem, not by the
Gem from which the user action was invoked.

In this configuration, your code executes only on GemStone server platforms. It
cannot execute on client-only platforms because a Gem is part of the same process.
The occasions for using this configuration are much the same as those for running
user actions with an RPC application, except that you should not use this one for
debugging.

WARNING!
Debug your user actions in a process that does not include a Gem!
For more information, see “Risk of Database Corruption” on page 78.

Running User Actions with Gems
Just as with applications, there are two forms of Gems: linked and RPC. The linked
Gem is embedded in the gcilnk library and is only used with linked applications.

Figure 3.4 illustrates how various architectural components are distributed among
three GemStone processes when a set of user actions executes with an RPC Gem.
72 VMware, Inc. September 2011

Chapter 3 - Writing C Functions To Be Called from GemStone Executing User Actions
Figure 3.4 Session User Actions and RPC Gems in GemStone Processes

C App + GciRpc

or

StoneGem + SessUserActionsSmalltalk App

StoneGem + SessUserActions

An RPC Gem executes in a separate process that can install and execute its own
user actions. The RPC Gem is RPC because it communicates by means of remote
procedure calls, through an RPC GemBuilder, with an application in another
process.

However, it is also a separate C program. The Gem itself also uses GemBuilder
directly, to interact with the database. That is the reason why the RPC Gem is
linked with the gcilnk library. The user action in this configuration executes in
the same process as the Gem, with the GemBuilder that does not use remote
procedure calls.

CAUTION
Debug your user actions in a process that does not include a Gem.
For more information, see “Risk of Database Corruption” on page 78.

The following list enumerates some of the conditions in which you may find
occasion to use this configuration:

 • You wish to execute the user action from a Smalltalk application using
GemBuilder for Smalltalk. This configuration is required for that purpose.

 • You wish the user action to be available to all or many other C applications.

 • The user action is called frequently from GemStone. This configuration
eliminates network traffic between GemBuilder and GemStone.

 • The user action makes many calls to GemBuilder. This configuration avoids
remote procedure call overhead.

 • You have a GemStone object or objects that you wish to process first, and your
application needs the result. The processing may be substantial. Your
GemStone server machine may be more powerful than your client machine
and could do it more quickly, or it might have specialized software the user
action needs. Also, the result might be smaller and could reduce network
traffic.
September 2011 VMware, Inc. 73

Executing User Actions GemStone/S 6.6 GemBuilder for C
For example, the user action might retrieve a data matrix and a filter from
GemStone, perform a Fast Fourier Transform, and send the result to the
application.

Running User Actions with Applications and Gems
Figure 3.5 illustrates how various architectural components are distributed among
three GemStone processes when one set of user actions executes with an RPC
application and another set of user actions executes with an RPC Gem.

Figure 3.5 RPC Applications and Gems with User Actions in GemStone Processes

StoneGem + SessUserActionsC App + GciRpc + AppUserActions

This configuration is a combination of previous configurations. The application
and the Gem run in separate processes. User actions in the first set execute in the
application process, and user actions in the second set execute in the Gem process.

When user actions are installed in a process, they are given a name by which
GemBuilder refers to them. If a user action in the application has the same name as
a user action in the Gem, then the one in the Gem is always used, and the one in
the application is ignored.

The two types of user actions could also exist in one linked process, as shown in
Figure 3.6.

Figure 3.6 Application and Session User Actions in GemStone Processes

C App + GciLnk + AppUserActions + Gem + SessUserActions Stone

In this configuration, the user actions can be loaded as either application or session
user actions; it would be the same from the point of view of the linked Gem.
Application user actions would be just as efficient as session user actions, because
they are part of the Gem process. If a linked application user logs in to GemStone
more than once, GemStone creates a new RPC Gem process for each new session,
additions to the configuration of Figure 3.6. The RPC Gems do not have access to
the linked Gem’s session user actions. So it is generally better to load them as
application user actions, just in case.
74 VMware, Inc. September 2011

Chapter

4 Compiling and
Linking
This chapter describes how to compile and link your C applications and user
actions.

The focus is directly on operations for each compiling or linking alternative on
each GemStone server platform. It is assumed that you already know which
alternatives you want to use, and why, and when. Those topics are part of the
application design and code implementation, which are described in other
chapters of this manual.

All operations are illustrated as though you are issuing commands at a
command-line prompt. You may choose to take advantage of your system’s
programming aids, such as the UNIX make utility and predefined environment
variables, to simplify compilation and linking. Whatever you choose, be sure that
you designate options and operations that are equivalent to those shown here.

NOTE
Much of the material in this chapter is system-specific and, therefore,
subject to change by compiler vendors and hardware manufacturers.
Please check your GemStone Release Notes, Installation Guide, and
vendor publications for possible updates.
September 2011 VMware, Inc. 75

Development Environment and Standard Libraries GemStone/S 6.6 GemBuilder for C
4.1 Development Environment and Standard Libraries
Set the GEMSTONE environment variable to your GemStone installation
directory. The command lines shown in this chapter assume that this has been
done. No other environment variables are required to find the GemStone C
libraries.

GemStone requires linking with certain architecture-specific “standard” C
libraries on some platforms. The order in which these libraries are specified can be
significant; be sure to retain the ordering given in the command lines to follow in
this section.

On UNIX, the environment is System V. On these platforms, the /usr/bin
directory should be present in the PATH environment variable. If /usr/ucb is
also present in PATH, then it should come after /usr/bin. The System V
“standard” C libraries (not Berkeley) should be used in linking.

4.2 Compiling C Source Code for GemStone
The following information includes the requirements and recommendations for
compiling C applications or user actions for GemStone. Your C code may have
additional requirements, such as compile options or environment variables.

The C++ Compiler
C applications and user actions must be compiled and linked with a compiler that
is compatible with GemStone libraries and object code. The example compiler and
linker command lines in this chapter assume that a compatible compiler has been
installed and is in your path.

The following C++ compilers were used to produce the GemStone product, and
have been tested for producing C/C++ applications and user action libraries. See
updated information in the GemStone Installation Guide for your platform.

 • Solaris — Sun C++ 5.8 2005/10/13

 • AIX — g++ (GCC) 4.5.2

 • Linux — g++ (GCC) 4.1.1 20070105 (Red Hat 4.1.1-52)

 • Windows — Microsoft Visual C++, version 6.0 Professional
76 VMware, Inc. September 2011

Chapter 4 - Compiling and Linking Compiling C Source Code for GemStone
Compilation Options
When you compile, specify each directory that is to be searched for include files
separately by repeating the -I option. At a minimum, you should specify the
GemStone include directory.

The -c option inhibits the “load and go” operation, so compilation ends when the
compiler has produced an object file.

For information on most options, please consult your compiler documentation.

Compilation Command Lines
Simple example command lines for compiling C source code on each platform
follow. The command line for each platform illustrates how to compile either a
application progream or a user action.

The application program source contains one code file, userCode.c. Its result is one
object file, userCode.o.

To compile a user action, for simplicity the file is assumed to be a library
containing both the source code for one set of user actions and the implementation
of the function that installs them all with GemStone. Its result is one object file,
userCode.o.

If you have multiple application or user action files, they should all be compiled
under these same basic conditions.

Solaris (Sun):

$ CC -mt -xcode=pic32 -D_REENTRANT -D_LARGEFILE64_SOURCE
-xildoff -xarch=v8plus -xchip=ultra2 -features=no%except
$GEMSTONE/include -c userCode.c -o userCode.o

AIX (IBM):

$ g++ -fno-strict-aliasing -D_LARGEFILE64_SOURCE
-D_REENTRANT -D_GNU_SOURCE -pthread -pipe -D_BSD=44
-fno-exceptions -mminimal-toc -maix32 -mcpu=power5
-I$GEMSTONE/include -c userCode.c -o userCode.o

Linux:

$ g++ -march=pentium -fno-strict-aliasing
-D_LARGEFILE64_SOURCE -D_REENTRANT -D_GNU_SOURCE -fPIC
-pipe $GEMSTONE/product/include -c userCode.c -o userCode.o

The -D_REENTRANT switch is required.
September 2011 VMware, Inc. 77

Linking C Object Code with GemStone GemStone/S 6.6 GemBuilder for C
Windows:

C:\> cl /Zi /MD /TP /nologo /DWIN32 /D_CONSOLE /D_DLL /W3
/I%GEMSTONE%\include /c userCode.c -FouserCode.obj

The /DWIN32 switch is required.

4.3 Linking C Object Code with GemStone
The following information includes the requirements and recommendations for
linking C applications or user actions with GemStone. Your code may have
additional requirements, such as link options or libraries.

Linking with shared libraries does not require that all entry points be resolved at
link time. Those that are outside of each shared library await resolution until
application execution time, or even until function invocation time.

NOTE
When you link a user action shared library, be aware of the dangers of
incorrect unresolved external references. If you misspell a function call,
you may not find out about it until run-time, when your process dies
with an unresolved external reference error. Be sure to check your link
program’s output carefully.

Risk of Database Corruption
CAUTION

Debug your C code in a process that does not include a Gem.

Do not log into GemStone in a linked application or run a Gem
with your user actions until your C code has been properly
debugged.

When your C code executes in the same process as a Gem, it shares the same
address space as the GemStone database buffers and object caches that are part of
the Gem. If that C code has not yet been debugged, there is a danger that it might
use a C pointer erroneously. Such an error could overwrite the Gem code or its
data, with unpredictable and disastrous results. It is conceivable that such
corruption of the Gem could lead it to perform undesired GemStone operations
that might then leave your database irretrievably corrupt. The only remedy then is
to restore the database from a backup.

There are three circumstances under which this risk arises:
78 VMware, Inc. September 2011

Chapter 4 - Compiling and Linking Linking C Object Code with GemStone
 • You are running your linked application and you have logged into GemStone.

 • You are running any linked application and you are executing one of your user
actions from the application.

 • You are running any Gem, even a remote Gem, and you are executing one of
your user actions from the Gem.

To avoid the risk, you must run your C code in some process that does not include
a Gem. If the Gem is in a separate process, it has a separate address space that your
C code should not be able to access. Use the RPC version of an application, and run
any user actions from the application.

If you login to a linked session, GemStone records an entry to that effect in the
Gem’s system log file, gemsys.log. Check that log file to assure yourself that you
are using a correct configuration for debugging.

GemStone Link Files
The following files can be found in the GemStone lib directory.

gcirtlobj.o (UNIX/Linux)
Used when run-time-binding GemBuilder.

gcirtl.lib (Windows)
Used when run-time-binding GemBuilder.

gciualib.o (UNIX/Linux)
Used when building a user action library.

gciualib.obj (Windows)
Used when building a user action library.

libgcilnk66.so (UNIX/Linux)
GemBuilder LNK library.

gcilnk.lib (Windows)
 GemBuilder LNK library.

libgcirpc66.so (UNIX/Linux)
GemBuilder RPC library.

gcirpc.lib (Windows)
 GemBuilder RPC library
September 2011 VMware, Inc. 79

Linking C Object Code with GemStone GemStone/S 6.6 GemBuilder for C
The Linker
On UNIX/Linux, use the same C compiler to link your GemStone C code as you
used to compile it.

On Windows, use the link program that comes with the same C compiler that you
used to compile your GemStone C code.

Link Options
The -o option designates the path of the executable file produced by the link
operation.

Be sure to employ at the appropriate times the link option that designates symbolic
debugging (often -g).

For information on most options, please consult your linker (compiler)
documentation.

Command Line Assumptions
Simple example command lines for linking object code on each platform follow.
Each command line illustrates how to link a simple application program named
appl with one application object file, appl.o. Its result is one executable file, appl or
appl.exe, depending on your platform.

User action lines illustrate how to link one user action object file useract.o with
GemStone libraries to produce a user action library.

If you have multiple application or user action files, they should all be linked
under the same basic conditions.

Linking Applications That Bind to GemBuilder at Run Time

Solaris (Sun):

$ CC -xildoff -i userCode.o $GEMSTONE/lib/gcirtlobj.o
-B dynamic -lCrun -lc -lpthread -ldl -lrt -lsocket -lnsl
-lm -o appl

 AIX (IBM):

$ /usr/vacpp/bin/xlc_r -Wl,-bmaxdata:0xD0000000/dsa
userCode.o $GEMSTONE/lib/gcirtlobj.o -L/usr/lib/threads
-lpthreads -lm -lc_r -ldl -lbsd -Wl,-bstatic,-bh:0
-lstdc++ -lsupc++ -lgcc -lgcc_eh -lgcc_s -o appl
80 VMware, Inc. September 2011

Chapter 4 - Compiling and Linking Linking C Object Code with GemStone
Linux:

$ g++ userCode.o $GEMSTONE/lib/gcirtlobj.o
-Wl,-Bdynamic,--allow-multiple-definition,--warn-once
-lpthread -lcrypt -ldl -lc -lm -lrt -o appl

Windows

C:\> link /DEBUG /OPT:REF /INCREMENTAL:NO /MAP /nologo
userCode.obj %GEMSTONE%\lib\gcirtl.lib wsock32.lib
netapi32.lib advapi32.lib comdlg32.lib user32.lib
gdi32.lib kernel32.lib winspool.lib /out:appl.exe

Linking User Actions into Shared Libraries

Solaris (Sun):

$ CC -xildoff -G -B symbolic -h libuserAct.so -i userCode.o
$GEMSTONE/lib/gciualib.o -o libuserAct.so -B dynamic
-lCrun -lc -lpthread -ldl -lrt -lsocket -lnsl -lm

AIX (IBM):

$ /usr/vacpp/bin/xlc_r -G -q32 userCode.o
$GEMSTONE/lib/gciualib.o -o libuserAct.so
-e GciUserActionLibraryMain -L/usr/lib/threads
-lpthreads -lm -lc_r -ldl -lbsd -Wl,-bstatic,-bh:0
-lstdc++ -lsupc++ -lgcc -lgcc_eh -lgcc_s

Linux:

$ g++ -shared -Wl,-Bsymbolic,-hlibuserAct.so userCode.o
$GEMSTONE/lib/gciualib.o -o libuserAct.so
-Wl,-Bdynamic,--allow-multiple-definition,--warn-once
-lpthread -lcrypt -ldl -lc -lm -lrt

Windows

C:\> link /dll /entry:_DllMainCRTStartup@12 /OPT:REF
/INCREMENTAL:NO /MAP /nologo wsock32.lib netapi32.lib
advapi32.lib comdlg32.lib user32.lib gdi32.lib
kernel32.lib winspool.lib /out:userAct.dll userCode.obj
%GEMSTONE%\lib\gciualib.obj
September 2011 VMware, Inc. 81

Linking C Object Code with GemStone GemStone/S 6.6 GemBuilder for C
82 VMware, Inc. September 2011

Chapter

5 GemBuilder
C Functions —
A Reference Guide
This chapter describes the GemBuilder functions that may be called by your C
application program.

5.1 Function Summary Tables
Tables 5.1 through 5.9 summarize the GemBuilder C functions and the services
that they provide to your application.

Table 5.1 Functions for Controlling Sessions and Transactions

GciAbort Abort the current transaction.
GciAddSaveObjsToReadSet Add all objects in the export set to the read set of the current

transaction.
GciAlteredObjs Within a given array of cached objects, find those that have changed

in the database.
GciBegin Begin a new transaction.
GciCheckAuth Gather the current authorizations for an array of database objects.
GciCommit Write the current transaction to the database.
GciDirtyObjsInit Begin tracking which objects in the session workspace change.
September 2011 VMware, Inc. 83

Function Summary Tables GemStone/S 6.6 GemBuilder for C
GciDirtySaveObjs Find all objects in the export set that have changed since the last
changes were found.

GciGetSessionId Find the ID number of the current user session.
GciHardBreak Interrupt GemStone and abort the current transaction.
GciInit Initialize GemBuilder.
GciInitAppName Override the default application configuration file name.
GciInstallUserAction Associate a C function with a Smalltalk user action.
GciIsRemote Determine whether the application is running linked or remotely.
GciLoadUserActionLibrary Load an application user action library.
GciLogin Start a user session.
GciLogout End the current user session.
GciNbAbort Abort the current transaction (nonblocking).
GciNbBegin Begin a new transaction (nonblocking).
GciNbCommit Write the current transaction to the database (nonblocking).
GciProcessDeferredUpdates Process deferred updates to objects that do not allow direct structural

update.
GciReleaseAllOops Mark all imported GemStone OOPs as eligible for garbage collection.
GciReleaseOops Mark an array of GemStone OOPs as eligible for garbage collection.
GciRtlIsLoaded Report whether a GemBuilder library is loaded.
GciRtlLoad Load a GemBuilder library.
GciRtlUnload Unload a GemBuilder library.
GciSaveObjs Mark an array of OOPs as ineligible for garbage collection.
GciSessionIsRemote Determine whether or not the current session is using a Gem on

another machine.
GciSetNet Set network parameters for connecting the user to the Gem and Stone

processes.
GciSetSessionId Set an active session to be the current one.
GciShutdown Logout from all sessions and deactivate GemBuilder.
GciUserActionInit Declare user actions for GemStone.
GciUserActionShutdown Enable user-defined clean-up for user actions.

Table 5.1 Functions for Controlling Sessions and Transactions (Continued)
84 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide Function Summary Tables
Table 5.2 Functions for Handling Errors and Interrupts and for Debugging

GciCallInProgress Determine if a GemBuilder call is currently in progress.
GciClearStack Clear the Smalltalk call stack.
GciContinue Continue code execution in GemStone after an error.
GciContinueWith Continue code execution in GemStone after an error.
GciDbgEstablish Specify the debugging function for GemBuilder to execute before most

calls to GemBuilder functions.
GciEnableSignaledErrors Establish or remove GemBuilder visibility to signaled errors from

GemStone.
GciErr Prepare a report describing the most recent GemBuilder error.
GciHandleError Check the previous GemBuilder call for an error.
GciInUserAction Determine whether or not the current process is executing a user action.
GciNbContinue Continue code execution in GemStone after an error (nonblocking).
GciNbContinueWith Continue code execution in GemStone after an error (nonblocking).
GciPollForSignal Poll GemStone for signal errors without executing any Smalltalk

methods.
GciPopErrJump Discard a previously saved error jump buffer.
GciPushErrHandler Associate GemBuilder error handling with a jump buffer by pushing a

jump buffer onto the stack.
GciPushErrJump Associate GemBuilder error handling with a jump buffer by pushing a

jump buffer onto the stack.
GciRaiseException Signal an error, synchronously, within a user action.
GciSetErrJump Enable or disable the current error handler.
GciSoftBreak Interrupt the execution of Smalltalk code, but permit it to be restarted.

Table 5.3 Functions for Compiling and Executing Smalltalk Code in the Database

GciClassMethodForClass Compile a class method for a class.
GciExecute Execute a Smalltalk expression contained in a String object.
GciExecuteFromContext Execute a Smalltalk expression contained in a String object as if it

were a message sent to another object.
GciExecuteStr Execute a Smalltalk expression contained in a C string.
GciExecuteStrFromContext Execute a Smalltalk expression contained in a C string as if it were a

message sent to an object.
GciInstMethodForClass Compile an instance method for a class.
September 2011 VMware, Inc. 85

Function Summary Tables GemStone/S 6.6 GemBuilder for C
GciNbExecute Execute a Smalltalk expression contained in a String object
(nonblocking).

GciNbExecuteStr Execute a Smalltalk expression contained in a C string
(nonblocking).

GciNbExecuteStrFromContext Execute a Smalltalk expression contained in a C string as if it were a
message sent to an object (nonblocking).

GciNbPerform Send a message to a GemStone object (nonblocking).
GciNbPerformNoDebug Send a message to a GemStone object, and temporarily disable

debugging (nonblocking).
GciPerform Send a message to a GemStone object.
GciPerformNoDebug Send a message to a GemStone object, and temporarily disable

debugging.
GciPerformSymDbg Send a message to a GemStone object, using a String object as a

selector.
GciPerformTraverse First send a message to a GemStone object, then traverse the result

of the message.
GciSendMsg Send a message to a GemStone object.

Table 5.4 Functions for Accessing Symbol Dictionaries

GciResolveSymbol Find the OOP of the object to which a symbol name refers, in the context
of the current session’s user profile.

GciResolveSymbolObj Find the OOP of the object to which a symbol object refers, in the
context of the current session’s user profile.

GciSymDictAt Find the value in a symbol dictionary at the corresponding string key.
GciSymDictAtObj Find the value in a symbol dictionary at the corresponding object key.
GciSymDictAtObjPut Store a value into a symbol dictionary at the corresponding object key.
GciSymDictAtPut Store a value into a symbol dictionary at the corresponding string key.
GciTraverseObjs Find the value in a symbol KeyValue dictionary at the corresponding

string key.
GciStrKeyValueDictAtObj Find the value in a symbol KeyValue dictionary at the corresponding

object key.
GciStrKeyValueDictAtObj
Put

Store a value into a symbol KeyValue dictionary at the corresponding
object key.

GciStrKeyValueDictAtPut Store a value into a symbol KeyValue dictionary at the corresponding
string key.

Table 5.3 Functions for Compiling and Executing Smalltalk Code in the Database
86 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide Function Summary Tables
Table 5.5 Functions for Creating and Initializing Objects

GciCreateByteObj Create a new byte-format object.
GciCreateOopObj Create a new pointer-format object.
GciGetFreeOop Allocate an OOP.
GciGetFreeOops Allocate multiple OOPs.
GciNewByteObj Create and initialize a new byte object.
GciNewCharObj Create and initialize a new character object.
GciNewDateTime Create and initialize a new date-time object.
GciNewOop Create a new GemStone object.
GciNewOops Create multiple new GemStone objects.
GciNewOopUsingObjRep Create a new GemStone object from an existing object report.
GciNewString Create a new String object from a C character string.
GciNewSymbol Create a new Symbol object from a C character string.

Table 5.6 Functions and Macros for Converting Objects and Values

GCI_BOOL_TO_OOP (MACRO) Convert a C Boolean value to a GemStone Boolean
object.

GCI_CHR_TO_OOP (MACRO) Convert a C character value to a GemStone Character
object.

GciCTimeToDateTime Convert a C date-time representation to GemStone’s.
GciDateTimeToCTime Convert a GemStone date-time representation to C’s.
GciEncodedLongToOop Convert a long containing an encoded OOP back to the original

OOP.
GciFetchDateTime Convert the contents of a DateTime object and place the results in a

C structure.
GciFltToOop Convert a C double value to a Float object.
GCI_LONG_IS_SMALL_INT (MACRO) Determine whether or not a long can be translated into a

SmallInteger.
GciLongToOop Find a GemStone object that corresponds to a C long integer.
GCI_LONG_TO_OOP (MACRO) Find a GemStone object that corresponds to a C long

integer.
GCI_OOP_IS_BOOL (MACRO) Determine whether or not a GemStone object represents

a Boolean value.
September 2011 VMware, Inc. 87

Function Summary Tables GemStone/S 6.6 GemBuilder for C
GCI_OOP_IS_SMALL_INT (MACRO) Determine whether or not a GemStone object represents
a SmallInteger.

GCI_OOP_IS_SPECIAL (MACRO) Determine whether or not a GemStone object has a
special representation.

GciOopToBool Convert a Boolean object to a C Boolean value.
GCI_OOP_TO_BOOL (MACRO) Convert a Boolean object to a C Boolean value.
GciOopToChr Convert a Character object to a C character value.
GCI_OOP_TO_CHR (MACRO) Convert a Character object to a C character value.
GciOopToFlt Convert a Float object to a C double value.
GciOopToEncodedLong Convert an OOP to a long integer encoded such that the value of

the long is representable as a SmallInteger.
GciOopToLong Convert a Gemstone object to a C long integer value.
GCI_OOP_TO_LONG (MACRO) Convert a GemStone object to a C long integer value.
GciOopToUnsignedLong Convert a SmallInteger or LargePositiveInteger object to an

unsigned long.
GciUnsignedLongToOop Find a GemStone object that corresponds to a C unsigned long

integer.

Table 5.6 Functions and Macros for Converting Objects and Values (Continued)

Table 5.7 Object Traversal and Path Functions and Macros

GCI_ALIGN (MACRO) Align an address to a word boundary.
GciClampedTraverseObjs Traverse an array of objects, subject to clamps.
GciExecuteStrTrav Execute a string and traverse the result of the execution.
GciFetchPaths Fetch selected multiple OOPs from an object tree.
GciFindObjRep Fetch an object report in a traversal buffer.
GCI_IS_REPORT_CLAMPED (MACRO) Determine whether or not an object was clamped during

traversal.
GciMoreTraversal Continue object traversal, reusing a given buffer.
GciNbClampedTraverseObjs Traverse an array of objects, subject to clamps (nonblocking).
GciNbExecuteStrTrav Execute a string and traverse the result of the execution

(nonblocking).
GciNbMoreTraversal Continue object traversal, reusing a given buffer (nonblocking).
GciNbStoreTrav Store multiple traversal buffer values in objects (nonblocking).
GciNbStoreTravDo Store multiple traversal buffer values in objects, execute the

specified code, and return the resulting object (non-blocking).
88 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide Function Summary Tables
GciNbStoreTravDoTrav Combine a GciNbStoreTravDo() call and a GciNbClampedTrav()
call into a single function.

GciNbTraverseObjs Traverse an array of GemStone objects (nonblocking).
GciObjRepSize Find the number of bytes in an object report.
GciPathToStr Convert a path representation from numeric to string.
GciPerformTrav First send a message to a GemStone object, then traverse the result

of the message.
GciPerformTraverse First send a message to a GemStone object, then traverse the result

of the message.
GciStorePaths Store selected multiple OOPs into an object tree.
GciStoreTrav Store multiple traversal buffer values in objects.
GciStoreTravDo Store multiple traversal buffer values in objects, execute the

specified code, and return the resulting object.
GciStoreTravDoTrav Combine a GciStoreTravDo() call and a GciClampedTrav() call into

a single function.
GciStrToPath Convert a path representation from string to numeric.
GciTraverseObjs Traverse an array of GemStone objects.
GCI_VALUE_BUFF (MACRO) Find a pointer to the value buffer of an object report.
GciVersion Return a string that describes the GemBuilder version.

Table 5.7 Object Traversal and Path Functions and Macros (Continued)

Table 5.8 Structural Access Functions and Macros

GciAddOopToNsc Add an OOP to the unordered variables of a nonsequenceable
collection.

GciAddOopsToNsc Add multiple OOPs to the unordered variables of a nonsequenceable
collection.

GciAppendBytes Append bytes to a byte object.
GciAppendChars Append a C string to a byte object.
GciAppendOops Append OOPs to the unnamed variables of a collection.
GciClassNamedSize Find the number of named instance variables in a class.
GciFetchByte Fetch one byte from an indexed byte object.
GciFetchBytes Fetch multiple bytes from an indexed byte object.
GciFetchChars Fetch multiple ASCII characters from an indexed byte object.
GciFetchClass Fetch the class of an object.
September 2011 VMware, Inc. 89

Function Summary Tables GemStone/S 6.6 GemBuilder for C
GciFetchNamedOop Fetch the OOP of one of an object’s named instance variables.
GciFetchNamedOops Fetch the OOPs of one or more of an object’s named instance

variables.
GciFetchNamedSize Fetch the number of named instance variables in an object.
GciFetchNameOfClass Fetch the class name object for a given class.
GciFetchObjImpl Fetch the implementation of an object.
GciFetchObjInfo Fetch information and values from an object.
GciFetchOop Fetch the OOP of one instance variable of an object.
GciFetchOops Fetch the OOPs of one or more instance variables of an object.
GciFetchSize Fetch the size of an object.
GciFetchVaryingOop Fetch the OOP of one unnamed instance variable from an indexed

pointer object or NSC.
GciFetchVaryingOops Fetch the OOPs of one or more unnamed instance variables from an

indexed pointer object or NSC.
GciFetchVaryingSize Fetch the number of unnamed instance variables in a pointer object or

NSC.
GciHiddenSetIncludesOop Determines whether the given OOP is present in the specified hidden

set.
GciIsKindOf Determine whether or not an object is some kind of a given class or

class history.
GciIsKindOfClass Determine whether or not an object is some kind of a given class.
GciIsSubclassOf Determine whether or not a class is a subclass of a given class or class

history.
GciIsSubclassOfClass Determine whether or not a class is a subclass of a given class.
GciIvNameToIdx Fetch the index of an instance variable name.
GciNscIncludesOop Determines whether the given OOP is present in the specified

unordered collection.
GciObjExists Determine whether or not a GemStone object exists.
GciObjInCollection Determine whether or not a GemStone object is in a Collection.
GciRemoveOopFromNsc Remove an OOP from an NSC.
GciRemoveOopsFromNsc Remove one or more OOPs from an NSC.
GciReplaceOops Replace all instance variables in a GemStone object.
GciReplaceVaryingOops Replace all unnamed instance variables in an NSC object.
GciSetVaryingSize Set the size of a collection.

Table 5.8 Structural Access Functions and Macros (Continued)
90 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide Function Summary Tables
GciStoreByte Store one byte in a byte object.
GciStoreBytes (MACRO) Store multiple bytes in a byte object.
GciStoreChars Store multiple ASCII characters in a byte object.
GciStoreIdxOop Store one OOP in a pointer object’s unnamed instance variable.
GciStoreIdxOops Store one or more OOPs in a pointer object’s unnamed instance

variables.
GciStoreNamedOop Store one OOP into an object’s named instance variable.
GciStoreNamedOops Store one or more OOPs into an object’s named instance variables.
GciStoreOop Store one OOP into an object’s instance variable.
GciStoreOops Store one or more OOPs into an object’s instance variables.

Table 5.9 Utility Functions

GciCompress Compress the supplied data, which can be uncompressed with
GciUncompress.

GciGsSocketRead Read some bytes from an instance of GsSocket.
GciGsSocketWrite Write some bytes to an instance of GsSocket.
GciUncompress Uncompress the supplied data, assumed to have been compressed

with GciCompress.

Table 5.8 Structural Access Functions and Macros (Continued)
September 2011 VMware, Inc. 91

GemBuilder Include Files GemStone/S 6.6 GemBuilder for C
5.2 GemBuilder Include Files
The following include files are provided for use with GemBuilder C functions.
These files are in the $GEMSTONE/include directory. For distinctions between
the run-time and build-time files, see “Binding to GemBuilder at Run Time” on
page 55.

You can include these files in your code. The first three are mutually exclusive.

gcirtl.hf Forward references to the GemBuilder functions, to be included in code
that will bind to GemBuilder at run time. For modules that define user
actions, use gciua.hf instead of this file.

gci.hf Forward references to the GemBuilder functions, to be included in code
that will bind to GemBuilder at build time. For modules that define user
actions, use gciua.hf instead of this file.

gciua.hf Used instead of gcirtl.hf or gci.hf in modules that define user
actions.

gcifloat.hf Macros, constants and functions for accessing the bodies of instances of
GemStone classes Float and SmallFloat. Optional for code that includes
gci.hf and gciua.hf, not used with gcirtl.hf.

You do not include these files explicitly; they are listed here for your information.

flag.ht Contains host-specific C definitions for compilation.

gci.ht Defines C types for use by GemBuilder functions. See “GemBuilder
Data Types” on page 93.

gcicmn.ht Defines common C types and macros used by gcirtl.hf, gci.hf,
and gciua.hf.

gcierr.ht Defines mnemonics for all GemStone errors.

gcioc.ht Defines C mnemonics for sizes and offsets into objects.

gcioop.ht Defines C mnemonics for predefined GemStone objects. See
Appendix A, “Reserved OOPs,” for a list of constants defined in this file.

gcirtl.ht Defines C types specific to shared libraries for use by GemBuilder
functions. Used by gcirtl.hf.

gcirtlm.hf Macros used by gcirtl.hf.

gciuser.hf Defines a macro to be used to install user actions. Include gciua.hf
instead of this file.

staticua.hf Included in modules that define static user actions.
92 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Data Types
version.ht Defines C mnemonics for version-dependent strings.

5.3 GemBuilder Data Types
The following C types are used by GemBuilder functions. The file gci.ht defines
each of the GemBuilder types (shown in capital letters below). That file is in the
$GEMSTONE/include directory.

jmp_buf Jump buffer, defined in the setjmp.h file.

ArraySizeType An unsigned int.

BoolType An int.

ByteType An unsigned 8-bit integer.

OopType Object-oriented pointer, a signed 32-bit integer.

GciClampedTravArgsSType
A structure for clamped traversal arguments.

GciDateTimeSType
A structure for representing GemStone dates and times.

GciDbgFuncType
The type of C function called by GciDbgEstablish.

GciErrSType A GemStone error report (see “The Error Report Structure” on page 94).

GciObjInfoSType
A GemStone object information report (see “The Object Information
Structure” on page 95).

GciObjRepHdrSType
An object report header (see “The Object Report Header Structure” on
page 96).

GciObjRepSType
An object report (see “The Object Report Structure” on page 96).

GciSessionIdType
A signed 32-bit integer.

GciUserActionSType
A structure for describing a user action (see “The User Action
Information Structure” on page 99.
September 2011 VMware, Inc. 93

GemBuilder Data Types GemStone/S 6.6 GemBuilder for C
The Structure for Representing the Date and Time
GemBuilder includes some functions to facilitate access to objects of type
DateTime. (These functions also make use of the C representation for time, time_t.)

The structured type GciDateTimeSType, which provides a C representation of an
instance of class DateTime, contains the following fields:

typedef struct {
long year;
long dayOfYear;
long milliseconds;
oopType timeZone;

} GciDateTimeSType;

The year value must be less than 1,000,000.

In addition, a C mnemonic supports representation of DateTime objects.

#define GCI_SECONDS_PER_DAY 86400
/* conversion constant */

NOTE:
The OOP of the Smalltalk DateTime class is
OOP_CLASS_DATE_TIME.

The Error Report Structure
An error report is a C structured type named GciErrSType. This structure contains
the following fields:

OopType category
The OOP of the GemStone error dictionary
(OOP_GEMSTONE_ERROR_CAT).

long number
The GemStone error number (a positive integer).

OopType context
The OOP of a Process that provides the state of the virtual machine for
use in debugging. This Process can be used as the argument to
GciContinue or GciClearStack. If the virtual machine was not running,
then context is OOP_NIL. If you are not interested in debugging or in
continuing from an error, or if the error is not in the runtime error
category, your program can ignore this value.
94 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Data Types
char message[GCI_ERR_STR_SIZE + 1]
The null-terminated string which contains the text of the error message.
In this release, GCI_ERR_STR_SIZE is defined to be 300.

OopType args[GCI_MAX_ERR_ARGS]
An optional array of error arguments. In this release,
GCI_MAX_ERR_ARGS is defined to be 10.

long argCount
The number of arguments in the args array.

BoolType fatal
TRUE if this error is fatal, FALSE otherwise.

The arguments (args) are specific to the error encountered. In the case of a compiler
error, this is a single argument — the OOP of an array of error identifiers. Each
identifier is an Array with three elements: (1) the error number (a SmallInteger); (2)
the offset into the source string at which the error occurred (also a SmallInteger);
and (3) the text of the error message (a String). See the gcierr.ht file for a full list
of errors and their arguments.

In the case of a fatal error, fatal is set to nonzero (TRUE). Your connection to
GemStone is lost, and the current session ID (from GciGetSessionId) is reset to
GCI_INVALID_SESSION_ID.

The Object Information Structure
Object information is placed in a C structured type named GciObjInfoSType.
Object information access functions provide information about objects in the
database. These functions offer C-style access to much information that would
otherwise be available only through calls to GemStone. For more information
about the GciObjInfoSType structured type, refer to the GciFetchObjInfo function
on page 182.

long namedSize
Number of named instance variables in the object.

OopType objId
OOP of the object.

OopType objClass
Class of object (see the GciFetchClass function on page 170).

OopType segment
The object's segment.
September 2011 VMware, Inc. 95

GemBuilder Data Types GemStone/S 6.6 GemBuilder for C
long objSize
Object's total size in bytes or OOPs (see the GciFetchSize function on
page 193).

GciObjHdrBFType
objImpl
(3 bits): Implementation format.

GciObjHdrBFType
isInvariant
(1 bit): Boolean to show if object is invariant at the object level.

GciObjHdrBFType
isIndexable
(1 bit): Boolean to show if object is indexable.

GciObjHdrBFType
unnamed
(11 bits): Reserved for future use.

The gcioc.ht include file defines four mnemonics that can be of assistance when
you are handling the object implementation field: GC_FORMAT_OOP,
GC_FORMAT_BYTE, GC_FORMAT_NSC, and GC_FORMAT_SPECIAL. These
mnemonics, and no other values, should be used to supply values for the objImpl
field, or to test its contents.

The Object Report Structure
Each object report has two parts: a fixed-size header (as defined in the
GciObjRepHdrSType structure) and a variable-size value buffer (an array of the
values of the object’s instance variables):

typedef struct {
GciObjRepHdrSType hdr; /* object report header */
union { /* object's value buffer */

ByteType bytes[1];
OopType oops[1];

} u;
} GciObjRepSType;

The Object Report Header Structure
An object report header is a C structured type named GciObjRepHdrSType. This
structure holds a general description of an object, and contains the following fields:
96 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Data Types
long valueBuffSize
Size (in bytes) of the object's value buffer.

long namedSize
Number of named instance variables in the object.

long idxSize
Number of indexed instance variables.

long firstOffset
Offset of first value to fetch or store.

OopType objId
OOP of the object.

OopType oclass
Class of object (see the GciFetchClass function on page 170).

OopType segment
The object's segment.

long objSize
Object's total size in bytes or OOPs (see the GciFetchSize function on
page 193).

GciObjHdrBFType
objImpl
(3 bits): Implementation format.

GciObjHdrBFType
isInvariant
(1 bit): Boolean to show if object is invariant at the object level.

GciObjHdrBFType
isIndexable
(1 bit): Boolean to show if object is indexable.

GciObjHdrBFType
unnamed
(11 bits): Reserved for future use.

short unused
Reserved for future use.

If the specified idxSize is inadequate to accommodate the contents of the value
buffer (the values in u.bytes or u.oops), this function will automatically increase
idxSize (the number of the object’s indexed variables) as needed. Of course, if the
specified objClass is not indexable, then the idxSize is ignored.
September 2011 VMware, Inc. 97

GemBuilder Data Types GemStone/S 6.6 GemBuilder for C
The firstOffset indicates where to begin storing values into the object’s array of
instance variables. In that array, the object’s named instance variables are followed
by its unnamed variables. If firstOffset is not 1, all instance variables (named or
indexed) up to the firstOffset will be initialized to nil or 0. The firstOffset must be in
the range (1, objSize+1).

On input, if the specified segment is OOP_NIL, the object is created in the session’s
current segment.

The gcioc.ht include file defines four mnemonics that can be of assistance when
you are handling the object implementation field (objImpl): GC_FORMAT_OOP,
GC_FORMAT_BYTE, GC_FORMAT_NSC, and GC_FORMAT_SPECIAL. These
mnemonics, and no other values, should be used to supply values for objImpl, or to
test its contents. However, the gcioc.ht file also defines other mnemonics that
can be used in other contexts related to object implementations, indexability, and
invariance.

An object’s implementation may restrict the number of its named instance
variables (namedSize) and its indexed instance variables (idxSize), as contained in
the object report header.

 • If the object implementation is GC_FORMAT_OOP, the object can have both
named and unnamed instance variables.

 • If the object implementation is GC_FORMAT_BYTE, the object can only have
indexed instance variables, and its namedSize is always zero.

 • If the object implementation is GC_FORMAT_NSC, the object can have both
named and unnamed instance variables. (The NSC’s idxSize reports the
number of unnamed instance variables, even though they are unordered, not
indexed.)

 • If the object implementation is GC_FORMAT_SPECIAL, the object cannot
have any instance variables, and the number of both its named and unnamed
variables is always zero.

An object is invariant “at the class level” if its class was created with the argument
instancesInvariant: true, and then only after the object has been
committed to the database. The isInvariant field of the object report header does not
reflect class invariance.

The isInvariant field is set (to 1 or true) only when the object itself is invariant (“at
the object level”). This can happen in one of two ways:

 • The application program sends the message immediateInvariant to the
object.
98 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Data Types
 • The application program explicitly sets the isInvariant field true in the report
header and then uses that report header in a call to GciStoreTrav.

Thus, testing the isInvariant field of the report header reveals only object-level
invariance. If you wish to test an object for both object-level and class-level
invariance, you must send the message Object>>isInvariant to the object and
check the result.

Table 5.10 Object Implementation Restrictions on Instance Variables

Object
Implementation

Named Instance
Variables OK?

Unnamed Instance Variables
OK?

0=Pointer YES YES (always indexed)
1=Byte NO YES (always indexed)
2=NSC YES YES (always unordered)
3=Special NO NO

For more information about object implementation types, see “Manipulating
Objects Through Structural Access” on page 34.

The User Action Information Structure
The structured type GciUserActionSType describes a user action function. It
defines the following fields:

char userActionName[GCI_MAX_ACTION_NAME+1]
The user action name (a case-insensitive, null-terminated string). In this
release, GCI_MAX_ACTION_NAME is defined to be 31.

long userActionNumArgs
The number of arguments in the C function.

GciUserActionFType
userAction
A pointer to the C user action function.

unsigned long userActionFlags
Mainly for internal use. If you use it, set it to 0 before passing a pointer
to it.
September 2011 VMware, Inc. 99

Structural Access Functions GemStone/S 6.6 GemBuilder for C
5.4 Structural Access Functions
The following caution applies to GemBuilder’s structural access functions listed in
Table 5.8 on page 89:

CAUTION
Exercise caution when using structural access functions. Although they
can improve the speed of GemStone database operations, these functions
bypass GemStone’s message-sending metaphor. That is, structural
access functions may bypass any checking that might be coded into your
application’s methods. In using structural access functions, you
implicitly assume full responsibility for safeguarding the integrity of
your system.

Note, however, that structural access functions do not bypass checks on
constraint violations, authorization violations, or concurrency conflicts.

5.5 UNIX Interrupt Handling
Both versions of GemBuilder (GciLnk and GciRpc) use the SIGIO interrupt
handler. If you must install your own interrupt handler (using signal or sigvec), be
sure that your application calls the previous interrupt handling routine when
done.

CAUTION
Do not, under any circumstances, turn off SIGIO.

5.6 Reserved Prefixes
To avoid identifier name conflicts when linking your application, use naming
prefixes that distinguish your own identifiers. You should avoid prefixes and
identifiers that clash with those that are used in GemStone. GemStone identifier
names are subject to change without notice in future releases of GemStone. Your
names should differ from them in more than just alphabetic case. For a complete
list of identifier names to avoid, use the UNIX nm command on the GemStone
object files you use:

cd $GEMSTONE/lib
nm gcilnkobj.o gcirpcobj.o gciuser.o gemrpcobj.o
100 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
In any case, avoid using the following reserved identifier prefixes:

Add Ass Auth BagPrim
Bin Bm Cfg Class
Com DataPg DatePrim Dbf
Dnet DoPrim Dtime EUC
Egc Egs Err FindEmpty
Flt Gci Gdbg Gem
Hash Host Idx Int
JIS Lgc Lgs Lom
Lrg MethPrim Net Nsc
Obj Page Pom RDbf
Rep Root Scan Scavenge
Snet Stn StrPrim SysPrim
Tnet TpSup Unix Utl
Ver Work

5.7 GemBuilder Function and Macro Reference
This section provides a complete description of each GemBuilder C function that
your application can call.
September 2011 VMware, Inc. 101

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciAbort

Abort the current transaction.

Syntax

void GciAbort()

Description

This function causes the GemStone system to abort the current transaction. All changes to persistent
objects that were made since the last committed transaction are lost, and the application is connected
to the most recent version of the database. Your application must fetch again from GemStone any
changed persistent objects, to refresh the copies of these objects in your C program. Use the
GciDirtySaveObjs function to determine which of the fetched objects were also changed.

This function has the same effect as issuing a hard break, or the function call
GciExecuteStr("System abortTransaction", OOP_NIL). For more information,
see “Interrupting GemStone Execution” on page 32.

See Also

GciCheckAuth, page 115
GciCommit, page 132
GciNbAbort, page 245
GciNbCommit, page 250
102 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciAddOopToNsc

Add an OOP to the unordered variables of a nonsequenceable collection.

Syntax

void GciAddOopToNsc(theNsc, theOop)
OopType theNsc;
OopType theOop;

Input Arguments

theNsc The OOP of the NSC.
theOop The OOP to be added.

Description

This function adds an OOP to the unordered variables of an NSC, using structural access.

Example

int i;
OopType oNscObject;
OopType oNum;

oNscObject = GciNewOop(OOP_CLASS_IDENTITY_BAG);
for (i = 0; i < tsize; i ++) {
oNum = GciLongToOop((long)i);
GciAddOopToNsc(oNscObject, oNum);
}

See Also

GciAddOopsToNsc, page 104
GciNscIncludesOop, page 288
GciRemoveOopFromNsc, page 339
GciRemoveOopsFromNsc, page 341
September 2011 VMware, Inc. 103

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciAddOopsToNsc

Add multiple OOPs to the unordered variables of a nonsequenceable collection.

Syntax

void GciAddOopsToNsc(theNsc, theOops, numOops)
OopType theNsc;
const OopType theOops[];
ArraySizeType numOops;

Input Arguments

theNsc The OOP of the NSC.
theOops An array of OOPs to be added.
numOops The number of OOPs to add.

Description

This function adds multiple OOPs to the unordered variables of an NSC, using structural access.

Example

int i;
OopType anObject;
OopType bigptrs[L_SUB_SIZE];

for (i = 0; i < L_SUB_SIZE; i ++)
bigptrs[i] = GciLongToOop((long)i);
GciAddOopsToNsc(anObject, bigptrs, L_SUB_SIZE);

See Also

GciAddOopToNsc, page 103
GciNscIncludesOop, page 288
GciRemoveOopFromNsc, page 339
GciRemoveOopsFromNsc, page 341
104 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciAddSaveObjsToReadSet

Add all objects in the export set to the read set of the current transaction.

Syntax

void GciAddSaveObjsToReadSet()

Description

The GciAddSaveObjsToReadSet function adds to the read set of the current transaction any
objects from the export set that are not already in the read set.

See Also

GciSaveObjs, page 352
September 2011 VMware, Inc. 105

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciAlteredObjs

Within a given array of cached objects, find those that have changed in the database.

Syntax

BoolType GciAlteredObjs(theOops, numOops, canonicalSymbolBuf, numPairs)
OopType theOops[];
ArraySizeType * numOops;
OopType canonicalSymbolBuf[];
ArraySizeType * numPairs;

Input Arguments

theOops An array of OOPs of objects that may have changed. These values are
provided on output.

numOops Pointer to the maximum number of OOPs in the input array.
canonicalSymbolBuf An array of oldSymbolOop/canonicalSymbolOop pairs identifying

canonical symbol objects that may have changed. These values are
provided on output.

numPairs Pointer to the maximum number of pairs in the input array.

Result Arguments

theOops The resulting array of OOPs of objects that have been modified as a
consequence of other transactions since this database session’s most recent
abort or successful commit.

* numOops The number of OOPs in the resulting array.
canonicalSymbolBuf The resulting array of oldSymbolOop/ canonicalSymbolOop pairs

describing the canonical symbol objects that have been modified as a
consequence of other transactions since this database session’s most recent
abort or successful commit.

* numPairs The number of pairs in the resulting array.

Return Value

GciAlteredObjs returns TRUE if all the modified objects have been returned, and FALSE
otherwise. As long as the function returns FALSE, repeat the call to get the next batch of altered
106 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
objects (up to the maximum values allocated in numOops and numPairs). Unreturned objects
persist in the list until the next time GciAlteredObjs is called.

Description

Typically, a GemStone C application program caches some database objects in its local object space.
After an abort or a successful commit, the user’s session is resynchronized with the most recent
version of the database. The OOP values previously imported by your C program may no longer
accurately represent the corresponding GemStone objects. In such cases, your C program must
update its representation of those objects. The function GciAlteredObjs permits you to determine
which objects your application needs to reread from the database.

Results of the GciAppend..., GciReplace..., and GciCreate... functions are not automatically added
to your session’s set of modified objects. Results of GciStore... are only added to the set of modified
objects if the function was called from within a user action.

The application designer must ensure that all the cached objects are placed in the user session’s
export set. GciAlteredObjs only returns changed objects that are in the export set (see
GciSaveObjs).

NOTE:
GciAlteredObjs removes all OOPs from the user session’s set of modified objects,
including the objects that were not returned because they are not in the export set.

See Also

GciAbort, page 102
GciCommit, page 132
GciReleaseAllOops, page 336
GciReleaseOops, page 337
GciSaveObjs, page 5-352
September 2011 VMware, Inc. 107

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GCI_ALIGN

(MACRO) Align an address to a word boundary.

Syntax
char * GCI_ALIGN(theAddress)

Input Arguments

theAddress The address to be aligned.

Result Value

A word-aligned address that is greater than or equal to the input value of theAddress.

Description

This macro is used during object traversals to ensure that the value buffer portion of each object
report begins at a word boundary, and that the beginning of each object report in a traversal buffer
is properly aligned.

Example
unsigned char travBuf[1000]; /* assumed to be aligned */
unsigned char * ptr = &travBuf[0];

do {
fillReport(ptr);
ptr += (long)GCI_ALIGN(sizeof(GciObjRepHdrSType) +

 ptr->valueBuffSize);
} while (!done);

See Also

GciMoreTraversal, page 242
GciNewOopUsingObjRep, page 283
GciTraverseObjs, page 411
108 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciAppendBytes

Append bytes to a byte object.

Syntax

void GciAppendBytes(theObject, numBytes, theBytes)
OopType theObject;
ArraySizeType numBytes;
const ByteType * theBytes;

Input Arguments

theObject A byte object to which bytes are to be appended.
numBytes The number of bytes to be appended.
theBytes A pointer to the bytes to be appended.

Result Arguments

theObject The resulting byte object, with the appended bytes.

Description

The GciAppendBytes function appends numBytes bytes to byte object theObject. Its effect is
equivalent to GciStoreBytes(x, GciFetchSize(x)+1, theBytes, numBytes).

GciAppendBytes raises an error if theObject is a binary float. Binary floats are of a fixed and
unchangeable size.

See Also

GciAppendChars, page 110
September 2011 VMware, Inc. 109

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciAppendChars

Append a C string to a byte object.

Syntax

void GciAppendChars(theObject, aString)
OopType theObject;
const char * aString;

Input Arguments

theObject A byte object to which the string is to be appended.
aString A pointer to the string to be appended.

Result Arguments

theObject The resulting byte object, with the appended string.

Description

This function appends the characters of aString to byte object theObject.

See Also

GciAppendBytes, page 109
110 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciAppendOops

Append OOPs to the unnamed variables of a collection.

Syntax

void GciAppendOops(theObject, numOops, theOops)
OopType theObject;
ArraySizeType numOops;
const OopType* theOops;

Input Arguments

theObject A collection to which additional OOPs are to be added.
numOops The number of OOPs to be added.
theOops A pointer to the OOPs to be added.

Result Arguments

theObject The resulting collection, with the added OOPs.

Description

Appends numOops OOPs to the unnamed variables of the collection theObject. If the collection is
indexable, this is equivalent to:

GciStoreOops(theObject, GciFetchSize(theObject)+1, theOops, numOops);

If the collection is an NSC, this is equivalent to:

GciAddOopsToNsc(theObject, theOops, numOops);

If the object is neither indexable nor an NSC, an error is generated.
September 2011 VMware, Inc. 111

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciBegin

Begin a new transaction.

Syntax

void GciBegin()

Description

This function begins a new transaction. If there is a transaction currently in progress, it aborts that
transaction. Calling GciBegin is equivalent to the function call
GciExecuteStr("System beginTransaction", OOP_NIL).

See Also

GciAbort, page 102
GciExecuteStr, page 158
GciNbAbort, page 245
GciNbBegin, page 246
GciNbExecuteStr, page 257
112 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GCI_BOOL_TO_OOP

(MACRO) Convert a C Boolean value to a GemStone Boolean object.

Syntax

OopType GCI_BOOL_TO_OOP(aBoolean)

Input Arguments

aBoolean The C Boolean value to be translated into a GemStone object.

Result Value

The OOP of the GemStone Boolean object that is equivalent to aBoolean.

Description

This macro translates a C Boolean value into the equivalent GemStone Boolean object. A C value
of 0 translates to the GemStone Boolean object false (represented in your C program as
OOP_FALSE). Any other C value translates to the GemStone Boolean object true (represented as
OOP_TRUE). For more information, see Appendix A, “Reserved OOPs.”

Example

#define FALSE 0
#define TRUE 1

OopType theOop;

theOop = GCI_BOOL_TO_OOP(TRUE);

See Also

GciOopToBool, page 297
September 2011 VMware, Inc. 113

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciCallInProgress

Determine if a GemBuilder call is currently in progress.

Syntax

BoolType GciCallInProgress()

Return Value

This function returns TRUE if a GemBuilder call is in progress, and FALSE otherwise.

Description

This function is intended for use within interrupt handlers. It can be called any time after GciInit.

GciCallInProgress returns FALSE if the process is currently executing within a user action and the
user action’s code is not within a GemBuilder call. It considers the highest (most recent) call context
only.

See Also

GciInUserAction, page 223
114 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciCheckAuth

Gather the current authorizations for an array of database objects.

Syntax

void GciCheckAuth(oopArray, arraySize, authCodeArray)
const OopType oopArray[];
ArraySizeType arraySize;
unsigned char authCodeArray[];

Input Arguments

oopArray An array of OOPs of objects for which the user’s authorization level. is to
be ascertained. The caller must provide these values.

arraySize The number of OOPs in oopArray.

Result Arguments

authCodeArray The resulting array, having at least arraySize elements, in which the
authorization values of the objects in oopArray are returned as 1-byte
integer values.

Description

GciCheckAuth checks the current user’s authorization for each object in oopArray up to arraySize,
returning each authorization code in the corresponding element of authCodeArray. The calling
context is responsible for allocating enough space to hold the results.

Authorization levels are:

1. No authorization

2. Read authorization

3. Write authorization

Special objects, such as instances of SmallInteger, are reported as having read authorization.
September 2011 VMware, Inc. 115

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
Authorization values returned are those that have been committed to the database; they do not reflect
changes you might have made in your local workspace. To query the local workspace, send an
authorization query message to a particular segment using the GciSendMsg function.

If any member of oopArray is not a legal OOP, GciCheckAuth generates the error
OBJ_ERR_DOES_NOT_EXIST. In that case, the contents of authCodeArray are undefined.
116 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GCI_CHR_TO_OOP

(MACRO) Convert a C character value to a GemStone Character object.

Syntax

OopType GCI_CHR_TO_OOP(aChar)

Input Arguments

aChar The C character value to be translated into a GemStone object.

Result Value

The OOP of the GemStone Character object that is equivalent to aChar.

Description

This macro translates a C character value into the equivalent GemStone Character object. For more
information, see Appendix A, “Reserved OOPs.”

Example

OopType theOop;

theOop = GCI_CHR_TO_OOP('a');

See Also

GciOopToChr, page 299
September 2011 VMware, Inc. 117

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciClampedTrav

Traverse an array of objects, subject to clamps.

Syntax

BoolType GciClampedTrav(theOops, numOops, travArgs)
const OopType * theOops;
ArraySizeType numOops;
GciClampedTravArgsSType *travArgs;

Input Arguments

theOops An array of OOPs representing the objects to traverse.
numOops The number of elements in theOops.
travArgs Pointer to a GciClampedTravArgsSType structure containing the

following input argument fields:

OopType clampSpec
The OOP of the Smalltalk ClampSpecification to be
used, or OOP_NIL, if the traversal is to operate
without clamping.

long level
Maximum traversal depth. When the level is 1, an
object report is written to the traversal buffer for each
element in theOops. When the level is 2, an object
report is also obtained for the instance variables of
each level-1 object. When the level is 0, the number of
levels in the traversal is not restricted.

ArraySizeType travBuffSize
The size of the traversal buffer, in bytes.

long retrievalFlags
If (retrievalFlags & GCI_RETRIEVE_EXPORT != 0)
then OOPs of non-special objects for which an object
report header is returned in the traversal buffer are
automatically added to the SaveObjectsSet (see
GciSaveObjs). The value of retrievalFlags should be
given by using the following GemBuilder mnemonics:
GCI_RETRIEVE_DEFAULT
118 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GCI_RETRIEVE_EXPORT
 GCI_CLEAR_EXPORT causes the traversal to clear
the export set before it adds any OOPs to the traverse
buffer.

Result Arguments

travArgs Pointer to a GciClampedTravArgsSType structure containing the
following result argument field:

ByteType * travBuff
The buffer for the results of the traversal. The first
element placed in the buffer is the actualBufferSize, a
long integer that indicates how many bytes were
actually stored in the buffer by this function. The
remainder of the traversal buffer consists of a series of
object reports, each of which is of type
GciObjRepSType. You can use the macro
GCI_IS_REPORT_CLAMPED to find out if a given
object report represents a clamped object. If the report
array would be empty, a single object report is created
for the object nil.

Return Value

Returns FALSE if the traversal is not yet completed. Returns TRUE if there are no more objects to
be returned by subsequent calls to GciMoreTraversal (that is, an object report was constructed for
each object, minus the special objects).

Description

The GciClampedTrav function initiates a traversal of the specified objects, subject to the clamps in
the specified ClampSpecification. In order to guarantee that the root object of the traversal will
always have an entry in the traversal buffer, the root object is not subject to the specified clamps.
Refer to “GciTraverseObjs” on page 411 for a detailed discussion of object traversal.
September 2011 VMware, Inc. 119

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
See Also

GCI_IS_REPORT_CLAMPED, page 227
GciMoreTraversal, page 242
GciSaveObjs, page 352
120 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciClampedTraverseObjs

Traverse an array of objects, subject to clamps.

Syntax

BoolType GciClampedTraverseObjs(clampSpec, theOops, numOops, travBuff, travBuffSize, level)
OopType clampSpec;
const OopType theOops[];
ArraySizeType numOops;
ByteType travBuff[];
ArraySizeType travBuffSize;
long level;

Input Arguments

clampSpec The OOP of the Smalltalk ClampSpecification to be used.
theOops An array of OOPs representing the objects to traverse.
numOops The number of elements in theOops.
travBuffSize The size of the traversal buffer, in bytes.
level Maximum traversal depth. When the level is 1, an object report is written

to the traversal buffer for each element in theOops. When level is 2, an
object report is also obtained for the instance variables of each level-1
object. When level is 0, the number of levels in the traversal is not
restricted.

Result Arguments

travBuff The buffer for the results of the traversal. The first element placed in the
buffer is the actualBufferSize, a long integer that indicates how many bytes
were actually stored in the buffer by this function. The remainder of the
traversal buffer consists of a series of object reports, each of which is of
type GciObjRepSType.
You can use the macro GCI_IS_REPORT_CLAMPED to find out if a
given object report represents a clamped object. If the report array would be
empty, a single object report is created for the object nil.
September 2011 VMware, Inc. 121

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
Return Value

Returns FALSE if the traversal is not yet completed. Returns TRUE if there are no more objects to
be returned by subsequent calls to GciMoreTraversal (that is, an object report was constructed for
each object, minus the special objects).

Description

The GciClampedTraverseObjs function initiates a traversal of the specified objects, subject to the
clamps in the specified ClampSpecification. If you specify OOP_NIL as the clampSpec parameter,
the function behaves identically to GciTraverseObjs. In order to guarantee that the root object of
the traversal will always have an entry in the traversal buffer, the root object is not subject to the
specified clamps. Refer to the GciTraverseObjs function for a detailed discussion of object
traversal.

GciClampedTraverseObjs provides automatic byte swizzling for binary floats.

GCI clamped traversal functions are intended primarily for GemStone internal use.

See Also

GCI_IS_REPORT_CLAMPED, page 227
GciTraverseObjs, page 411
GciNbClampedTraverseObjs, page 248
GciNbTraverseObjs, page 275
122 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciClassMethodForClass

Compile a class method for a class.

Syntax

void GciClassMethodForClass(source, oclass, category, symbolList)
OopType source;
OopType oclass;
OopType category;
OopType symbolList;

Input Arguments

source The OOP of a Smalltalk string to be compiled as a class method.
oclass The OOP of the class with which the method is to be associated.
category The OOP of a Smalltalk string, which contains the name of the category to

which the method is added. If the category is nil (OOP_NIL), the compiler
will add this method to the category “(as yet unclassified)”.

symbolList The OOP of a GemStone symbol list (that is, an Array of instances of
SymbolListDictionary). Smalltalk resolves symbolic references in source
code by using symbols that are available from symbolList. A value of
OOP_NIL means to use the default symbol list for the current GemStone
session (that is, System myUserProfile symbolList).

Description

This function compiles a class method for the given class. You may not compile any method whose
selector begins with an underscore (_) character. Such selectors are reserved for use by the
GemStone development team as private methods.

In addition, the Smalltalk virtual machine optimizes a small number of selectors. You may not
compile any methods with any of those selectors. See the GemStone Programming Guide for a list
of the optimized selectors.

To remove a class method, use GciExecuteStr instead.
September 2011 VMware, Inc. 123

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
Example

OopType oClass;
OopType oCateg;
OopType oClassMeth;

/* Intervening code goes here, in place of this comment */

oCateg = GciNewOop(OOP_CLASS_STRING);
GciStoreBytes(oCateg, 1L, category, strlen(category));
oClassMeth = GciNewOop(OOP_CLASS_STRING);
GciStoreBytes(oClassMeth, 1L, methodText, strlen(methodText));

GciClassMethodForClass(oClassMeth, oClass, oCateg, OOP_NIL);

See Also

GciInstMethodForClass, page 220
124 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciClassNamedSize

Find the number of named instance variables in a class.

Syntax

int GciClassNamedSize(oclass)
OopType oclass;

Input Arguments

oclass The OOP of the class from which to obtain information about instance
variables. Appendix A, “Reserved OOPs,” lists the OOP of each Smalltalk
kernel class.

Return Value

Returns the number of named instance variables in the class. In case of error, this function returns
zero.

Description

This function returns the number of named instance variables for the specified class, including those
inherited from superclasses.

Example

int cNumIVars;
OopType oClass;

/* Intervening code goes here, in place of this comment */

cNumIVars = GciClassNamedSize(oClass);

See Also

GciIvNameToIdx, page 230
September 2011 VMware, Inc. 125

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciClearStack

Clear the Smalltalk call stack.

Syntax

void GciClearStack(process)
OopType process;

Input Arguments

process The OOP of a Process object (obtained as the value of the context field of
an error report returned by GciErr).

Description

Whenever a session executes a Smalltalk expression or sequence of expressions, the virtual machine
creates and maintains a call stack that provides information about its state of execution. The call
stack includes an ordered list of activation records related to the methods and blocks that are
currently being executed.

If a soft break or an unexpected error occurs, the virtual machine suspends execution, creates a
Process object, and raises an error. The Process object represents both the call stack when execution
was suspended and any information that the virtual machine needs to resume execution. If there was
no fatal error, your program can call GciContinue to resume execution. Call GciClearStack instead
if there was a fatal error, or if you do not want your program to resume the suspended execution.

Example

The following example presents an application whose control loop determines whether to call
GciExecute (to process a new user query), GciContinue (to resume an interrupted query), or
GciClearStack (to discard an interrupted query).
126 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
/* interrupt handler used to interrupt a query */
static BoolType executingCode = FALSE;
static void sigIntHandler {

if (executingCode) {
GciSoftBreak(); /* suspends Smalltalk execution */
/* now do whatever application cleanup is needed */

}
}
main () {

/* outer control loop; uses no special error handler */
static struct sigvec oldSig,newSig;
GciErrSType errReport;
struct {

cmdType id; /* an enumerated type */
cmdArgsType args; /* whatever the args are */
} applCmd;

char cmdCode[300];
errReport.context = OOP_NIL;
/* install the interrupt handler */
newSig.sv_mask = -1;
newSig.sv_onstack = 0;
newSig.sv_handler = sigIntHandler;
sigvec(SIGINT, &newSig, &oldSig);
while (TRUE) {

getCommand(&applCmd);
switch (applCmd.id) {

case USER_LOGOUT:
GciLogout();
return; /* exit application */

case USER_QUERY: /* initiate query from user input */
parseUserQuery(&applCmd.args,cmdCode);
executingCode = TRUE;
GciExecute(cmdCode, OOP_NIL);
executingCode = FALSE;
break;
September 2011 VMware, Inc. 127

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
case USER_RESUME:
/* resume most recent interrupted query */
if (errReport.context != OOP_NIL) {

executingCode = TRUE;
GciContinue(errReport.context);
executingCode = FALSE;

}
break;

case USER_DISCARD:
/* discard most recent interrupted query */
if (errReport.context != OOP_NIL) {

GciClearStack(errReport.context);
}
break;

/* other cases */
} /* end switch */
if (GciErr(&errReport) &&

 (errReport.number != RT_ERR_SOFT_BREAK)) {
printErrorMessage(&errReport);

}
} /* end while */

} /* end main */

See Also

GciContinue, page 133
GciSoftBreak, page 365
128 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciCompress

Compress the supplied data, which can be uncompressed with GciUncompress.

Syntax

int GciCompress(dest, destLen, source, sourceLen)
char * dest;
unsigned long destLen;
const char * source;
unsigned long sourceLen;

Input Arguments

dest Pointer to the buffer intended to hold the resulting compressed data.
destLen Length, in bytes, of the buffer intended to hold the compressed data.
source Pointer to the source data to compress.
sourceLen Length, in bytes, of the source data.

Result Arguments

dest The resulting compressed data.

Return Value

GciCompress returns Z_OK (equal to 0) if the compression succeeded, or various error values if it
failed; see the documentation for the compress function in the GNU open source library at
http://www.gzip.org.

Description

GciCompress passes the supplied inputs unchanged to the compress function in the GNU open
source library Version 1.0.4, and returns the result exactly as the GNU compress function returns
it.
September 2011 VMware, Inc. 129

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
Example

OopType CompressByteArray(OopType byteArray)
{

ByteType *inputBuffer, *outputBuffer;
unsigned long inputSize, outputSize;
long result;
OopType resultOop;

if (!GciIsKindOfClass(byteArray, OOP_CLASS_BYTE_ARRAY))
return OOP_NIL; /* error: input arg isn’t byteArray */

 inputSize = (unsigned long) GciFetchSize(byteArray);
outputSize = inputSize;

inputBuffer = (ByteType *) malloc((size_t) inputSize);
outputBuffer = (ByteType *) malloc((size_t) outputSize);

if (inputBuffer == NULL || outputBuffer == NULL) {
resultOop = OOP_NIL;
goto COMPRESS_BYTE_ARRAY_FAIL;

}

inputSize = (unsigned long) GciFetchBytes(byteArray,
1, /* start at first element */
inputBuffer,
(ArraySizeType) inputSize /* max bytes to fetch */);

result = GciCompress((char *) outputBuffer,

&outputSize,
/* returns as num bytes in the output buffer */
(const char *) inputBuffer,

 inputSize);

if (result != 0) {
resultOop = GCI_LONG_TO_OOP(result);
goto COMPRESS_BYTE_ARRAY_FAIL;

/* a gzip error, return the error code */
}

130 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
/* build the result object in 1 step */
resultOop = GciNewByteObj(

OOP_CLASS_BYTE_ARRAY,
outputBuffer,
(ArraySizeType) outputSize);

COMPRESS_BYTE_ARRAY_FAIL:;

if (inputBuffer != NULL)
free(inputBuffer);

if (outputBuffer != NULL)
free(outputBuffer);

return resultOop;

}

See Also

GciUncompress, page 417
September 2011 VMware, Inc. 131

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciCommit

Write the current transaction to the database.

Syntax

BoolType GciCommit()

Return Value

Returns TRUE if the transaction committed successfully. Returns FALSE if the transaction fails to
commit due to a concurrency conflict or in case of error.

Description

The GciCommit function attempts to commit the current transaction to the GemStone database.

GciCommit ignores any commit pending action that may be defined in the current GemStone
session state.

Example

GciErrSType myError;

/* Call GciCommit and see if there was an error */
if (!GciCommit() || GciErr(&myError))
printf(

"GemStone returned error %d when attempting to
 commit.\n", myError.number);

See Also

GciAbort, page 102
GciCheckAuth, page 115
GciNbAbort, page 245
GciNbCommit, page 250
132 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciContinue

Continue code execution in GemStone after an error.

Syntax

OopType GciContinue(process)
OopType process;

Input Arguments

process The OOP of a Process object (obtained as the value of the context field of
an error report returned by GciErr).

Return Value

Returns the OOP of the result of the Smalltalk code that was executed. Returns OOP_NIL in case
of error.

Description

The GciContinue function attempts to continue Smalltalk execution sometime after it was
suspended. It is most useful for proceeding after GemStone encounters a pause message, a soft break
(GciSoftBreak), or an application-defined error, since continuation is always possible after these
events. Because GciContinue calls the virtual machine, the application user can also issue a soft
break while this function is executing. For more information, see “Interrupting GemStone
Execution” on page 32.

It may also be possible to continue Smalltalk execution if the virtual machine detects a nonfatal error
during a GciExecute..., GciSendMsg, or GciPerform call. You may then want to use structural
access functions to investigate (or modify) the state of the database before you call GciContinue.

Example

See the example for the GciClearStack function on page 126.
September 2011 VMware, Inc. 133

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
See Also

GciClearStack, page 126
GciErr, page 152
GciExecute, page 154
GciNbContinue, page 251
GciNbExecute, page 255
GciSendMsg, page 353
134 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciContinueWith

Continue code execution in GemStone after an error.

Syntax

OopType GciContinueWith (process, replaceTopOfStack, args, error)
OopType process;
OopType replaceTopOfStack;
long flags;
GciErrSType * error;

Input Arguments

process The OOP of a Process object (obtained as the value of the context field of
an error report returned by GciErr).

replaceTopOfStack If not OOP_ILLEGAL, replace the top of the Smalltalk evaluation stack
with this value before continuing. If OOP_ILLEGAL, the evaluation stack
is not changed.

flags Flags to disable or permit asynchronous events and debugging in Smalltalk,
as defined for GciPerformNoDebug.

error If not NULL, continue with an error. This argument takes precedence over
replaceTopOfStack.

Return Value

Returns the OOP of the result of the Smalltalk code that was executed. In case of error, this function
returns OOP_NIL.

Description

This function is a variant of the GciContinue function, except that it allows you to modify the call
stack and the state of the database before attempting to continue the suspended Smalltalk execution.
This feature is typically used while implementing a Smalltalk debugger.
September 2011 VMware, Inc. 135

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
See Also

GciContinue, page 133
GciErr, page 152
GciExecute, page 154
GciNbContinueWith, page 252
GciNbExecute, page 255
GciPerformNoDebug, page 316
136 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciCreateByteObj

Create a new byte-format object.

Syntax

OopType GciCreateByteObj(oclass, objId, values, numValues, clusterId, makePermanent)
OopType oclass;
OopType objId;
const ByteType * values;
ArraySizeType numValues;
long clusterId;
BoolType makePermanent;

Input Arguments

oclass The OOP of the class of the new object.
objId The new object’s OOP (obtained from GciGetFreeOop), or

OOP_ILLEGAL.
values Array of instance variable values.
numValues Number of elements in values.
clusterId ID of the cluster bucket in which to place the object. clusterId may be 0,

meaning use the current cluster bucket (System currentClusterId), or a
positive integer <=GciFetchSize(OOP_ALL_CLUSTER_BUCKETS).
Values outside of the above range will generate an error.

makePermanent Flag indicating whether the object is to be permanent or temporary. If
makePermanent is FALSE, the object is created in temporary object space
and the garbage collector will make the object permanent only if the object
is or becomes referenced by another permanent object. If makePermanent
is TRUE, the object is immediately created as a permanent object, thus
providing a performance gain by bypassing the garbage collector.

Return Value

GciCreateByteObj returns the OOP of the object it creates. The return value is the same as objId
unless that value is OOP_ILLEGAL, in which case GciCreateByteObj assigns and returns a new
OOP itself.
September 2011 VMware, Inc. 137

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
Description

Creates a new object using an object identifier (objId) previously obtained from GciGetFreeOop or
GciGetFreeOops. This function provides one means of resolving unresolved forward references.
See the GciGetFreeOop function on page 205 for more information on forward references.

Values are stored into the object starting at the first named instance variable (if any) and continuing
to the unnamed (indexed or unordered) variables if oclass is indexable or NSC.

If oclass is an indexable or NSC class, then numValues may be as large or as small as desired. If
oclass is neither indexable nor NSC, then numValues must not exceed the number of named instance
variables in the class. If numValues is less than number of named instance variables, the size of the
object is set to the number of named instance variables and instance variables beyond numValues
are initialized to zero.

For an indexable object, if numValues is greater than zero and values is NULL, then the object will
be created of size numValues, and will be initialized to logical size numValues. This is equivalent
to new: aSize for classes Array or String. Using this approach, you can avoid allocating a buffer
of size numValues and simply allow GciCreateByteObj to initialize all indexed instance variables
to the default value of zero.

GciCreateByteObj provides automatic byte swizzling for binary floats. If objId is a binary float,
then numValues must be the actual size for oclass. If it is not, then GciCreateByteObj raises an
error as a safety check.

See Also

GciCreateOopObj, page 139
GciGetFreeOop, page 205
GciGetFreeOops, page 207
138 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciCreateOopObj

Create a new pointer-format object.

Syntax

OopType GciCreateOopObj(oclass, objId, values, numValues, clusterId, makePermanent)
OopType oclass;
OopType objId;
const OopType * values;
ArraySizeType numValues;
long clusterId;
BoolType makePermanent;

Input Arguments

oclass The OOP of the class of the new object.
objId The new object’s OOP (obtained from GciGetFreeOop), or

OOP_ILLEGAL.
values Array of instance variable values.
numValues Number of elements in values.
clusterId ID of the cluster bucket in which to place the object. clusterId may be 0,

meaning use the current cluster bucket (System currentClusterId), or a
positive integer <=GciFetchSize(OOP_ALL_CLUSTER_BUCKETS).
Values outside of the above range will generate an error.

makePermanent Flag indicating whether the object is to be permanent or temporary. If
makePermanent is FALSE, the object is created in temporary object space
and the garbage collector will make the object permanent only if the object
is or becomes referenced by another permanent object. If makePermanent
is TRUE, the object is immediately created as a permanent object, thus
providing a performance gain by bypassing the garbage collector.

Return Value

GciCreateOopObj returns the OOP of the object it creates. The return value is the same as objId
unless that value is OOP_ILLEGAL, in which case GciCreateOopObj assigns and returns a new
OOP itself.
September 2011 VMware, Inc. 139

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
Description

Creates a new object using an object identifier (objId) previously obtained from GciGetFreeOop or
GciGetFreeOops. This function provides one means of resolving unresolved forward references.
See “GciGetFreeOop” on page 205 for more information on forward references.

Values are stored into the object starting at the first named instance variable (if any) and continuing
to the unnamed (indexed or unordered) instance variables if oclass is indexable or NSC. Values may
be forward references to objects whose identifiers have been allocated with GciGetFreeOop, but
for which the objects have not yet been created with GciCreate. The caller must initialize any
unused elements of values to OOP_NIL.

If oclass is an indexable or NSC class, then numValues may be as large or as small as desired. If
oclass is neither indexable nor NSC, then numValues must not exceed the number of named instance
variables in the class. If numValues is less than number of named instance variables, the size of the
object is set to the number of named instance variables and instance variables beyond numValues
are initialized to OOP_NIL.

For an indexable object, if numValues is greater than zero and values is NULL, then the object will
be created of size numValues, and will be initialized to logical size numValues. This is equivalent
to new: aSize for classes Array or String. Using this approach, you can avoid allocating a buffer
of size numValues and simply allow GciCreateOopObj to initialize all indexed instance variables
to the default value of OOP_NIL.

See Also

GciCreateByteObj, page 137
GciGetFreeOop, page 205
GciGetFreeOops, page 207
140 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciCTimeToDateTime

Convert a C date-time representation to GemStone’s.

Syntax

BoolType GciCTimeToDateTime(arg, result)
time_t arg;
GciDateTimeSType * result;

Input Arguments

arg The C time value to be converted.

Result Arguments

result A pointer to the C struct in which to place the converted value.

Return Value

Returns TRUE if the conversion succeeds; otherwise returns FALSE.

Description

Converts a time_t value to GciDateTimeSType. On systems where time_t is a signed value,
GciCTimeToDateTime generates an error if arg is negative.
September 2011 VMware, Inc. 141

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciDateTimeToCTime

Convert a GemStone date-time representation to C’s.

Syntax

time_t GciDateTimeToCTime(arg)
const GciDateTimeSType *arg;

Input Arguments

arg An instance of GciDateTimeSType to be converted.

Return Value

A C time value of type time_t.

Description

Converts an instance of GciDateTimeSType to the equivalent time_t value.
142 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciDbgEstablish

Specify the debugging function for GemBuilder to execute before most calls to GemBuilder
functions.

Syntax

GciDbgFuncType * GciDbgEstablish(newDebugFunc)
GciDbgFuncType * newDebugFunc;

Input Arguments

newDebugFunc A pointer to a C function that will be called before each subsequent
GemBuilder call. Note that this function will not be called before any of
the following GemBuilder functions or macros: GCI_ALIGN,
GCI_BOOL_TO_OOP, GCI_CHR_TO_OOP,
GCI_IS_REPORT_CLAMPED, GCI_VALUE_BUFF, GciErr, or
GciDbgEstablish itself.

The newDebugFunc function is passed a single null-terminated string argument, (of type
const char []), the name of the GemBuilder function about to be called.

Return Value

Returns a pointer to the newDebugFunc specified in the previous GciDbgEstablish call (if any).

Description

This function establishes the name of a C function (most likely a debugging routine) to be called
before your program calls any GemBuilder function or macro (except those named above). Before
each GemBuilder call, a single argument, a null-terminated string that names the GemBuilder
function about to be executed, is passed to the specified newDebugFunc.

To disable previous debugging routines, your program can use the following statement:

GciDbgEstablish(NULL);
September 2011 VMware, Inc. 143

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
Example

void traceGciFunct(aMsg)
char aMsg[]; /* the name of the GemBuilder function about to be
called */

{
printf("%s - Call traced using GciDbgEstablish", aMsg);
}

GciDbgEstablish(traceGciFunct);

See Also

GciErr, page 152
144 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciDirtyObjsInit

Begin tracking which objects in the session workspace change.

Syntax

void GciDirtyObjsInit()

Description

GemStone can track which objects in a session change, but doing so has a measurable cost. By
default, GemStone does not do it. The GciDirtyObjsInit function permits an application to request
GemStone to maintain that set of dirty objects when it is needed. Once initialized, GemStone tracks
dirty objects until GciLogout is executed.

GciDirtyObjsInit must be called before GciDirtySaveObjs in order for those functions to operate
properly, because they depend upon GemStone’s set of dirty objects.

An object is considered dirty (changed) under one or more of the following conditions:

 • A Smalltalk message was sent to the object
 • The object was newly created by calling one of the GciCreate... or GciNew... functions
 • The object in memory was modified by structural access in a call to one of the GciStore...

functions
 • A change to the object was committed by another transaction since it was read into this one
 • The object is persistent, but was modified in a transaction of this session that was aborted (which

implies that the modifications were destroyed, thus changing the state of the object in memory)

See Also

GciDirtySaveObjs, page 146
September 2011 VMware, Inc. 145

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciDirtySaveObjs

Find all objects in the export set that have changed since the last changes were found.

Syntax

BoolType GciDirtySaveObjs(theOops, numOops)
OopType theOops[];
ArraySizeType * numOops;

Input Arguments

numOops The number of objects that can be put into theOops buffer.

Result Arguments

theOops An array of the dirty cached objects found.
numOops The number of dirty cached objects found.

Return Value

This function returns a C Boolean value indicating whether or not the complete set of dirty objects
has been returned in theOops in one or more calls. TRUE indicates that the complete set has been
returned, and FALSE indicates that it has not.
146 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
Description

GciDirtySaveObjs finds all objects in the session workspace that are in the export set and have also
changed since either GciDirtySaveObjs or GciDirtyObjsInit was last called. An object is
considered dirty (changed) under one or more of the following conditions:

 • A Smalltalk message was sent to the object.
 • The object was changed by a call to any GemBuilder function from within a user action.
 • The object was changed by a call to one or more of the following functions: GciStorePaths,

GciSymDictAtObjPut, GciSymDictAtPut, GciStrKeyValueDictAtObjPut, or
GciStrKeyValueDictAtPut.

 • A change to the object was committed by another transaction since it was read by this one.
 • The object is persistent, but was modified in the current session before the session aborted the

transaction. (When the transaction is aborted, the modifications are destroyed, thus changing
the state of the object in memory).

GciDirtySaveObjs must be called only sometime after GciDirtyObjsInit has been executed,
because it depends upon GemStone’s set of dirty objects. The user is expected to call
GciDirtySaveObjs repeatedly while it returns FALSE, until it finally returns TRUE. When
GciDirtySaveObjs returns TRUE, it first clears the set of dirty objects.

See Also

“Garbage Collection” on page 49
GciDirtyObjsInit, page 145
GciReleaseAllOops, page 336
GciSaveObjs, page 352
September 2011 VMware, Inc. 147

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciEnableSignaledErrors

Establish or remove GemBuilder visibility to signaled errors from GemStone.

Syntax

BoolType GciEnableSignaledErrors(newState)
BoolType newState;

Input Arguments

newState The new state of signaled error visibility: TRUE for visible.

Return Value

This function returns TRUE if signaled errors are already visible when it is called.

Description

GemStone permits selective response to signal errors: RT_ERR_SIGNAL_ABORT,
RT_ERR_SIGNAL_COMMIT, and RT_ERR_SIGNAL_GEMSTONE_SESSION. The default
condition is to leave them all invisible. GemStone responds to each single kind of signal error only
after an associated method of class System has been executed: enableSignaledAbortError,
enableSignaledObjectsError, and enableSignaledGemStoneSessionError
respectively.

After GciInit executes successfully, the GemBuilder default condition also leaves all signal errors
invisible. The GciEnableSignaledErrors function permits GemBuilder to respond automatically
to signal errors. However, GemStone must respond to each kind of error in order for GemBuilder
to respond to it. Thus, if an application calls GciEnableSignaledErrors with newState equal to
TRUE, then GemBuilder responds automatically to exactly the same kinds of signal errors as
GemStone. If GemStone has not executed any of the appropriate System methods, then this call has
no effect until it does.

When enabled, GemBuilder checks for signal errors at the start of each function that accesses the
database. It treats any that it finds just like any other errors, through GciErr or the longjmp
mechanism, as appropriate.
148 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
Automatic checking for signalled errors incurs no extra runtime cost. The check is optimized into
the check for a valid session. However, instead of checking automatically, these errors can be polled
by calling the GciPollForSignal function.

GciEnableSignaledErrors may be called before calling GciLogin.

See Also

GciErr, page 152
GciPollForSignal, page 325
September 2011 VMware, Inc. 149

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciEncodedLongToOop

Convert a long containing an encoded OOP back to the original OOP.

Syntax

OopType GciEncodedLongToOop(theLong)
long theLong;

Input Arguments

theLong The long integer to be converted.

Return Value

The object pointer (OOP), or OOP_ILLEGAL if the supplied long integer is out of range.

Description

Converts an instance of a long integer containing an encoded object pointer (OOP) back to the
original OOP. The integer must be in the range –229 to 229.

OOPS representing nonatomic objects can be represented in 30 bits; the correct mapping operation
can convert them to a C long integer without losing the information necessary to reconstitute them.

CAUTION
Manipulating objects as OOPs can result in nonexistent object errors,
invalid references, and a corrupted database.

Example

OopType EncodedSmallIntToOop(OopType smallIntOop)
{

long encodedLong;

if (!GCI_OOP_IS_SMALL_INT(smallIntOop))
 /* arg must be a small ints */
150 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
return OOP_NIL;

encodedLong = GCI_OOP_TO_LONG(smallIntOop);
return GciEncodedLongToOop(encodedLong);

}

See Also

GciOopToEncodedLong, page 301
September 2011 VMware, Inc. 151

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciErr

Prepare a report describing the most recent GemBuilder error.

Syntax

BoolType GciErr(errorReport)
GciErrSType * errorReport;

Result Arguments

errorReport Address of a GemBuilder error report structure.

Return Value

TRUE indicates that an error has occurred. The errorReport parameter has been modified to contain
the latest error information, and the internal error buffer in GemBuilder has been cleared. You can
only call GciErr once for a given error. If GciErr is called a second time, the function returns
FALSE.

FALSE indicates no error occurred, and the contents of errorReport are unchanged.

Description

Your application program can call GciErr to determine whether or not the previous GemBuilder
function call resulted in an error. If an error has occurred, this function provides information about
the error and about the state of the GemStone system. In the case of a fatal error, your connection
to GemStone is lost, and the current session ID (from GciGetSessionId) is reset to
GCI_INVALID_SESSION_ID.

The GciErr function is especially useful when error traps are disabled or are not present. See
“GciPopErrJump” on page 327 for information about using general-purpose error traps in
GemBuilder. The section “The Error Report Structure” on page 94 describes the C structure for
error reports.
152 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
Example

BoolType previous;
GciErrSType err;

previous = GciSetErrJump(FALSE); /* disable error jumps */

/* Intervening code goes here, in place of this comment.
 That code makes a GemBuilder function call at its end. */

if (GciErr(&err)) {
if ((err.category == OOP_GEMSTONE_ERROR_CAT) &&

 (err.number == ErrMnem1))
{ /* do something */ }

else if ((err.category == OOP_GEMSTONE_ERROR_CAT) &&
(err.number == ErrMnem2))

{ /* do something */ }
else

{ /* do something */ }
}
else
{ /* do something */ }

GciSetErrJump(previous);
/* reset error jumps to previous condition */

See Also

GciClearStack, page 126
GciContinue, page 133
GciExecute, page 154
GciPopErrJump, page 327
GciSendMsg, page 353
September 2011 VMware, Inc. 153

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciExecute

Execute a Smalltalk expression contained in a String object.

Syntax

OopType GciExecute(source, symbolList)
OopType source;
OopType symbolList;

Input Arguments

source The OOP of a String containing a sequence of one or more statements to be
executed.

symbolList The OOP of a GemStone symbol list (that is, an Array of instances of
SymbolListDictionary). The compiler uses the symbolList to resolve
symbolic references in the code in source. A value of OOP_NIL means to
use the default symbol list for the current GemStone session (that is,
System myUserProfile symbolList).

Return Value

Returns the OOP of the execution result. In case of error, this function returns OOP_NIL.

Description

This function sends an expression (or sequence of expressions) to GemStone for execution. This is
roughly equivalent to executing the body of a nameless procedure (method).

In most cases, you may find it more efficient to use GciExecuteStr. That function takes a C string
as its argument, thus reducing the number of network round-trips required to execute the code. With
GciExecute, you must first convert the source to a String object (see the following example.) If the
source is already a String object, however, GciExecute will be more efficient.

Because GciExecute calls the virtual machine, the user can issue a soft break while this function is
executing. For more information, see “Interrupting GemStone Execution” on page 32.
154 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
Example

strcpy (getSize, " ^ myObject size ");
oString = GciNewOop(OOP_CLASS_STRING);
GciStoreBytes(oString, 1L, getSize, (long)strlen(getSize));
oResponse = GciExecute(oString,OOP_NIL);

See Also

GciContinue, page 133
GciErr, page 152
GciExecuteFromContext, page 156
GciExecuteStr, page 158
GciExecuteStrFromContext, page 160
GciNbContinue, page 251
GciNbExecute, page 255
GciNbExecuteStr, page 257
GciNbExecuteStrFromContext, page 259
GciSendMsg, page 353
September 2011 VMware, Inc. 155

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciExecuteFromContext

Execute a Smalltalk expression contained in a String object as if it were a message sent to another
object.

Syntax

OopType GciExecuteFromContext(source, contextObject, symbolList)
OopType source;
OopType contextObject;
OopType symbolList;

Input Arguments

source The OOP of a String containing a sequence of one or more statements to be
executed.

contextObject The OOP of any GemStone object.
symbolList The OOP of a GemStone symbol list (that is, an Array of instances of

SymbolListDictionary). The compiler uses the symbolList to resolve
symbolic references in the code in source. A value of OOP_NIL means to
use the default symbol list for the current GemStone session (that is,
System myUserProfile symbolList).

Return Value

Returns the OOP of the execution result. In case of error, this function returns OOP_NIL.

Description

This function sends an expression (or sequence of expressions) to GemStone for execution. The
source is executed as though contextObject were the receiver. That is, the pseudo-variable self will
have the value contextObject during the execution. Messages in the source are executed as defined
for contextObject.

For example, if contextObject is an instance of Association, the source can reference the pseudo-
variables key and value (referring to the instance variables of the Association contextObject). If any
pool dictionaries were available to Association, the source could reference them too.
156 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
In most cases, you may find it more efficient to use GciExecuteStrFromContext. That function
takes a C string as its argument, thus reducing the number of network round-trips required to execute
the code. With GciExecuteFromContext, you must first convert the source to a String object (see
the following example.) If the source is already a String object, however, GciExecuteFromContext
will be more efficient.

Because GciExecuteFromContext calls the virtual machine, the user can issue a soft break while
this function is executing. For more information, see “Interrupting GemStone Execution” on
page 32.

See Also

GciContinue, page 133
GciErr, page 152
GciExecute, page 154
GciExecuteStr, page 158
GciExecuteStrFromContext, page 160
GciNbContinue, page 251
GciNbExecute, page 255
GciNbExecuteStr, page 257
GciNbExecuteStrFromContext, page 259
GciSendMsg, page 353
September 2011 VMware, Inc. 157

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciExecuteStr

Execute a Smalltalk expression contained in a C string.

Syntax

OopType GciExecuteStr(source, symbolList)
const char source[];
OopType symbolList;

Input Arguments

source A null-terminated string containing a sequence of one or more statements
to be executed.

symbolList The OOP of a GemStone symbol list (that is, an Array of instances of
SymbolListDictionary). The compiler uses the symbolList to resolve
symbolic references in the code in source. A value of OOP_NIL means to
use the default symbol list for the current GemStone session (that is,
System myUserProfile symbolList).

Return Value

Returns the OOP of the execution result. In case of error, this function returns OOP_NIL.

Description

This function sends an expression (or sequence of expressions) to GemStone for execution.

If the source is already a String object, you may find it more efficient to use GciExecute. That
function takes the OOP of a String as its argument.

Because GciExecuteStr calls the virtual machine, the user can issue a soft break while this function
is executing. For more information, see “Interrupting GemStone Execution” on page 32.
158 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
Example

x = GciExecuteStr("(AllUsers userWithId: 'romeo') symbolList",
OOP_NIL);

romeotalk = GciExecuteStr("nativeLanguage", x);

See Also

GciContinue, page 133
GciErr, page 152
GciExecute, page 154
GciExecuteFromContext, page 156
GciExecuteStrFromContext, page 160
GciNbContinue, page 251
GciNbExecute, page 255
GciNbExecuteStr, page 257
GciNbExecuteStrFromContext, page 259
GciSendMsg, page 353
September 2011 VMware, Inc. 159

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciExecuteStrFromContext

Execute a Smalltalk expression contained in a C string as if it were a message sent to an object.

Syntax

OopType GciExecuteStrFromContext(source, contextObject, symbolList)
const char source[];
OopType contextObject;
OopType symbolList;

Input Arguments

source A null-terminated string containing a sequence of one or more statements
to be executed.

contextObject The OOP of any GemStone object.
symbolList The OOP of a GemStone symbol list (that is, an Array of instances of

SymbolListDictionary). The compiler uses the symbolList to resolve
symbolic references in the code in source. A value of OOP_NIL means to
use the default symbol list for the current GemStone session (that is,
System myUserProfile symbolList).

Return Value

Returns the OOP of the execution result. In case of error, this function returns OOP_NIL.

Description

This function sends an expression (or sequence of expressions) to GemStone for execution. The
source is executed as though contextObject were the receiver. That is, the pseudo-variable self will
have the value contextObject during the execution. Messages in the source are executed as defined
for contextObject.

For example, if contextObject is an instance of Association, the source can reference the pseudo-
variables key and value (referring to the instance variables of the Association contextObject). If any
pool dictionaries were available to Association, the source could reference them too.
160 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
Because GciExecuteStrFromContext calls the virtual machine, the user can issue a soft break
while this function is executing. For more information, see “Interrupting GemStone Execution” on
page 32.

Example

OopType oAssoc, oResult ;
/* return the value instance variable of this Association */
oAssoc = GciExecuteStr(
"Globals associationAt: #UserProfileSet",OOP_NIL);
oResult = GciExecuteStrFromContext(" ^ value ", oAssoc,
OOP_NIL);

See Also

GciContinue, page 133
GciErr, page 152
GciExecute, page 154
GciExecuteFromContext, page 156
GciExecuteStr, page 158
GciNbContinue, page 251
GciNbExecute, page 255
GciNbExecuteStr, page 257
GciNbExecuteStrFromContext, page 259
GciSendMsg, page 353
September 2011 VMware, Inc. 161

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciExecuteStrTrav

First execute a Smalltalk expression contained in a C string as if it were a message sent to an object,
then traverse the result of the execution.

Syntax

BoolType GciExecuteStrTrav(source, contextObject, symbolList, travArgs)
const char source[];
OopType contextObject;
OopType symbolList;
struct * travArgs;

Input Arguments

source A null-terminated string containing a sequence of one or more statements
to be executed.

contextObject The OOP of any GemStone object. A value of OOP_ILLEGAL means no
context.

symbolList The OOP of a GemStone symbol list (that is, an Array of instances of
SymbolDictionary). The compiler uses the symbolList to resolve symbolic
references in the code in source. A value of OOP_NIL means to use the
default symbol list for the current GemStone session (that is, System
myUserProfile symbolList).

travArgs Pointer to a GciClampedTravArgsSType structure containing the
following input argument fields:

OopType clampSpec
The OOP of the Smalltalk ClampSpecification to be
used, or OOP_NIL, if the traversal is to operate
without clamping. Refer to image comments for a
description of ClampSpecification.

long level
Maximum traversal depth. When the level is 1, an
object report is written to the traversal buffer for each
element in the array of OOPs representing the objects
to traverse. When level is 2, an object report is also
obtained for the instance variables of each level-1
object. When level is 0, the number of levels in the
traversal is not restricted.
162 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
long retrievalFlags
Flags to control object retrieval. The value of
retrievalFlags should be given by using the following
GemBuilder mnemonics:
GCI_RETRIEVE_DEFAULT
GCI_RETRIEVE_EXPORT
 GCI_CLEAR_EXPORT causes the traversal to clear
the export set before it adds any OOPs to the traverse
buffer.

Result Arguments

travArgs Pointer to a GciClampedTravArgsSType structure containing the
following result argument field:

ByteType * travBuff
The buffer for the results of the traversal. The first
element placed in the buffer is the actualBufferSize, a
long integer that indicates how many bytes were
actually stored in the buffer by this function. The
remainder of the traversal buffer consists of a series of
object reports, each of which is of type
GciObjRepSType.

Return Value

Returns FALSE if the traversal is not yet completed. You can then call GciMoreTraversal to
proceed. Returns TRUE if there are no more objects to be returned by subsequent calls to
GciMoreTraversal.

Description

This function is like GciPerformTrav, except that it first does a GciExecuteStr instead of a
GciPerform.
September 2011 VMware, Inc. 163

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
See Also

GciExecuteStr, page 158
GciMoreTraversal, page 242
GciPerformTrav, page 320
164 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciFetchByte

Fetch one byte from an indexed byte object.

Syntax

ByteType GciFetchByte(theObject, atIndex)
OopType theObject;
long atIndex;

Input Arguments

theObject The OOP of the GemStone byte object.
atIndex The index into theObject of the element to be fetched. The index of the first

element is 1.

Return Value

Returns the byte value at the specified index. In case of error, this function returns zero.

Description

This function fetches a single element from a byte object at the specified index, using structural
access.

Example

OopType oString;
int aNum;
ByteType theChar;

/* Intervening code goes here, in place of this comment */

theChar = GciFetchByte(oString, aNum);
September 2011 VMware, Inc. 165

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
See Also

GciFetchBytes, page 167
GciStoreByte, page 366
GciStoreBytes, page 368
166 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciFetchBytes

Fetch multiple bytes from an indexed byte object.

Syntax

long GciFetchBytes(theObject, startIndex, theBytes, numBytes)
OopType theObject;
long startIndex;
ByteType theBytes[];
ArraySizeType numBytes;

Input Arguments

theObject The OOP of the GemStone byte object.
startIndex The index into theObject at which to begin fetching bytes. (The index of

the first element is 1.) Note that if startIndex is 1 greater than the size of
the object, this function returns a byte array of size 0, but no error is
generated.

numBytes The maximum number of bytes to return.

Result Arguments

theBytes The array of fetched bytes

Return Value

Returns the number of bytes fetched. (This may be less than numBytes, depending upon the size of
theObject.) In case of error, this function returns zero.

Description

This function fetches multiple elements from a byte object starting at the specified index, using
structural access. A common application of GciFetchBytes would be to fetch a text string.

GciFetchBytes permits theObject to be a binary float, but it does not provide automatic byte
swizzling. In that case, you must provide your own byte swizzling as needed. Alternatively, you
can call GciFetchObjInfo instead, and that function will provide any necessary byte swizzling.
September 2011 VMware, Inc. 167

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
Example

This example illustrates a C function that incrementally processes a GemStone String of arbitrary
size, while using a limited amount of C memory space.

#define BUF_SIZE 5000
static char displayBuff[BUF_SIZE];

void displayByteObject(oObject)
OopType oObject;
{
int fetchAmount;
long longIdx;
ArraySizeType fetchIncrement;
BoolType done = FALSE;

fetchIncrement = BUF_SIZE - 1;

longIdx = 1L;
fetchAmount =

GciFetchBytes(oObject,longIdx,displayBuff,fetchIncrement);
done = (fetchAmount == 0); /* done if object is of size zero */
while (!done) {

displayBuff[fetchAmount] = '\0';
printf("%s",displayBuff);
if (fetchAmount < fetchIncrement)

break; /* because object was shorter than previous limit */
/* advance fetch position and perform next fetch */
longIdx += fetchAmount;
fetchAmount = GciFetchBytes(oObject, longIdx, displayBuff,

fetchIncrement);
done = (fetchAmount == 0); /* done if longIdx was past end */

} /* end while */
}

See Also

GciFetchByte, page 165
GciFetchObjInfo, page 182
GciStoreByte, page 366
GciStoreBytes, page 368
168 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciFetchChars

Fetch multiple ASCII characters from an indexed byte object.

Syntax

long GciFetchChars(theObject, startIndex, cString, maxSize)
OopType theObject;
long startIndex;
char * cString;
ArraySizeType maxSize;

Input Arguments

theObject The OOP of a text object.
startIndex The index of the first character to retrieve.
maxSize Maximum number of characters to fetch.

Result Arguments

cString Pointer to the location in which to store the returned string.

Return Value

Returns the number of characters fetched.

Description

Equivalent to GciFetchBytes, except that it is assumed that theObject contains ASCII text. The
bytes fetched are stored in memory starting at cString. At most maxSize - 1 bytes will be fetched
from the object, and a \0 character will be stored in memory following the bytes fetched. The
function returns the number of characters fetched, excluding the null terminator character, which is
equivalent to strlen(cString) if the object does not contain any null characters. If an error
occurs, the function result is 0, and the contents of cString are undefined.

See Also

GciFetchBytes, page 167
September 2011 VMware, Inc. 169

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciFetchClass

Fetch the class of an object.

Syntax

OopType GciFetchClass(theObject)
OopType theObject;

Input Arguments

theObject The OOP of the specified object.

Return Value

Returns the OOP of the object’s class. In case of error, this function returns OOP_NIL.

The GemBuilder include file gcioop.ht defines a C constant for each of the Smalltalk kernel
classes. Those C constants are listed in Appendix A, “Reserved OOPs.”

Description

The GciFetchClass function obtains the class of an object from GemStone. The GemBuilder
session must be valid when GciFetchClass is called, unless theObject is an instance of one of the
following classes: Boolean, Character, JisCharacter, SmallInteger, or UndefinedObject.

Example

OopType oString;
OopType oResponse;
OopType oClass;

/* Intervening code goes here, in place of this comment */

oResponse = GciExecute(oString, OOP_NIL);
oClass = GciFetchClass(oResponse);
170 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
See Also

GciFetchNamedSize, page 177
GciFetchObjImpl, page 179
GciFetchSize, page 193
GciFetchVaryingSize, page 200
September 2011 VMware, Inc. 171

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciFetchDateTime

Convert the contents of a DateTime object and place the results in a C structure.

Syntax

void GciFetchDateTime(datetimeObj, result)
OopType datetimeObj;
GciDateTimeSType * result;

Input Arguments

datetimeObj OOP of the object to fetch.

Result Arguments

result C pointer to the structure for the returned object.

Description

Fetches the contents of a DateTime object into the specified C result. Generates an error if
datetimeObj is not an instance of DateTime. The value that result points to is undefined if an error
occurs.
172 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciFetchNamedOop

Fetch the OOP of one of an object’s named instance variables.

Syntax

OopType GciFetchNamedOop(theObject, atIndex)
OopType theObject;
long atIndex;

Input Arguments

theObject The OOP of the GemStone object.
atIndex The index into theObject’s named instance variables of the element to be

fetched. The index of the first named instance variable is 1.

Return Value

Returns the OOP of the specified named instance variable. In case of error, this function returns
OOP_NIL.

Description

This function fetches the contents of an object’s named instance variable at the specified index, using
structural access.
September 2011 VMware, Inc. 173

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
Example

In the following example, assume that you’ve defined the class Component and populated the set
AllComponents, as shown in the example for the GciFetchVaryingOop function on page 195.

OopType aComponent;
OopType theName;

/* C constants to match Smalltalk class definition */
#define COMPONENT_OFF_PARTNUMBER 1L
#define COMPONENT_OFF_NAME 2L
#define COMPONENT_OFF_COST 3L

/* retrieve a random instance of class Component */
aComponent = GciExecuteStr(

"AllComponents select:[i|i.partnumber = 1234]");

/* fetch the name instance variable of aComponent */
the Name = GciFetchNamedOop(aComponent, COMPONENT_OFF_NAME);

/* fetch named instance variable without knowing its offset at
compile time */
theName = GciFtechNamedOop(aComponent,

GciIvNameToIdx(GciFetchClass(aComponent), "name"));

See Also

GciFetchNamedOops, page 175
GciFetchVaryingOop, page 195
GciFetchVaryingOops, page 198
GciIvNameToIdx, page 230
GciStoreIdxOop, page 374
GciStoreIdxOops, page 376
GciStoreNamedOop, page 378
GciStoreNamedOops, page 380
174 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciFetchNamedOops

Fetch the OOPs of one or more of an object’s named instance variables.

Syntax

long GciFetchNamedOops(theObject, startIndex, theOops, numOops)
OopType theObject;
long startIndex;
OopType theOops[];
ArraySizeType numOops;

Input Arguments

theObject The OOP of the source GemStone object.
startIndex The index into theObject’s named instance variables at which to begin

fetching. (The index of the first named instance variable is 1.) Note that if
startIndex is 1 greater than the number of the object’s named instance
variables, this function returns an array of size 0, but no error is generated.

numOops The maximum number of elements to return.

Result Arguments

theOops The array of fetched OOPs.

Return Value

Returns the number of OOPs fetched. (This may be less than numOops, depending upon the size of
theObject.) In case of error, this function returns zero.

Description

This function uses structural access to fetch multiple values from an object’s named instance
variables, starting at the specified index.
September 2011 VMware, Inc. 175

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
Example

In the following example, assume that you’ve defined the class Component and populated the set
AllComponents, as shown in the example for the GciFetchVaryingOop function on page 195.

OopType aComponent;
ArraySizeType namedSize;
OopType * oBuffer;

/* retrieve a random instance of class Component */
aComponent = GciExecuteStr(

"AllComponents select:[i|i.partnumber = 1234]");

/* fetch named instance variables without knowing how many at
compile time */
namedSize = GciFetchNamedSize(aComponent);
oBuffer = (OopType*) malloc(namedSize * sizeof(OopType));
GciFetchNamedOops(aComponent, 1L, oBuffer, namedSize);

See Also

GciFetchNamedOop, page 173
GciFetchVaryingOop, page 195
GciIvNameToIdx, page 230
GciStoreIdxOop, page 374
GciStoreNamedOop, page 378
176 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciFetchNamedSize

Fetch the number of named instance variables in an object.

Syntax

long GciFetchNamedSize(theObject)
OopType theObject;

Input Arguments

theObject The OOP of the specified object.

Return Value

Returns the number of named instance variables in theObject. In case of error, this function returns
zero.

Description

This function returns the number of named instance variables in a GemStone object. See the
example for the GciFetchNamedOops function on page 175.
September 2011 VMware, Inc. 177

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciFetchNameOfClass

Fetch the class name object for a given class.

Syntax

OopType GciFetchNameOfClass(aClass)
OopType aClass

Input Arguments

aClass The OOP of a class.

Return Value

The OOP of the class’s name, or OOP_NIL if an error occurred.

Description

Given the OOP of a class, this function returns the object identifier of the String object that is the
name of the class.
178 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciFetchObjImpl

Fetch the implementation of an object.

Syntax

long GciFetchObjImpl(theObject)
OopType theObject;

Input Arguments

theObject The OOP of the specified object.

Return Value

Returns an integer representing the implementation type of theObject (0=pointer, 1=byte, 2=NSC,
or 3=special). In case of error, the return value is undefined.

Description

This function obtains the implementation of an object (pointer, byte, NSC, special) from GemStone.
For more information about implementation types, see “Direct Access to Metadata” on page 35.

Example

long imp;
OopType theObj;

imp = GciFetchObjImpl(theObj);

See Also

GciFetchClass, page 170
GciFetchNamedSize, page 177
GciFetchSize, page 193
GciFetchVaryingSize, page 200
September 2011 VMware, Inc. 179

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciFetchObjectInfo

Fetch information and values from an object.

Syntax

BoolType GciFetchObjInfo(theObject, args)
OopType theObject;
struct * args;

Input Arguments

theObject OOP of any object with byte, pointer, or NSC format.
args Pointer to an instance of GciFetchObjInfoArgsSType with the following

input argument fields:

long startIndex
The offset in the object at which to start fetching, using
GciFetchOops or GciFetchBytes semantics.
startIndex is ignored if bufSize == 0 or buffer ==
NULL.

ArraySizeType bufSize
The size in bytes of the buffer, maximum number of
elements fetched for a byte object. For an OOP object,
the maximum number of elements fetched for an OOP
object will be bufSize/4. If greater than zero, and if a
Float or BinaryFloat is being fetched, it must be large
enough to fetch the complete object.

long retrievalFlags
If (retrievalFlags & GCI_RETRIEVE_EXPORT) != 0
then if theObject is non-special, theObject is
automatically added to the SaveObjectsSet (see the
GciSaveObjs function).

Result Arguments

args Pointer to an instance of GciFetchObjInfoArgsSType with the following
result argument fields:
180 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
struct * info
Pointer to an instance of GciObjInfoSType; may be
NULL.

ByteType * buffer
Pointer to an area where byte or OOP values will be
returned; may be NULL.

ArraySizeType numReturned
Number of logical elements (bytes or OOPs) returned
in buffer. Remember that the size of (OopType) is 4
bytes.

If either info or buffer is NULL, that portion of the result is not filled in.

Return Value

TRUE if successful, FALSE if an error occurs.

Description

This function fetches information and values from an object starting at the specified index using
structural access. If either info or buffer is NULL, then that part of the result is not filled in. If
numReturned is NULL, then buffer will not be filled in.

See Also

GciFetchOops, page 186
GciFetchBytes, page 167
GciSaveObjs, page 352
September 2011 VMware, Inc. 181

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciFetchObjInfo

Fetch information and values from an object.

Syntax

BoolType GciFetchObjInfo(theObject, startIndex, bufSize, info, buffer, numReturned)
OopType theObject;
long startIndex;
ArraySizeType bufSize;
GciObjInfoSType * info;
ByteType * buffer;
ArraySizeType * numReturned;

Input Arguments

theObject OOP of any object with byte, pointer, or NSC format.
startIndex The index into theObject at which to begin fetching elements. (The index

of the first element is 1.) If the start index is 1 greater than the size of the
object, this function returns an array of size 0, but no error is generated.

bufSize The size in bytes of the buffer, maximum number of elements fetched for a
byte object. For an OOP object, the maximum number of elements fetched
for an OOP object will be bufSize/4.

Result Arguments

info Pointer to an instance of GciObjInfoSType; may be NULL.
buffer Pointer to an area where byte or OOP values will be returned; may be

NULL.
numReturned Number of logical elements (bytes or OOPs) returned in buffer. Remember

that the sizeof(OopType) is 4 bytes.

Return Value

TRUE if successful, FALSE if an error occurs. If an error occurs, info, buffer, and numReturned
are undefined.
182 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
Description

This function fetches information and values from an object starting at the specified index using
structural access. If either info or buffer is NULL, then that part of the result is not filled in. If
numReturned is NULL, then buffer will not be filled in.

GciFetchObjInfo provides automatic byte swizzling for binary floats. If theObject is a binary float,
then startIndex must be one and bufSize must be the actual size for the class of theObject. If either
of these conditions are not met, then GciFetchObjInfo raises an error as a safety check.
September 2011 VMware, Inc. 183

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciFetchOop

Fetch the OOP of one instance variable of an object.

Syntax

OopType GciFetchOop(theObject, atIndex)
OopType theObject;
 long atIndex;

Input Arguments

theObject The OOP of the source object.
atIndex The index into theObject of the OOP to be fetched. The index of the first

OOP is 1.

Return Value

Returns the OOP at the specified index of the source object. In case of error, this function returns
OOP_NIL.

Description

This function fetches the OOP of a single instance variable from any object at the specified index,
using structural access. It does not distinguish between named and unnamed instance variables.
Indices are based at the beginning of the object’s array of instance variables. In that array, any
existing named instance variables are followed by any existing unnamed instance variables.
184 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
Example

In the following example, assume that you’ve defined the class Component and populated the set
AllComponents, as shown in the example for the GciFetchVaryingOop function on page 195.

OopType aComponent;
OopType theName;
OopType aSubComponent;
/* C constant to match Smalltalk class definition */
#define COMPONENT_OFF_NAME 2

/* retrieve a random instance of class Component */
aComponent = GciExecuteStr(

"AllComponents select:[i|i.partnumber = 1234]");

/* Two ways to fetch the name instance variable of aComponent */
theName = GciFetchOop(aComponent, COMPONENT_OFF_NAME);
theName = GciFetchNamedOop(aComponent, COMPONENT_OFF_NAME);

/* Two ways to fetch the 3rd element of aComponent’s partsList,
without knowing exactly how many named instance variables exist
*/
aSubComponent =

GciFetchOop(aComponent,GciFetchNamedSize(aComponent) + 3);
aSubComponent = GciFetchVaryingOop(aComponent, 3);

See Also

GciFetchOops, page 186
GciStoreOop, page 382
GciStoreOops, page 384
September 2011 VMware, Inc. 185

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciFetchOops

Fetch the OOPs of one or more instance variables of an object.

Syntax

long GciFetchOops(theObject, startIndex, theOops, numOops)
OopType theObject;
long startIndex;
OopType theOops[];
ArraySizeType numOops;

Input Arguments

theObject The OOP of the source object.
startIndex The index into theObject at which to begin fetching OOPs. The index of

the first OOP is 1. If startIndex is 1 greater than the size of the object, this
function returns an array of size 0, but no error is generated.

numOops The maximum number of OOPs to return.

Result Arguments

theOops The array of fetched OOPs.

Return Value

Returns the number of OOPs fetched. (This may be less than numOops, depending upon the size of
theObject.) In case of error, this function returns zero.

Description

This function fetches the OOPs of multiple instance variables from any object starting at the
specified index, using structural access. It does not distinguish between named and unnamed
instance variables. Indices are based at the beginning of the object’s array of instance variables. In
that array, any existing named instance variables are followed by any existing unnamed instance
variables.
186 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
Example

In the following example, assume that you’ve defined the class Component and populated the set
AllComponents, as shown in the example for the GciFetchVaryingOop function on page 195.

OopType aComponent;
OopType oArray[10];
ArraySizeType namedSize;

/* Retrieve a random instance of class Component */
aComponent = GciExecuteStr(

"AllComponents select:[i|i.partnumber = 1234]");

namedSize = GciFetchNamedSize(aComponent);
/* Two ways to fetch first 5 elements of aComponent’s partsList */
GciFetchOops(aComponent, namedSize + 1L, oArray, 5);
GciFetchVaryingOops(aComponent, 1L, oArray, 5);

/* Fetch the named instance variables PLUS
the first 5 elements of partsList */
GciFetchOops(aComponent, 1L, oArray, namedSize + 5);

/* oArray[0..namedSize-1] are named instVar values,
oArray[namedSize] is first indexed instVar value */

See Also

GciFetchOop, page 184
GciFetchVaryingOop, page 195
GciStoreOop, page 382
GciStoreOops, page 384
September 2011 VMware, Inc. 187

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciFetchPaths

Fetch selected multiple OOPs from an object tree.

Syntax

BoolType GciFetchPaths(theOops, numOops, paths, pathSizes, numPaths, results)
const OopType theOops[];
ArraySizeType numOops;
const long paths[];
const long pathSizes[];
ArraySizeType numPaths;
OopType results[];

Input Arguments

theOops A collection of OOPs from which you want to fetch.
numOops The size of theOops.
paths An array of integers. This one-dimensional array contains the elements of

all constituent paths, laid end to end.
pathSizes An array of integers. Each element of this array is the length of the

corresponding path in the paths array (that is, the number of elements in
each constituent path).

numPaths The number of paths in the paths array. This should be the same as the
number of integers in the pathSizes array.

Result Arguments

results An array containing the OOPs that were fetched.

Return Value

Returns TRUE if all desired objects were successfully fetched. Returns FALSE if the fetch on any
path fails for any reason.
188 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
Description

This function allows you to fetch multiple OOPs from selected positions in an object tree with a
single GemBuilder call, importing only the desired information from the database.

This function is most useful with applications that are linked with GciRpc (the "remote
procedure call" version of GemBuilder). If your application will be linked with GciLnk
(the "linkable" GemBuilder), you’ll usually achieve best performance by using the
simple GciFetch... and GciStore... functions instead. For more information, see
“GciRpc and GciLnk” on page 53.

Each path in the paths array is itself an array of integers. Those integers are offsets that specify a
path from which to fetch objects. In each path, a positive integer x refers to an offset within an
object’s named instance variables (see GciFetchNamedOop), while a negative integer -x refers to
an offset within an object’s indexed instance variables (see GciFetchVaryingOop). The
GciStrToPath function allows you to convert path information from its string representation, in
which each element is the name of an instance variable, to the equivalent element of this paths array.

From each object in theOops, this function fetches the object pointed to by each element of the paths
array, and stores the fetched object into the results array. The results array contains (numOops *
numPaths) elements, stored in the following order:

[0,0]..[0,numPaths-1]..
[1,0]..[1,numPaths-1]..
[numOops-1,0]..[numOops-1,numPaths-1]

That is, all paths are first applied in order to the first element of theOops. This step is repeated for
each subsequent object, until all paths have been applied to all elements of theOops. The result for
object i and path j is represented as:

results[((i-1) * numPaths) + (j-1)]

If the fetch on any path fails for any reason, the result of that fetch is reported in the results array as
OOP_ILLEGAL. Because some path-fetching errors do not necessarily invalidate the remainder of
the information fetched, the system will then attempt to continue its fetching with the remaining
paths and objects.

This ability to complete a fetching sequence despite errors means that your application won’t be
slowed by a round-trip to GemStone on each fetch to check for errors. Instead, after a fetch is
complete, you can cycle through the result and deal selectively at that time with any errors you find.
September 2011 VMware, Inc. 189

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
The appropriate response to an error in path fetching depends both upon the error itself and on your
application. Here are some of the reasons why a fetch might not succeed:

 • The user had no read authorization for some object in the path. The seriousness of this depends
on your application. In some applications, you may simply wish to ignore the inaccessible data.

 • The path was invalid for the object to which it was applied. This can happen if the object from
which you’re fetching is not of the correct class, or if the path itself is faulty for the class of the
object.

 • The path was valid but simply not filled out for the object being processed. This would be the
case, for example, if you attempted to access address.zip when an Employee’s Address instance
variable contained only nil. This is probably the most common path fetching error, and may
require only that the application program detect the condition and display some suitable
indication to the user that a field is not yet filled in with meaningful data.

Examples

Example 1: Calling sequence for a single object and a single path

OopType anOop; /* the OOP to use as the root of the path */
long aPath[5]; /* the path itself */
long aSize; /* the size of the path */
OopType result;

GciFetchPaths (&anOop, 1, aPath, &aSize, 1, &result);

Example 2: Calling sequence for multiple objects with a single path

OopType oops[3]; /* the OOPs to use as roots of the path */
ArraySizeType numOops; /* the number of objects */
long aPath[5]; /* the path itself */
long aSize; /* the size of the path */
OopType results[5];

GciFetchPaths (oops, numOops, aPath, &aSize, 1, results);
190 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
Example 3: Calling sequence for a single object with multiple paths

OopType anOop; /* the OOP to use as the root of the path */
long paths[50]; /* the paths, stored end-to-end in the array */
long sizes[5]; /* the sizes of the paths */
ArraySizeType numPaths; /* the number of paths */
OopType results[5];

GciFetchPaths (&anOop, 1, paths, sizes, numPaths, results);

Example 4: Calling sequence for multiple objects with multiple paths

OopType oops[3]; /* the OOPs to use as roots of the path */
ArraySizeType numOops; /* the number of objects */
long paths[50]; /* the paths, stored end-to-end in the array */
long sizes[5]; /* the sizes of the paths */
ArraySizeType numPaths; /* the number of paths */
OopType results[3*5];
/* results for each path for oop1, then for oop2,etc. */

GciFetchPaths (oops, numOops, paths, sizes, numPaths, results);
September 2011 VMware, Inc. 191

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
Example 5: Integrated Code

In the following example, assume that you’ve defined the class Component and populated the set
AllComponents, as shown in the example for the GciFetchVaryingOop function on page 195.

OopType aComponent;
OopType oSourceObjs[10];
OopType oResults[10];
OopType theName;
long pathSizes[10];
long paths[10];

/* retrieve a random instance of class Component */
aComponent = GciExecuteStr(

"AllComponents select:[i|i.partnumber = 1234]");

/* fetch name instVar of 5th element of aComponent’s partsList */
oSourceObjs[0] = aComponent;
paths[0] = -5;
paths[1] = GciIvNameToIdx(GciFetchClass(aComponent), "name");
pathSizes[0] = 2;
GciFetchPaths(oSourceObjs, 1, paths, pathSizes, 1, oResults);
theName = oResults[0];

See Also

GciPathToStr, page 311
GciStorePaths, page 387
GciStrToPath, page 404
192 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciFetchSize

Fetch the size of an object.

Syntax

long GciFetchSize(theObject)
OopType theObject;

Input Arguments

theObject The OOP of the specified object.

Return Value

Returns the size of theObject. In case of error, this function returns zero.

Description

This function obtains the size of an object from GemStone.

The result of this function depends on the object’s implementation (see GciFetchObjImpl). For
byte objects, this function returns the number of bytes in the object. (For Strings, this is the number
of Characters in the String; for Floats, the size is 23.) For pointer objects, this function returns the
number of named instance variables (GciFetchNamedSize) plus the number of indexed instance
variables, if any (GciFetchVaryingSize). For NSC objects, this function returns the cardinality of
the collection. For special objects, the size is always zero.

This differs somewhat from the result of executing the Smalltalk method Object>>size, as
shown in Table 5.11:
September 2011 VMware, Inc. 193

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
Table 5.11 Differences in Reported Object Size

Implementation Object>>size (Smalltalk) GciFetchSize

0=Pointer Number of indexed
elements in the object
(0 if not indexed)

Number of indexed elements
PLUS number of named
instance variables

1=Byte Number of indexed
elements in the object

Same as Smalltalk message
“size”

2=NSC Number of elements in
the object

Same as Smalltalk message
“size”

3=Special 0 0

Example

long itsSize;
OopType oIndexedObject;

oIndexedObject = GciNewOop(OOP_CLASS_STRING);

/* Intervening code goes here, in place of this comment */

itsSize = GciFetchSize(oIndexedObject);

See Also

GciFetchClass, page 170
GciFetchNamedSize, page 177
GciFetchObjImpl, page 179
GciFetchVaryingOop, page 195
194 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciFetchVaryingOop

Fetch the OOP of one unnamed instance variable from an indexed pointer object or NSC.

Syntax

OopType GciFetchVaryingOop(theObject, atIndex)
OopType theObject;
long atIndex;

Input Arguments

theObject The OOP of the pointer object or NSC.
atIndex The index of the OOP to be fetched. The index of the first unnamed

instance variable’s OOP is 1.

Return Value

Returns the OOP of the unnamed instance variable at index atIndex. In case of error, this function
returns OOP_NIL.

Description

This function fetches the OOP of a single unnamed instance variable at the specified index, using
structural access. The numerical index of any unordered variable of an NSC can change whenever
the NSC is modified.

NOTE
Certain NSC classes — specifically, Set, Bag, and RcIdentityBag— are internally
implemented so that the indexed portion of the NSC does not hold the collection
elements. You cannot use GciFetchVaryingOop to fetch from instances of these
classes.
September 2011 VMware, Inc. 195

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
Example

In the following example, assume that you’ve executed the following Smalltalk code to define the
class Component and to populate the set AllComponents:

! Topaz command to define the class Component run
Array subclass: #Component
instVarNames: #(#partNumber #name #cost

"indexed variables form the partsList")
classVars: #()
poolDictionaries: #()
inDictionary: UserGlobals
constraints: #[#[#partNumber, SmallInteger]

#[#name, String],
#[#cost, Number]]

isInvariant: false
%
run
UserGlobals at: #AllComponents put: Set new
%
run
!
populate AllComponents with other Smalltalk code
!
%

Now execute this C code.

OopType aComponent;
OopType aSubComponent;

/* retrieve a random instance of class Component */
aComponent = GciExecuteStr(

"AllComponents select:[i|i.partnumber = 1234]");
/* fetch 3rd element of aComponent’s parts list */
aSubComponent = GciFetchVaryingOop(aComponent, 3);

See Also

GciFetchNamedOop, page 173
GciFetchNamedOops, page 175
GciFetchVaryingOops, page 198
196 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciStoreIdxOop, page 374
GciStoreIdxOops, page 376
GciStoreNamedOop, page 378
GciStoreNamedOops, page 380
September 2011 VMware, Inc. 197

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciFetchVaryingOops

Fetch the OOPs of one or more unnamed instance variables from an indexed pointer object or NSC.

Syntax

long GciFetchVaryingOops(theObject, startIndex, theOops, numOops)
OopType theObject;
 long startIndex;
OopType theOops[];
ArraySizeType numOops;

Input Arguments

theObject The OOP of the pointer object or NSC.
startIndex The index of the first OOP to be fetched. The index of the first unnamed

instance variable’s OOP is 1. Note that if startIndex is 1 greater than the
number of theObject’s unnamed instance variables, this function returns an
array of size 0, but no error is generated.

numOops Maximum number of elements to return.

Result Arguments

theOops The array of fetched OOPs.

Return Value

Returns the number of OOPs fetched. (This may be less than numOops, depending upon the size of
theObject.) In case of error, this function returns zero.

Description

This function fetches the OOPs of multiple unnamed instance variables beginning at the specified
index, using structural access. The numerical index of any unordered variable of an NSC can change
whenever the NSC is modified.

NOTE
Certain NSC classes — specifically, Set, Bag, and RcIdentityBag— are internally
198 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
implemented so that the indexed portion of the NSC does not hold the collection
elements. You cannot use GciFetchVaryingOops to fetch from instances of these
classes.

Example

In the following example, assume that you’ve defined the class Component and populated the set
AllComponents, as shown in the example for the GciFetchVaryingOop function on page 195.

OopType aComponent;
OopType oArray[10];

/* retrieve a random instance of class Component */
aComponent = GciExecuteStr(

"AllComponents select:[i|i.partnumber = 1234]");
/* fetch the first 5 elements of aComponent’s parts list */
GciFetchVaryingOops(aComponent, 1L, oArray, 5);

See Also

GciFetchNamedOop, page 173
GciFetchNamedOops, page 175
GciFetchVaryingOop, page 195
GciStoreIdxOop, page 374
GciStoreIdxOops, page 376
GciStoreNamedOop, page 378
GciStoreNamedOops, page 380
September 2011 VMware, Inc. 199

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciFetchVaryingSize

Fetch the number of unnamed instance variables in a pointer object or NSC.

Syntax

long GciFetchVaryingSize(theObject)
OopType theObject;

Input Arguments

theObject The OOP of the specified object.

Return Value

Returns the number of unnamed instance variables in theObject. In case of error, this function
returns zero.

Description

The GciFetchVaryingSize function obtains from GemStone the number of indexed variables in an
indexable object or the number of unordered variables in an NSC.

Example

In the following example, assume that you’ve defined the class Component and populated the set
AllComponents, as shown in the example for the GciFetchVaryingOop function on page 195.

OopType aComponent;
long partsListSize;

/* retrieve a random instance of class Component */
aComponent = GciExecuteStr(

"AllComponents select:{i|i.partnumber = 1234}");

/* fetch the size of aComponent’s partsList */
partsListSize = GciFetchVaryingSize(aComponent);
200 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
See Also

GciFetchClass, page 170
GciFetchNamedSize, page 177
GciFetchObjImpl, page 179
GciFetchSize, page 193
GciSetVaryingSize, page 362
September 2011 VMware, Inc. 201

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciFindObjRep

Fetch an object report in a traversal buffer.

Syntax

GciObjRepHdrSType * GciFindObjRep(travBuff, theObject)
const ByteType travBuff[];
OopType theObject;

Input Arguments

travBuff A traversal buffer returned by a call to GciTraverseObjs.
theObject The OOP of the object to find.

Return Value

Returns a pointer to an object report within the traversal buffer. In case of error, this function returns
NULL.

Description

This function locates an object report within a traversal buffer that was previously returned by
GciTraverseObjs. If the report is not found within the buffer, this function generates the error
GCI_ERR_TRAV_OBJ_NOT_FOUND.

NOTE
This function is most useful with applications that are linked with GciRpc (the "remote
procedure call" version of GemBuilder). If your application will be linked with
GciLnk (the "linkable" GemBuilder), you’ll usually achieve best performance by using
the simple GciFetch... and GciStore... functions rather than object traversal. For
more information, see “GciRpc and GciLnk” on page 53.
202 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
Example

theReport = GciFindObjRep(myBuff, myObj);
if (GciErr(&myErr)) {
/* Handle the error */
}
else {
/* Go ahead with your work */
}

See Also

GciMoreTraversal, page 242
GciObjRepSize, page 292
GciTraverseObjs, page 411
September 2011 VMware, Inc. 203

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciFltToOop

Convert a C double value to a Float object.

Syntax

OopType GciFltToOop(aReal)
double aReal;

Input Arguments

aReal The floating point value to be translated into an object.

Return Value

Returns the OOP of the GemStone Float object that corresponds to the C value. In case of error, this
function returns OOP_NIL.

Description

This function translates a C double precision value into the equivalent GemStone Float object.

Example

char unitPrice[MAXLEN + 1]; /* Price of the part */
OopType thePriceOop; /* The OOP of a product’s price */

printf("Unit Price = ");
fflush(stdout);
getString(unitPrice, MAXLEN);
thePriceOop = GciFltToOop(atof(unitPrice));

See Also

GciOopToFlt, page 303
204 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciGetFreeOop

Allocate an OOP.

Syntax

OopType GciGetFreeOop()

Return Value

Returns an unused object identifier (OOP).

Description

Allocates an object identifier without creating an object.

The object identifier returned from this function remains allocated to the Gci session until the session
calls GciLogout or until the identifier is used as an argument to a function call.

If an object identifier returned from GciGetFreeOop is used as a value in a GciStore... call before
it is used as the objId argument of a GciCreate... call, then an unresolved forward reference is
created in object memory. This is a reference to an object that does not yet exist. This forward
reference must be satisfied by using the identifier as the objId argument to a GciCreate... call before
a GciCommit can be successfully executed.

If GciCommit is attempted prior to satisfying all unresolved forward references, an error is
generated and GciCommit returns FALSE. In this case, GciCreate can be used to satisfy the
forward references and GciCommit can be attempted again. GciAbort removes all unsatisfied
forward references from the session’s object space, just as it removes any other uncommitted
modifications.
September 2011 VMware, Inc. 205

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
As long as it remains an unresolved forward reference, the identifier returned by GciGetFreeOop
can be used only as a parameter to the following function calls, under the given restrictions:i

 • As the objID of the object to be created
GciCreateByteObj

 • As the objID of the object to be created, or as an element of the value buffer
GciCreateOopObj

 • As an element of the value buffer only
GciStoreOop
GciStoreOops
GciStoreIdxOop
GciStoreIdxOops
GciStoreNamedOop
GciStoreNamedOops
GciStoreTrav
GciAppendOops
GciAddOopToNsc
GciAddOopsToNsc
GciNewOopUsingObjRep

 • As an element of newValues only
GciStorePaths

See Also

GciCreateByteObj, page 137
GciCreateOopObj, page 139
GciGetFreeOops, page 207
206 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciGetFreeOops

Allocate multiple OOPs.

Syntax

void GciGetFreeOops(count, resultOops);
long count;
OopType * resultOops;

Input Arguments

count The number of OOPS to allocate.

Result Arguments

resultOops An array to hold the returned OOPs.

Return Value

Returns an unused object identifier (OOP).

Description

Allocates object identifiers without creating objects.

If an object identifier returned from GciGetFreeOops is used as a value in a GciStore... call before
it is used as the objId argument of a GciCreate... call, then an unresolved forward reference is
created in object memory. This is a reference to an object that does not yet exist. This forward
reference must be satisfied by using the identifier as the objId argument to a GciCreate... call before
a GciCommit can be successfully executed.

If GciCommit is attempted prior to satisfying all unresolved forward references, an error is
generated and GciCommit returns false. In this case, GciCreate can be used to satisfy the forward
references and GciCommit can be attempted again. GciAbort removes all unsatisfied forward
references from the session’s object space, just as it removes any other uncommitted modifications.
September 2011 VMware, Inc. 207

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
As long as it remains an unresolved forward reference, the identifier returned by GciGetFreeOops
can be used only as a parameter to the following function calls, under the given restrictions:

 • As the objID of the object to be created
GciCreateByteObj

 • As the objID of the object to be created, or as an element of the value buffer
GciCreateOopObj

 • As an element of the value buffer, only
GciStoreOop
GciStoreOops
GciStoreIdxOop
GciStoreIdxOops
GciStoreNamedOop
GciStoreNamedOops
GciStoreTrav
GciAppendOops
GciAddOopToNsc
GciAddOopsToNsc
GciNewOopUsingObjRep

 • As an element of newValues, only
GciStorePaths

See Also

GciCreateByteObj, page 137
GciCreateOopObj, page 139
GciGetFreeOop, page 205
208 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciGetSessionId

Find the ID number of the current user session.

Syntax

GciSessionIdType GciGetSessionId()

Return Value

Returns the session ID currently being used for communication with GemStone. Returns
GCI_INVALID_SESSION_ID if there is no session ID (that is, if the application is not logged in).

Description

This function obtains the unique session ID number that identifies the current user session to
GemStone. An application can have more than one active session, but only one current session.

The ID numbers assigned to your application’s sessions are unique within your application, but bear
no meaningful relationship to the session IDs assigned to other GemStone applications that may be
executing at the same time or accessing the same database.

Example

GciSessionIdType SessionID;

GciLogout();

SessionID = GciGetSessionId();
if (SessionID != GCI_INVALID_SESSION_ID){
/* do something */
}

See Also

GciLogin, page 234
GciSetSessionId, page 361
September 2011 VMware, Inc. 209

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciGsSocketRead

Read some bytes from an instance of GsSocket.

Syntax

long GciGsSocketRead(socketOop, theBytes, numBytes, millisecondsToWait)
OopType socketOop;
const ByteType theBytes[];
ArraySizeType numBytes;
long millisecondsToWait;

Input Arguments

socketOop The OOP of the GsSocket object.
theBytes The array to hold the bytes read from the socket.
numBytes Size of theBytes buffer (in bytes).
millisecondsToWait The number of seconds to wait for the socket to be ready to read (if the

socket is non-blocking and the read would block). A value of 0 says not to
wait, just to return 0 if there’s no data to read. A value of -1 says to wait
forever.

Return Value

Returns the number of bytes read from the socket. A negative return value indicates an error. Zero
means that there was no data to read on a non-blocking socket within the timeout period.

Description

This function reads some bytes to an instance of GsSocket. The GsSocket must already be connected
such that it can perform reads.

If the socket is non-blocking and no data is available to be read, millisecondsToWait specifies the
maximum time to wait for data to arrive on the socket. -1 means wait forever and 0 means do not
wait.

This function may only be called from the linkable GCI interface (that is, from a gem). It is not
available from the RPC GCI.
210 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
See Also

GciGsSocketWrite, page 212
September 2011 VMware, Inc. 211

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciGsSocketWrite

Write some bytes to an instance of GsSocket.

Syntax

long GciGsSocketWrite(socketOop, theBytes, numBytes)
OopType socketOop;
const ByteType theBytes[];
ArraySizeType numBytes;

Input Arguments

socketOop The OOP of the GsSocket object.
theBytes The array of bytes to be written.
numBytes The number of bytes to write.

Return Value

Returns the number of bytes written to the socket. A negative return value indicates an error.

Description

This function writes some bytes to an instance of GsSocket. The GsSocket must already be
connected such that it can accept writes.

This function may only be called from the linkable GCI interface (that is, from a Gem). It is not
availble from the RPC GCI.

See Also

GciGsSocketRead, page 210
212 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciHandleError

Check the previous GemBuilder call for an error.

Syntax

BoolType GciHandleError(errorReport)
GciErrSType * errorReport

Result Arguments

errorReport Pointer to a GemBuilder error report structure.

Return Value

This function returns a boolean. TRUE indicates that an error occurred, in which case errorReport
contains the latest error information. FALSE indicates that no error occurred, in which case the
contents of errorReport are undefined.

Description

Your application program can call GciHandleError to determine whether the previous GemBuilder
function call resulted in an error. If an error has occurred, this function provides information about
the error and about the state of the GemStone system.

For linkable GemBuilder applications, the combination of GciHandleError and
GciPushErrorHandler offer performance gains over GciErr and GciPushErrJump. This
function must be called (rather than GciErr) if GciPushErrorHandler has been used to register a
jump buffer. If GciPushErrorHandler is used but you do not call GciHandleError to service the
longjmp, as shown in the example, unpredictable results will occur.
September 2011 VMware, Inc. 213

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
Example

void main()
{

/* Intervening code goes here, in place of this comment */

GCI_SIG_JMP_BUF_TYPE jumpBuf1;
GciErrSType theGciError;

/* Intervening code goes here, in place of this comment */

if (!GciInit()) exit; /* add code here to back out gracefully

*/
if (GCI_SETJMP(jumpBuf1)) {

if (GciHandleError(&theGciError))
/* <== do FIRST THING after GCI_LONGJMP */
/* code here for user’s own analysis of the error

*/
else

printf("No error found by error handler\n");
/* or take some other action you prefer */

}
GciPushErrHandler(jumpBuf1);

/* Intervening code goes here, in place of this comment */

GciSetNet(...);
GciLogin(...);

/* Intervening code goes here, in place of this comment */

GciLogout(...);

}

See Also

GciPushErrHandler, page 331
214 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciHardBreak

Interrupt GemStone and abort the current transaction.

Syntax

void GciHardBreak()

Description

GciHardBreak sends a hard break to the current user session (set by the last GciLogin or
GciSetSessionId), which interrupts Smalltalk execution.

All GemBuilder functions can recognize a hard break, so the users of your application can terminate
Smalltalk execution. For example, if your application sends a message to an object (via
GciSendMsg or GciPerform), and for some reason the invoked Smalltalk method enters an infinite
loop, the user can interrupt the application.

In order for GemBuilder functions in your program to recognize interrupts, your program will need
an interrupt routine that can call the functions GciSoftBreak and GciHardBreak. Since
GemBuilder does not relinquish control to an application until it has finished its processing, soft and
hard breaks must be initiated from an interrupt service routine.

If GemStone is executing when it receives the break, it replies with the error message
RT_ERR_HARD_BREAK. Otherwise, it ignores the break.

If GemStone is executing any of the following methods of class Repository, then a hard break
terminates the entire session, not just Smalltalk execution:

fullBackupTo:
restoreFromBackup(s):
markForCollection
objectAudit
auditWithLimit:
repairWithLimit:
pagesWithPercentFree

See Also

GciSoftBreak, page 365
September 2011 VMware, Inc. 215

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciHiddenSetIncludesOop

Determines whether the given OOP is present in the specified hidden set.

Syntax

BoolType GciHiddenSetIncludesOop(theOop, hiddenSetId)
oopType theOop;
long hiddenSetId;

Input Arguments

theOop The OOP to search for.
hiddenSetId The index to the hidden set to search.

Return Value

True if the OOP was found; false otherwise.

Description

The Gem holds objects in a number of sets ordinarily hidden from the user.
GciHiddenSetIncludesOop allows you to pass in an index to a specified hidden set to determine if
the set includes an specific object. Indexes to the hidden sets are provided in Table 5.12 below.

Table 5.12 Hidden Set Indexes

Index Hidden Set Index Hidden Set

1 ExportedObjs 21 PlaceHolderObjs
2 NoRollbackObjs 22 GciDirtyObjs
3 NotConnectedObjs 23 NscsWithNewIdxs
4 NewPomObjs 24 NewObjsWithDepTags
5 DeadObjs 25 NotifySet
6 ClusteredOops 26 Reserved1
7 RcReadSet 27 Reserved2
8 ReadSet 28 Reserved3
216 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
Example

OopType ExportSetContainsOop(OopType anOop)
{

BoolType result;

result = GciHiddenSetIncludesOop(anOop, 1 /* export set */);
if (result)

return OOP_TRUE;
else

return OOP_FALSE;
}

9 WriteSet 29 CommitReleaseLocksSet
10 SaveReadSetUnion 30 CommitOrAbortReleaseLocksSet
11 SaveWriteSetUnion 31 ObjsCreated
12 SaveWrittenObjs 32 ObjsDisposed
13 ReadWriteConflicts 33 NewSymbolSet
14 WriteReadConflicts 34 GcCandidates
15 WriteWriteconflicts 35 ObjsWithWeakRefs
16 ReadExclLockConflicts 36 WriteLockWriteSubset
17 WriteReadLockConflicts 37 NewDataPages
18 WriteWriteLockConflicts 38 StrongReadSet
19 RefPomObjs 39 PureExportSet
20 AllocatedGciOops 40 TrackedObjects

Table 5.12 Hidden Set Indexes (Continued)

Index Hidden Set Index Hidden Set
September 2011 VMware, Inc. 217

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciInit

Initialize GemBuilder.

Syntax

BoolType GciInit()

Return Value

The function GciInit returns TRUE or FALSE to indicate successful or unsuccessful initialization
of GemBuilder.

Description

The GciInit function initializes GemBuilder. Among other things, it establishes the default
GemStone login parameters.

If your C application program is linkable, you may wish to call the GciInitAppName function,
which you must do before you call GciInit. After GciInitAppName, you must call GciInit before
calling any other GemBuilder functions. Otherwise, GemBuilder behavior will be unpredictable.

When GemBuilder is initialized on UNIX and Linux platforms, it establishes its own handler for
SIGIO interrupts. See “Interrupt Handling in Your GemBuilder Application” on page 45 for
information on GciInit’s handling of interrupts and pointers on making GemBuilder, application,
and third-party handlers work together,

See Also

GciInitAppName, page 219
218 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciInitAppName

Override the default application configuration file name.

Syntax

void GciInitAppName(applicationName, logWarnings)
const char * applicationName;
BoolType logWarnings;

Input Arguments

applicationName The application’s name, as a character string.
logWarnings If TRUE, causes the configuration file parser to print any warnings to

standard output at executable startup.

Description

The GciInitAppName function affects only linkable applications. It has no effect on RPC
applications. If you do not call this function before you call GciInit, it will have no effect.

A linkable GemBuilder application reads a configuration file called applicationName.conf when
GciInit is called. This file can alter the behavior of the underlying GemStone session. For complete
information, please see the System Administration Guide for GemStone/S.

A linkable GemBuilder application uses defaults until it calls this function (if it does) and reads the
configuration file (which it always does). For linkable GemBuilder applications, the default
application name is gci, so the default executable configuration file is gci.conf. The
applicationName argument overrides the default application name with one of your choice, which
causes your linkable GemBuilder application to read its own executable configuration file.

The logWarnings argument determines whether or not warnings that are generated while reading the
configuration file are written to standard output. If your application does not call GciInitAppName,
the default log warnings setting is FALSE. The logWarnings argument resets the default for your
application, which is used in the absence of a LOG_WARNINGS entry in the configuration file, or
until that entry is read.
September 2011 VMware, Inc. 219

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciInstMethodForClass

Compile an instance method for a class.

Syntax

void GciInstMethodForClass(source, oclass, category, symbolList)
OopType source;
OopType oclass;
OopType category;
OopType symbolList;

Input Arguments

source The OOP of a Smalltalk string to be compiled as an instance method.
oclass The OOP of the class with which the method is to be associated.
category The OOP of a Smalltalk string which contains the name of the category to

which the method is added. If the category is nil (OOP_NIL), the compiler
will add this method to the category “as yet unclassified”.

symbolList The OOP of a GemStone symbol list (that is, an Array of instances of
SymbolListDictionary). Smalltalk resolves symbolic references in source
code using symbols that are available from symbolList. A value of
OOP_NIL means to use the default symbol list for the current GemStone
session (that is, System myUserProfile symbolList).

Description

This function compiles an instance method for the given class.

In addition, the Smalltalk virtual machine optimizes a small number of selectors. You may not
compile any methods with any of those selectors. See the GemStone Programming Guide for a list
of the optimized selectors.

To remove a class method, use GciExecuteStr instead.
220 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
Example

OopType oClass;
OopType oCateg;
OopType oClassMeth;

/* Intervening code goes here, in place of this comment */

oCateg = GciNewOop(OOP_CLASS_STRING);
GciStoreBytes(oCateg, 1L, category, strlen(category));
oInstMeth = GciNewOop(OOP_CLASS_STRING);
GciStoreBytes(oInstMeth, 1L, methodText, strlen(methodText));

GciInstMethodForClass(oInstMeth, oClass, oCateg, OOP_NIL);

See Also

GciClassMethodForClass, page 123
September 2011 VMware, Inc. 221

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciInstallUserAction

Associate a C function with a Smalltalk user action.

Syntax

void GciInstallUserAction(userAction)
GciUserActionSType * userAction;

Input Arguments

userAction A pointer to a C structure that describes the user-written C function.

Description

This function associates a user action name (declared in Smalltalk) with a user-written C function.
Your application must call GciInstallUserAction before beginning any GemStone sessions with
GciLogin. This function is typically called from GciUserActionInit. For more information, see
Chapter 3, “Writing C Functions To Be Called from GemStone.”

See Also

“The User Action Information Structure” on page 99
GciUserActionShutdown, page 422
222 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciInUserAction

Determine whether or not the current process is executing a user action.

Syntax

BoolType GciInUserAction()

Return Value

This function returns TRUE if it is called from within a user action, and FALSE otherwise.

Description

This function is intended for use within interrupt handlers. It can be called any time after GciInit.

GciInUserAction returns FALSE if the process is currently executing within a GemBuilder call that
was made from a user action. It considers the highest (most recent) call context only.

See Also

GciCallInProgress, page 114
September 2011 VMware, Inc. 223

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciIsKindOf

Determine whether or not an object is some kind of a given class or class history.

Syntax

BoolType GciIsKindOf(anObj, givenClass)
OopType anObj;
OopType givenClass;

Input Arguments

anObj The object whose kind is to be checked.
givenClass A class or class history to compare with the object’s kind.

Return Value

GciIsKindOf returns TRUE when the class of anObj or any of its superclasses is in the class history
of givenClass. It returns FALSE otherwise.

Description

GciIsKindOf performs structural access that is equivalent to the isKindOf: method of the
Smalltalk class Object. It compares anObj’s class and superclasses to see if any of them are in a
given class history. When givenClass is simply a class (which is typical), GciIsKindOf uses
givenClass’s class history. When givenClass is itself a class history, GciIsKindOf uses givenClass
directly.

Since GciIsKindOf does consider class histories, it can help to support schema modification by
simplifying checks on the relationship of types when they can change over time. To accomplish a
similar operation without seeing the effects of class histories, use the GciIsKindOfClass function.

See Also

GciIsKindOfClass, page 225
GciIsSubclassOf, page 228
GciIsSubclassOfClass, page 229
224 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciIsKindOfClass

Determine whether or not an object is some kind of a given class.

Syntax

BoolType GciIsKindOfClass(anObj, givenClass)
OopType anObj;
OopType givenClass;

Input Arguments

anObj The object whose kind is to be checked.
givenClass A class to compare with the object’s kind.

Return Value

GciIsKindOfClass returns TRUE when the class of anObj or any of its superclasses is givenClass.
It returns FALSE otherwise.

Description

GciIsKindOfClass performs structural access that is equivalent to the isKindOf: method of the
Smalltalk class Object. It compares anObj’s class and superclasses to see if any of them are the
givenClass.

Since GciIsKindOfClass does not consider class histories, it cannot help to support schema
modification. To accomplish a similar operation when the relationship of types can change over
time, use the GciIsKindOf function.

See Also

GciIsKindOf, page 224
GciIsSubclassOf, page 228
GciIsSubclassOfClass, page 229
September 2011 VMware, Inc. 225

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciIsRemote

Determine whether the application is running linked or remotely.

Syntax

BoolType GciIsRemote()

Return Value

Returns TRUE if this application is running with GciRpc (the remote procedure call version of
GemBuilder). Returns FALSE if this application is running with GciLnk (that is, if GemBuilder is
linked with your GemStone session).

Description

This function reports whether the current application is using the GciRpc (remote procedure call) or
GciLnk (linkable) version of GemBuilder.
226 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GCI_IS_REPORT_CLAMPED

(MACRO) Determine whether or not an object was clamped during traversal.

Syntax

GCI_IS_REPORT_CLAMPED(theObjectReport)

Input Arguments

theObjectReport A pointer to an object report (assumed to be type GciObjRepSType*).

Result Value

A C Boolean value. The return value is TRUE if theObjectReport represents an object that was
clamped during object traversal, and FALSE otherwise.

Description

This macro checks theObjectReport to see if it represents an object that was clamped during object
traversal.

See Also

GciClampedTraverseObjs, page 121
September 2011 VMware, Inc. 227

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciIsSubclassOf

Determine whether or not a class is a subclass of a given class or class history.

Syntax

BoolType GciIsSubclassOf(aClass, givenClass)
OopType aClass;
OopType givenClass;

Input Arguments

aClass The class that is to be checked.
givenClass A class or class history to compare with the first class.

Return Value

GciIsSubclassOf returns TRUE when aClass or any of its superclasses is in the class history of
givenClass. It returns FALSE otherwise.

Description

GciIsSubclassOf performs structural access that is equivalent to the isSubclassOf: method of
the Smalltalk class Behavior. It compares aClass and aClass’s superclasses to see if any of them are
in a given class history. When givenClass is simply a class (which is typical), GciIsSubclassOf uses
givenClass’s class history. When givenClass is itself a class history, GciIsSubclassOf uses
givenClass directly.

Since GciIsSubclassOf does consider class histories, it can help to support schema modification by
simplifying checks on the relationship of types when they can change over time. To accomplish a
similar operation without seeing the effects of class histories, use the GciIsSubclassOfClass
function.

See Also

GciIsKindOf, page 224
GciIsKindOfClass, page 225
GciIsSubclassOfClass, page 229
228 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciIsSubclassOfClass

Determine whether or not a class is a subclass of a given class.

Syntax

BoolType GciIsSubclassOf(aClass, givenClass)
OopType aClass;
OopType givenClass;

Input Arguments

aClass The class that is to be checked.
givenClass A class to compare with the first class.

Return Value

GciIsSubclassOf returns TRUE when aClass or any of its superclasses is givenClass. It returns
FALSE otherwise.

Description

GciIsSubclassOfClass performs structural access that is equivalent to the isSubclassOf:
method of the Smalltalk class Behavior. It compares aClass and aClass’s superclasses to see if any
of them are the givenClass.

Since GciIsSubclassOfClass does not consider class histories, it cannot help to support schema
modification. To accomplish a similar operation when the relationship of types can change over
time, use the GciIsSubclassOf function.

See Also

GciIsKindOf, page 224
GciIsKindOfClass, page 225
GciIsSubclassOf, page 228
September 2011 VMware, Inc. 229

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciIvNameToIdx

Fetch the index of an instance variable name.

Syntax

int GciIvNameToIdx(oclass, instVarName)
OopType oclass;
const char instVarName[];

Input Arguments

oclass The OOP of the class from which to obtain information about instance
variables.

instVarName The instance variable name to search for.

Return Value

Returns the index of instVarName into the array of named instance variables for the specified class.
Returns 0 if the name is not found or if an error is encountered.

Description

This function searches the array of instance variable names for the specified class (including those
inherited from superclasses), and returns the index of the specified instance variable name. This
index could then be used as the atIndex parameter in the GciFetchNamedOop or
GciStoreNamedOop function call.

Example

int vInd;

vInd = GciIvNameToIdx(OOP_CLASS_USER_PROFILE, "password");
230 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
See Also

GciClassNamedSize, page 125
GciFetchNamedOop, page 173
GciFetchNamedOops, page 175
GciStoreNamedOop, page 378
GciStoreNamedOops, page 380
September 2011 VMware, Inc. 231

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciLoadUserActionLibrary

Load an application user action library.

Syntax

BoolType GciLoadUserActionLibrary(uaLibraryName, mustExist, libHandlePtr, infoBuf[],
infoBufSize)

const char * uaLibraryName[];
BoolType mustExist;
void ** libHandlePtr;
char infoBuf[];
ArraySizeType infoBufSize;

Input Arguments

uaLibraryName The name and location of the user action library file (a null-terminated
string).

mustExist A flag to make the library required or optional.
libHandlePtr A variable to store the status of the loading operation.
infoBuf A buffer to store the name of the user action library or an error message.
infoBufSize The size of infoBuf.

Return Value

A C Boolean value. If an error occurs, the return value is FALSE , and the error message is stored
in infoBuf, unless infoBuf is NULL. Otherwise, the return value is TRUE, and the name of the user
action library is stored in infoBuf.

Description

This function loads a user action shared library at run time. If uaLibraryName does not contain a
path, then a standard user action library search is done. The proper prefix and suffix for the current
platform are added to the basename if necessary. For more information, see Chapter 3, “Writing C
Functions To Be Called from GemStone.”

If a library is loaded, libHandlePtr is set to a value that represents the loaded library, if libHandlePtr
is not NULL. If mustExist is TRUE, then an error is generated if the library can not be found. If
232 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
mustExist is FALSE, then the library does not need to exist. In this case, TRUE is returned and
libHandlePtr is NULL if the library does not exist and non-NULL if it exists.

See Also

GciInstallUserAction, page 222
GciInUserAction, page 223
GciUserActionShutdown, page 422
September 2011 VMware, Inc. 233

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciLogin

Start a user session.

Syntax

void GciLogin(gemstoneUsername, gemstonePassword)
const char gemstoneUsername[];
const char gemstonePassword[];

Input Arguments

gemstoneUsername The user’s GemStone user name (a null-terminated string).
gemstonePassword The user’s GemStone password (a null-terminated string).

Description

The GemStone system is much like a time-shared computer system in that the user must log in before
any work may be performed. This function creates a user session and its corresponding transaction
workspace.

This function uses the current network parameters (as specified by GciSetNet) to establish the user’s
GemStone session.
234 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
Example

char * StoneName;
char * HostUserId;
char * HostPassword;
char * GemService;
char * gsUserName;
char * gsPassword;

StoneName = "!tcp@alf!gemserver41";
HostUserId = "newtoni";
HostPassword = "gravity";
GemService = "!tcp@lichen!gemnetobject";
gsUserName = "isaac newton";
gsPassword = "pomme";

if (!GciInit()) exit; /* required before first GemBuilder login */

GciSetNet(StoneName, HostUserId, HostPassword, GemService);
GciLogin(gsUserName, gsPassword);

See Also

GciGetSessionId, page 209
GciLogout, page 236
GciSetNet, page 358
GciSetSessionId, page 361
September 2011 VMware, Inc. 235

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciLogout

End the current user session.

Syntax

void GciLogout()

Description

This function terminates the current user session (set by the last GciLogin or GciSetSessionId), and
allows GemStone to release all uncommitted objects created by the application program in the
corresponding transaction workspace. The current session ID is reset to
GCI_INVALID_SESSION_ID, indicating that the application is no longer logged in. (See
“GciGetSessionId” on page 209 for more information.)

See Also

GciGetSessionId, page 209
GciLoadUserActionLibrary, page 232
GciSetSessionId, page 361
236 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GCI_LONG_IS_SMALL_INT

(MACRO) Determine whether or not a long can be translated into a SmallInteger.

Syntax

GCI_LONG_IS_SMALL_INT(aLong)

Input Arguments

aLong The C long value to be translated into an object. The C long must be in the
range of the GemStone SmallInteger class (-230 to 230 - 1 inclusive).

Result Value

A C Boolean value. The return value is TRUE if aLong can be represented as a small integer, and
FALSE otherwise.

Description

This macro tests a long to see if aLong is representable as a SmallInteger.

See Also

GCI_OOP_IS_BOOL, page 294
GCI_OOP_IS_SMALL_INT, page 295
GCI_OOP_IS_SPECIAL, page 296
September 2011 VMware, Inc. 237

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciLongToOop

Find a GemStone object that corresponds to a C long integer.

Syntax

OopType GciLongToOop(aLong)
long aLong;

Input Arguments

aLong The C long integer to be translated into an object.

Return Value

The GciLongToOop function returns the OOP of a GemStone object whose value is equivalent to
the C long integer value of aLong.

Description

The GciLongToOop function translates the C long integer value aLong into a GemStone object that
has the same value.

If the value is in the range -1073741824 .. 1073741823, the resulting object is a SmallInteger. If the
value is in the range -2147483648 .. -1073741825, the resulting object is a LargeNegativeInteger. If
the value is in the range 1073741824 .. 2147483647, the resulting object is a LargePositiveInteger.

Example

OopType theZipCodeOop;

printf("Zip Code = ");
fflush(stdout);
getString(zip, MAXLEN);
theZipCodeOop = GciLongToOop(atol(zip));
238 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
See Also

GCI_LONG_TO_OOP, page 240
GciOopToLong, page 305
GCI_OOP_TO_LONG, page 307
GciUnsignedLongToOop, page 420
September 2011 VMware, Inc. 239

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GCI_LONG_TO_OOP

(MACRO) Find a GemStone object that corresponds to a C long integer.

Syntax

OopType GCI_LONG_TO_OOP(aLong)

Input Arguments

aLong The C long integer to be translated into an object.

Result Value

The GCI_LONG_TO_OOP macro returns the OOP of a GemStone object whose value is
equivalent to the C long integer value of aLong.

Description

The GCI_LONG_TO_OOP macro translates the C long integer value aLong into a GemStone
object that has the same value.

If the value is in the range -1073741824 .. 1073741823, the resulting object is a SmallInteger. If the
value is in the range -2147483648 .. -1073741825, the resulting object is a LargeNegativeInteger. If
the value is in the range 1073741824 .. 2147483647, the resulting object is a LargePositiveInteger.

Example

OopType theZipCodeOop;

printf("Zip Code = ");
fflush(stdout);
getString(zip, MAXLEN);
theZipCodeOop = GCI_LONG_TO_OOP(atol(zip));
240 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
See Also

GciLongToOop, page 238
GciOopToLong, page 305
GCI_OOP_TO_LONG, page 307
GciUnsignedLongToOop, page 420
September 2011 VMware, Inc. 241

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciMoreTraversal

Continue object traversal, reusing a given buffer.

Syntax

BoolType GciMoreTraversal(travBuff, travBuffSize)
ByteType travBuff[];
ArraySizeType travBuffSize;

Input Arguments

travBuffSize The number of bytes allocated to the traversal buffer.

Result Arguments

travBuff A buffer in which the results of the traversal will be placed.

Return Value

Returns FALSE if the traversal is not yet completed, but further traversal would cause the
travBuffSize to be exceeded. If the travBuffSize is reached before the traversal is complete, you can
continue to call GciMoreTraversal to proceed from the point where travBuffSize was exceeded.

Returns TRUE if there are no more objects to be returned by subsequent calls to GciMoreTraversal.

Description

When the amount of information obtained in a traversal exceeds the amount of memory available to
the buffer (as specified with travBuffSize), your application can call GciMoreTraversal repeatedly
to break the traversal into manageable amounts of information. The information returned by this
function begins with the object report following where the previous unfinished traversal left off. The
level value is retained from the initial GciTraverseObjs call.

NOTE
This function is most useful with applications that are linked with GciRpc (the “remote
procedure call” version of GemBuilder). If your application will be linked with
GciLnk (the “linkable” GemBuilder), you’ll usually achieve best performance by
242 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
using the simple GciFetch... and GciStore... functions rather than object traversal.
For more information, see “GciRpc and GciLnk” on page 53.

Generally speaking, an application can continue to call GciMoreTraversal until it has obtained all
requested information.

Naturally, GemStone will not continue an incomplete traversal if there is any chance that changes to
the database in the intervening period might have invalidated the previous report or changed the
connectivity of the objects in the path of the traversal. Specifically, GemStone will refuse to
continue a traversal if, in the interval before attempting to continue, you:

 • Modify the objects in the database directly by calling any of the GciStore... or GciAdd...
functions;

 • Call one of the Smalltalk message-sending functions GciSendMsg, GciPerform,
GciContinue, or any of the GciExecute... functions.

 • Abort your transaction, thus invalidating any subsequent information from that traversal.

Any attempt to call GciMoreTraversal after one of these events will generate an error.

Note that this holds true across multiple GemBuilder applications sharing the same GemStone
session. Suppose, for example, that you were holding on to an incomplete traversal buffer and the
user moved from the current application to another, did some work that required executing Smalltalk
code, and then returned to the original application. You would be unable to continue the interrupted
traversal.

If you attempt to call GciMoreTraversal when no traversal is underway, this function will generate
the error GCI_ERR_TRAV_COMPLETED.

During the entire sequence of GciTraverseObjs and GciMoreTraversal calls that constitute a
traversal, any single object report will be returned exactly once. Regardless of the connectivity of
objects in the GemStone database, only one report will be generated for any non-special object.

The section “Organization of the Traversal Buffer” on page 412 describes the organization of
traversal buffers in detail.

GciMoreTraversal provides automatic byte swizzling for binary floats.
September 2011 VMware, Inc. 243

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
Example

BoolType atEnd;

more = GciTraverseObjs(oopList, numOops, buff1, maxSz, level);
/* insert code here that uses GciFindObjRep to search
the buffer for desired information */
while (!atEnd) { /* and you want more information */
atEnd = GciMoreTraversal(buff2, maxSz);

/* Intervening code goes here, in place of this comment */
}

See Also

GCI_ALIGN, page 108
GciFindObjRep, page 202
GciNbMoreTraversal, page 263
GciNbTraverseObjs, page 275
GciObjRepSize, page 292
GciTraverseObjs, page 411
244 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciNbAbort

Abort the current transaction (nonblocking).

Syntax

void GciNbAbort()

Description

The GciNbAbort function is equivalent in effect to GciAbort. However, GciNbAbort permits the
application to proceed with non-GemStone tasks while the transaction is aborted, and GciAbort
does not.

See Also

GciAbort, page 102
GciCheckAuth, page 115
GciCommit, page 132
GciNbCommit, page 250
September 2011 VMware, Inc. 245

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciNbBegin

Begin a new transaction (nonblocking).

Syntax

void GciNbBegin()

Description

The GciNbBegin function is equivalent in effect to GciBegin. However, GciNbBegin permits the
application to proceed with non-GemStone tasks while a new transaction is started, and GciBegin
does not.

See Also

GciAbort, page 102
GciBegin, page 112
GciExecuteStr, page 158
GciNbAbort, page 245
GciNbExecuteStr, page 257
246 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciNbClampedTrav

Traverse an array of objects, subject to clamps (nonblocking).

Syntax

void GciNbClampedTrav(theOops, numOops, travBuff, level)
const OopType * theOops;
ArraySizeType numOops;
struct * travArgs;

Input Arguments

theOops An array of OOPs representing the objects to traverse.
numOops The number of elements in theOops.
travArgs Pointer to a GciClampedTravArgsSType structure. See

GciClampedTrav for documentation on the fields in travArgs.

Result Arguments

travArgs Pointer to a GciClampedTravArgsSType structure containing the result
argument field travBuff.

Return Value

The GciNbClampedTrav function, unlike GciClampedTrav, does not have a return value.
However, when the traversal operation is complete, you can access a value identical in meaning to
the return value of GciClampedTrav by using the argument to GciNbEnd.

Description

The GciNbClampedTrav function is equivalent in effect to GciClampedTrav. However,
GciClampedTrav permits the application to proceed with non-GemStone tasks while a traversal is
carried out, and GciClampedTrav does not.

See Also

GciClampedTrav, page 118
September 2011 VMware, Inc. 247

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciNbClampedTraverseObjs

Traverse an array of objects, subject to clamps (nonblocking).

Syntax

void GciNbClampedTraverseObjs(clampSpec, theOops, numOops, travBuff, level)
OopType clampSpec;
const OopType theOops[];
ArraySizeType numOops;
ByteType travBuff[];
long level;

Input Arguments

clampSpec The OOP of the Smalltalk ClampSpecification to be used. Refer to image
comments for a description of ClampSpecification.

theOops An array of OOPs representing the objects to traverse.
numOops The number of elements in theOops.
level Maximum traversal depth. When the level is 1, an object report is written

to the traversal buffer for each element in theOops. When level is 2, an
object report is also obtained for the instance variables of each level-1
object. When level is 0, the number of levels in the traversal is not
restricted.

Result Arguments

travBuff The buffer for the results of the traversal. The first element placed in the
buffer is the actualBufferSize, a long integer that indicates how many bytes
were actually stored in the buffer by this function. The remainder of the
traversal buffer consists of a series of object reports, each of which is of
type GciObjRepSType.
You can use the macro GCI_IS_REPORT_CLAMPED to find out if a
given object report represents a clamped object. If the report array would
be empty, a single object report is created for the object nil.
248 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
Return Value

The GciNbClampedTraverseObjs function, unlike GciClampedTraverseObjs, does not have a
return value. However, when the traversal operation is complete, you can access a value identical
in meaning to the return value of GciClampedTraverseObjs by using the argument to GciNbEnd.

Description

The GciNbClampedTraverseObjs function is equivalent in effect to GciClampedTraverseObjs.
However, GciNbClampedTraverseObjs permits the application to proceed with non-GemStone
tasks while the traversal is completed, and GciClampedTraverseObjs does not.

GciNbClampedTraverseObjs provides automatic byte swizzling for binary floats.

GCI clamped traversal functions are intended primarily for GemStone internal use.

See Also

GciClampedTraverseObjs, page 121
GCI_IS_REPORT_CLAMPED, page 227
GciNbTraverseObjs, page 275
GciTraverseObjs, page 411
September 2011 VMware, Inc. 249

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciNbCommit

Write the current transaction to the database (nonblocking).

Syntax

void GciNbCommit()

Return Value

The GciNbCommit function, unlike GciCommit, does not have a return value. However, when the
commit operation is complete, you can access a value identical in meaning to the return value of
GciCommit by using the argument to GciNbEnd.

Description

The GciNbCommit function is equivalent in effect to GciCommit. However, GciNbCommit
permits the application to proceed with non-GemStone tasks while the transaction is committed, and
GciCommit does not.

See Also

GciAbort, page 102
GciCheckAuth, page 115
GciCommit, page 132
GciNbAbort, page 245
250 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciNbContinue

Continue code execution in GemStone after an error (nonblocking).

Syntax

void GciNbContinue(process)
OopType process;

Input Arguments

process The OOP of a Process object (obtained as the value of the context field of
an error report returned by GciErr).

Return Value

The GciNbContinue function, unlike GciContinue, does not have a return value. However, when
the continued operation is complete, you can access a value identical in meaning to the return value
of GciContinue by using the argument to GciNbEnd.

Description

The GciNbContinue function is equivalent in effect to GciContinue. However, GciNbContinue
permits the application to proceed with non-GemStone tasks while the operation continues, and
GciContinue does not.

See Also

GciClearStack, page 126
GciContinue, page 133
GciErr, page 152
GciExecute, page 154
GciNbExecute, page 255
GciSendMsg, page 353
September 2011 VMware, Inc. 251

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciNbContinueWith

Continue code execution in GemStone after an error (nonblocking).

Syntax

void GciNbContinueWith (process, replaceTopOfStack, flags, error)
OopType process;
OopType replaceTopOfStack;
long flags;
GciErrSType * error;

Input Arguments

process The OOP of a Process object (obtained as the value of the context field of
an error report returned by GciErr).

replaceTopOfStack If not OOP_ILLEGAL, replace the top of the Smalltalk evaluation stack
with this value before continuing. If OOP_ILLEGAL, the evaluation stack
is not changed.

flags Flags to disable or permit asynchronous events and debugging in Smalltalk,
as defined for GciPerformNoDebug.

error If not NULL, continue with an error. This argument takes precedence over
replaceTopOfStack.

Description

The GciNbContinueWith function is equivalent in effect to GciContinueWith. However,
GciNbContinueWith permits the application to proceed with non-GemStone tasks while the
operation continues, and GciContinueWith does not.

See Also

GciContinue, page 133
GciContinueWith, page 135
GciErr, page 152
GciExecute, page 154
GciNbExecute, page 255
GciPerformNoDebug, page 316
252 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciNbEnd

Test the status of nonblocking call in progress for completion.

Syntax

GciNbProgressEType GciNbEnd(result)
void ** result;

Input Arguments

result The address at which GciNbEnd should place a pointer to the result of the
nonblocking call when it is complete.

Return Value

The GciNbEnd function returns an enumerated type. Its value is GCI_RESULT_READY if the
outstanding nonblocking call has completed execution and its result is ready,
GCI_RESULT_NOT_READY if the call is not complete and there has been no change since the last
inquiry, and GCI_RESULT_PROGRESSED if the call is not complete but progress has been made
towards its completion.

Description

Once an application calls a nonblocking function, it must call GciNbEnd at least once, and must
continue to do so until that nonblocking function has completed execution. The intent of the return
values is to give the scheduler a hint about whether it is calling GciNbEnd too often or not often
enough.

Once an operation is complete, the next call to GciNbEnd returns GCI_RESULT_READY and a
pointer to the results. Subsequent calls return OOP_REMOTE_NIL, until you call a nonblocking
function again. It is an error to call GciNbEnd before you call any nonblocking functions at all. Use
the GciCallInProgress function to determine whether or not there is a GemBuilder call currently in
progress.
September 2011 VMware, Inc. 253

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
Example

void * myResult;

GciNbExecuteStr(“aKeyValueDictionary keys sortAscending: ‘’”);
do {
 yield_to_other_tasks();
} while (GciNbEnd(&myResult) != GCI_RESULT_READY);

return *(OopType *)myResult;

See Also

GciCallInProgress, page 114
254 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciNbExecute

Execute a Smalltalk expression contained in a String object (nonblocking).

Syntax

void GciNbExecute(source, symbolList)
OopType source;
OopType symbolList;

Input Arguments

source The OOP of a String containing a sequence of one or more statements to be
executed.

symbolList The OOP of a GemStone symbol list (that is, an Array of instances of
SymbolListDictionary). The compiler uses the symbolList to resolve
symbolic references in the code in source. A value of OOP_NIL means to
use the default symbol list for the current GemStone session (that is,
System myUserProfile symbolList).

Return Value

The GciNbExecute function, unlike GciExecute, does not have a return value. However, when the
executed operation is complete, you can access a value identical in meaning to the return value of
GciExecute by using the argument to GciNbEnd.

Description

The GciNbExecute function is equivalent in effect to GciExecute. However, GciNbExecute
permits the application to proceed with non-GemStone tasks while the Smalltalk expression is
executed, and GciExecute does not.

See Also

GciContinue, page 133
GciErr, page 152
GciExecute, page 154
September 2011 VMware, Inc. 255

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciExecuteFromContext, page 156
GciExecuteStr, page 158
GciExecuteStrFromContext, page 160
GciNbContinue, page 251
GciNbExecuteStr, page 257
GciNbExecuteStrFromContext, page 259
GciSendMsg, page 353
256 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciNbExecuteStr

Execute a Smalltalk expression contained in a C string (nonblocking).

Syntax

void GciNbExecuteStr(source, symbolList)
const char source[];
OopType symbolList;

Input Arguments

source A null-terminated string containing a sequence of one or more statements
to be executed.

symbolList The OOP of a GemStone symbol list (that is, an Array of instances of
SymbolListDictionary). The compiler uses the symbolList to resolve
symbolic references in the code in source. A value of OOP_NIL means to
use the default symbol list for the current GemStone session (that is,
System myUserProfile symbolList).

Return Value

The GciNbExecuteStr function, unlike GciExecuteStr, does not have a return value. However,
when the executed operation is complete, you can access a value identical in meaning to the return
value of GciExecuteStr by using the argument to GciNbEnd.

Description

The GciNbExecuteStr function is equivalent in effect to GciExecuteStr. However,
GciNbExecuteStr permits the application to proceed with non-GemStone tasks while the Smalltalk
expression is executed, and GciExecuteStr does not.

See Also

GciContinue, page 133
GciErr, page 152
GciExecute, page 154
September 2011 VMware, Inc. 257

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciExecuteFromContext, page 156
GciExecuteStr, page 158
GciExecuteStrFromContext, page 160
GciNbContinue, page 251
GciNbExecute, page 255
GciNbExecuteStrFromContext, page 259
GciSendMsg, page 353
258 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciNbExecuteStrFromContext

Execute a Smalltalk expression contained in a C string as if it were a message sent to an object
(nonblocking).

Syntax

void GciNbExecuteStrFromContext(source, contextObject, symbolList)
const char source[];
OopType contextObject;
OopType symbolList;

Input Arguments

source A null-terminated string containing a sequence of one or more statements
to be executed.

contextObject The OOP of any GemStone object.
symbolList The OOP of a GemStone symbol list (that is, an Array of instances of

SymbolListDictionary). The compiler uses the symbolList to resolve
symbolic references in the code in source. A value of OOP_NIL means to
use the default symbol list for the current GemStone session (that is,
System myUserProfile symbolList).

Return Value

The GciNbExecuteStrFromContext function, unlike GciExecuteStrFromContext, does not have
a return value. However, when the executed operation is complete, you can access a value identical
in meaning to the return value of GciExecuteStrFromContext by using the argument to
GciNbEnd.

Description

The GciNbExecuteStrFromContext function is equivalent in effect to
GciExecuteStrFromContext. However, GciNbExecuteStrFromContext permits the application
to proceed with non-GemStone tasks while the Smalltalk expression is executed, and
GciExecuteStrFromContext does not.
September 2011 VMware, Inc. 259

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
See Also

GciContinue, page 133
GciErr, page 152
GciExecute, page 154
GciExecuteFromContext, page 156
GciExecuteStr, page 158
GciExecuteStrFromContext, page 160
GciNbContinue, page 251
GciNbExecute, page 255
GciNbExecuteStr, page 257
GciSendMsg, page 353
260 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciNbExecuteStrTrav

First execute a Smalltalk expression contained in a C string as if it were a message sent to an object,
then traverse the result of the execution (nonblocking).

Syntax

BoolType GciExecuteStrTrav(source, contextObject, symbolList, travArgs)
const char source[];
OopType contextObject;
OopType symbolList;
struct * travArgs;

Input Arguments

source A null-terminated string containing a sequence of one or more statements
to be executed.

contextObject The OOP of any GemStone object. A value of OOP_ILLEGAL means no
context.

symbolList The OOP of a GemStone symbol list (that is, an Array of instances of
SymbolDictionary). The compiler uses the symbolList to resolve symbolic
references in the code in source. A value of OOP_NIL means to use the
default symbol list for the current GemStone session (that is, System
myUserProfile symbolList).

travArgs Pointer to the GciClampedTravArgsSType structure. See the
GciExecuteStrTrav function for field definitions.

Return Value

The GciNbExecuteStrTrav function, unlike GciExecuteStrTrav, does not have a return value.
However, when the traversal operation is complete, you can access a value identical in meaning to
the return value of GciExecuteStrTrav by using the argument to GciNbEnd.

Description

The GciNbExecuteStrTrav function is equivalent in effect to GciExecuteStrTrav. However,
GciNbExecuteStrTrav permits the application to proceed with non-GemStone tasks while the
traversal is completed, and GciExecuteStrTrav does not.
September 2011 VMware, Inc. 261

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
See Also

GciExecuteStrTrav, page 162
GciExecuteStr, page 158
GciMoreTraversal, page 242
GciPerformTraverse, page 322
262 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciNbMoreTraversal

Continue object traversal, reusing a given buffer (nonblocking).

Syntax

void GciNbMoreTraversal(travBuff, travBuffSize)
ByteType travBuff[];
ArraySizeType travBuffSize;

Input Arguments

travBuffSize The number of bytes allocated to the traversal buffer.

Result Arguments

travBuff A buffer in which the results of the traversal will be placed.

Return Value

The GciNbMoreTraversal function, unlike GciMoreTraversal, does not have a return value.
However, when the traversal operation is complete, you can access a value identical in meaning to
the return value of GciMoreTraversal by using the argument to GciNbEnd.

Description

The GciNbMoreTraversal function is equivalent in effect to GciMoreTraversal. However,
GciNbMoreTraversal permits the application to proceed with non-GemStone tasks while the
traversal is completed, and GciMoreTraversal does not.

GciNbMoreTraversal provides automatic byte swizzling for binary floats.

See Also

GCI_ALIGN, page 108
GciFindObjRep, page 202
GciMoreTraversal, page 242
September 2011 VMware, Inc. 263

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciNbTraverseObjs, page 275
GciObjRepSize, page 292
GciTraverseObjs, page 411
264 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciNbPerform

Send a message to a GemStone object (nonblocking).

Syntax

void GciNbPerform(receiver, selector, args, numArgs)
OopType receiver;
const char selector[];
const OopType args[];
ArraySizeType numArgs;

Input Arguments

receiver The OOP of the receiver of the message.
selector A string that defines the message selector. For keyword selectors, all

keywords are concatenated in the string. (For example, at:put:).
args An array of OOPs. Each element in the array corresponds to an argument

for the message. If there are no message arguments, use a dummy OOP
here.

numArgs The number of arguments to the message. For unary selectors (messages
with no arguments), numArgs is zero.

Return Value

The GciNbPerform function, unlike GciPerform, does not have a return value. However, when
the performed operation is complete, you can access a value identical in meaning to the return value
of GciPerform by using the argument to GciNbEnd.

Description

The GciNbPerform function is equivalent in effect to GciPerform. However, GciNbPerform
permits the application to proceed with non-GemStone tasks while the message is executed, and
GciPerform does not.
September 2011 VMware, Inc. 265

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
See Also

GciContinue, page 133
GciErr, page 152
GciExecute, page 154
GciNbContinue, page 251
GciNbExecute, page 255
GciNbPerformNoDebug, page 267
GciPerform, page 314
GciPerformNoDebug, page 316
GciPerformSymDbg, page 318
GciSendMsg, page 353
266 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciNbPerformNoDebug

Send a message to a GemStone object, and temporarily disable debugging (nonblocking).

Syntax

void GciNbPerformNoDebug(receiver, selector, args, numArgs)
OopType receiver;
const char selector[];
const OopType args[];
ArraySizeType numArgs;

Input Arguments

receiver The OOP of the receiver of the message.
selector A string that defines the message selector. For keyword selectors, all

keywords are concatenated in the string. (For example, at:put:).
args An array of OOPs. Each element in the array corresponds to an argument

for the message. If there are no message arguments, use a dummy OOP
here.

numArgs The number of arguments to the message. For unary selectors (messages
with no arguments), numArgs is zero.

Return Value

The GciNbPerformNoDebug function, unlike GciPerformNoDebug, does not have a return value.
However, when the performed operation is complete, you can access a value identical in meaning to
the return value of GciPerformNoDebug by using the argument to GciNbEnd.

Description

The GciNbPerformNoDebug function is equivalent in effect to GciPerformNoDebug. However,
GciNbPerformNoDebug permits the application to proceed with non-GemStone tasks while the
message is executed, and GciPerformNoDebug does not.
September 2011 VMware, Inc. 267

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
See Also

GciContinue, page 133
GciErr, page 152
GciExecute, page 154
GciNbContinue, page 251
GciNbExecute, page 255
GciNbPerform, page 265
GciPerform, page 314
GciPerformNoDebug, page 316
GciPerformSymDbg, page 318
GciSendMsg, page 353
268 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciNbPerformTrav

First send a message to a GemStone object, then traverse the result of the message (nonblocking).

Syntax

BoolType GciPerformTrav(receiver, selector, args, numArgs, travBuff, level)
OopType receiver;
const char * selector;
const OopType * args;
unsigned int numArgs;
struct * travArgs;

Input Arguments

receiver The OOP of the receiver of the message.
selector The OOP of a String object that defines the message selector. For keyword

selectors, all keywords are concatenated in the String. (For example,
at:put:).

args An array of OOPs. Each element in the array corresponds to an argument
for the message. If there are no message arguments, use a dummy OOP
here.

numArgs The number of arguments to the message. For unary selectors (messages
with no arguments), numArgs is zero.

travArgs Pointer to a GciClampedTravArgsSType structure. See the
GciClampedTrav function for documentation of the fields in travArgs.

Result Arguments

The result of the GciPerformTrav is the first object in the resulting travBuffs field in travArgs.

Return Value

The GciNbPerformTrav function, unlike GciPerformTrav, does not have a return value.
However, when the traversal operation is complete, you can access a value identical in meaning to
the return value of GciPerformTrav by using the argument to GciNbEnd.
September 2011 VMware, Inc. 269

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
Description

The GciNbPerformTrav function is equivalent in effect to GciPerformTrav. However,
GciNbStoreTrav permits the application to proceed with non-GemStone tasks while the traversal
is done, and GciPerformTrav does not.

See Also

GciPerformTrav, page 320
GciPerform, page 314
GciClampedTrav, page 118
270 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciNbStoreTrav

Store multiple traversal buffer values in objects (nonblocking).

Syntax

void GciNbStoreTrav(travBuff, behaviorFlag)
ByteType travBuff [];
long behaviorFlag;

Input Arguments

travBuff A buffer that contains the object reports to be stored. The first element in
the buffer is a long integer that indicates how many bytes are stored in the
buffer. The remainder of the traversal buffer consists of a series of object
reports, each of which is of type GciObjRepSType.

behaviorFlag A flag specifying whether the values returned by GciStoreTrav should be
added to the values in the traversal buffer or should replace the values in the
traversal buffer. Flag values, predefined in the gci.ht header file, are
GCI_STORE_TRAV_NSC_ADD (add to the traversal buffer) and
GCI_STORE_TRAV_NSC_REP (replace traversal buffer contents).

Description

The GciNbStoreTrav function is equivalent in effect to GciStoreTrav. However,
GciNbStoreTrav permits the application to proceed with non-GemStone tasks while the traversals
are stored, and GciStoreTrav does not.

GciNbStoreTrav provides automatic byte swizzling for binary floats.

See Also

GciMoreTraversal, page 242
GciNbMoreTraversal, page 263
GciNbTraverseObjs, page 275
GciNewOopUsingObjRep, page 283
GciStoreTrav, page 392
GciTraverseObjs, page 411
September 2011 VMware, Inc. 271

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciNbStoreTravDo

Store multiple traversal buffer values in objects, execute the specified code, and return the resulting
object (non-blocking).

Syntax

void GciNbStoreTravDo(args)
GciStoreTravDoArgsSType *STDargs;

Input Arguments

STDargs A GciStoreTravDoArgsSType structure. For details, refer to the discussion
of GciStoreTravDo on page 396.

Return Value

Unlike GciStoreTravDo, the GciNbStoreTravDo function does not have a return value. However,
when the traversal operation is complete, you can access a value identical in meaning to the return
value of GciStoreTravDo by using the argument to GciNbEnd.

Description

The GciNbStoreTravDo function is equivalent in effect to GciStoreTravDo. However,
GciNbStoreTravDo permits the application to proceed with non-GemStone tasks while the traversal
is done, and GciStoreTravDo does not.

See Also

GciNbClampedTrav, page 247
GciNbEnd, page 253
GciNbStoreTrav, page 271
GciNbStoreTravDoTrav, page 273
GciStoreTravDo, page 396
272 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciNbStoreTravDoTrav

Combine a GciNbStoreTravDo() call and a GciNbClampedTrav() call into a single function.

Syntax

void GciNbStoreTravDoTrav(args)
GciStoreTravDoArgsSType *STDargs;
GciClampedTravArgsSType *CTargs;

Input Arguments

STDargs A GciStoreTravDoArgsSType structure. For details, refer to the discussion
of GciStoreTravDo on page 396.

CTargs A GciClampedTravArgsSType structure. For details, see the discussion of
GciNbClampedTrav on page 247.

Result Arguments

CTargs For details, see the discussion of GciNbClampedTrav() on page 247.

Return Value

The GciNbStoreTravDoTrav function, unlike GciStoreTravDoTrav, does not have a return
value. However, when the traversal operation is complete, you can access a value identitcal in
meaning to the return value of GciStoreTravDoTrav by using the argument to GciNbEnd.

Description

This function allows the client to execute behavior on the Gem and return the traversal of the result
object in a single network round-trip.

The GciNbStoreTravDoTrav function is equivalent in effect to GciStoreTravDoTrav. However,
GciNbStoreTravDoTrav permits the application to proceed with non-GemStone tasks while the
traversals are stored, and GciStoreTravDoTrav does not.
September 2011 VMware, Inc. 273

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
See Also

GciNbClampedTrav, page 247
GciNbEnd, page 253
GciNbStoreTrav, page 271
274 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciNbTraverseObjs

Traverse an array of GemStone objects (nonblocking).

Syntax

void GciNbTraverseObjs(theOops, numOops, travBuff, level)
const OopType theOops[];
ArraySizeType numOops;
ByteType travBuff[];
ArraySizeType travBuffSize;
long level;

Input Arguments

theOops An array of OOPs representing the objects to traverse.
numOops The number of elements in theOops.
level Maximum traversal depth. When the level is 1, an object report is written

to the traversal buffer for each element in theOops. When level is 2, an
object report is also obtained for the instance variables of each level-1
object. When level is 0, the number of levels in the traversal is not
restricted.

Result Arguments

travBuff A buffer in which the results of the traversal will be placed.

Return Value

The GciNbTraverseObjs function, unlike GciTraverseObjs, does not have a return value.
However, when the traversal operation is complete, you can access a value identical in meaning to
the return value of GciTraverseObjs by using the argument to GciNbEnd.
September 2011 VMware, Inc. 275

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
Description

The GciNbTraverseObjs function is equivalent in effect to GciTraverseObjs. However,
GciNbTraverseObjs permits the application to proceed with non-GemStone tasks while the
traversal is completed, and GciTraverseObjs does not.

GciNbTraverseObjs provides automatic byte swizzling for binary floats.

See Also

GciFindObjRep, page 202
GciMoreTraversal, page 242
GciNbMoreTraversal, page 263
GciNbStoreTrav, page 271
GciNewOopUsingObjRep, page 283
GciObjRepSize, page 292
GciStoreTrav, page 392
GciTraverseObjs, page 411
276 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciNewByteObj

Create and initialize a new byte object.

Syntax

OopType GciNewByteObj(aClass, value, valueSize)
OopType aClass;
const ByteType * value;
ArraySizeType valueSize;

Input Arguments

aClass The OOP of the class of which an instance is to be created.
value Pointer to an array of byte values to be stored in the newly-created object.
valueSize The number of byte values in value.

Return Value

The OOP of the newly created object.

Description

Returns a new instance of aClass, of size valueSize, and containing a copy of the bytes located at
value. Equivalent to GciNewOop followed by GciStoreBytes. aClass must be a class whose format
is Bytes.
September 2011 VMware, Inc. 277

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciNewCharObj

Create and initialize a new character object.

Syntax

OopType GciNewCharObj(aClass, cString)
OopType aClass;
const char * cString;

Input Arguments

aClass The OOP of the class of which an instance is to be created. aClass must be
a class whose format is BYTE.

cString Pointer to an array of characters to be stored in the newly-created object.
The terminating '\0' character is not stored.

Return Value

The OOP of the newly-created object.

Description

Returns a new instance of aClass which has been initialized to contain the bytes of cString,
excluding the null terminator.
278 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciNewDateTime

Create and initialize a new date-time object.

Syntax

OopType GciNewDateTime(theClass, timeVal)
OopType theClass;
const GciDateTimeSType *timeVal;

Input Arguments

theClass The class of the object to be created. theClass must be
OOP_CLASS_DATE_TIME or a subclass thereof.

timeVal The time value to be assigned to the newly-created object.

Return Value

Returns the OOP of the newly-created object. If an error occurs, returns OOP_ILLEGAL.

Description

Creates a new instance of theClass having the value that timeVal points to.
September 2011 VMware, Inc. 279

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciNewOop

Create a new GemStone object.

Syntax

OopType GciNewOop(oclass)
OopType oclass;

Input Arguments

oclass The OOP of the class of which the new object is an instance. This may be
the OOP of a class that you have created, or it may be one of the Smalltalk
kernel classes, such as OOP_CLASS_STRING for an object of class String.
Appendix A, “Reserved OOPs,” lists the C constants that are defined for
each of the Smalltalk kernel classes.

Return Value

Returns the OOP of the new object. In case of error, this function returns OOP_NIL.

Description

This function creates a new object of the specified class and returns the object’s OOP.

Example

OopType newSym;

newSym = GciNewOop(OOP_CLASS_SYMBOL);

See Also

GciNewOops, page 281
GciNewOopUsingObjRep, page 283
GciReleaseAllOops, page 336
GciReleaseOops, page 337
280 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciNewOops

Create multiple new GemStone objects.

Syntax

void GciNewOops(numOops, oclass, idxSize, result)
ArraySizeType numOops;
const OopType oclass[];
const unsigned long idxSize[];
OopType result[];

Input Arguments

numOops The number of new objects to be created.
oclass For each new object, the OOP of its class.
idxSize For each new object, the number of its indexed variables. If the specified

oclass of an object is not indexable, its idxSize is ignored.

Result Arguments

result An array of the OOPs of the new objects created with this function.

Return Value

If an error is encountered, this function will stop at the first error and the contents of the result array
will be undefined.

Description

This function creates multiple objects of the specified classes and sizes, and returns the OOPs of the
new objects.

Each OOP in oclass may be the OOP of a class that you have created, or it may be one of the
Smalltalk kernel classes, such as OOP_CLASS_STRING for an object of class String. If oclass
contains the OOP of a class with special implementation (such as Boolean), then the corresponding
element in result is OOP_NIL. Appendix A, “Reserved OOPs,” lists the C constants that are defined
for each of the Smalltalk kernel classes.
September 2011 VMware, Inc. 281

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciNewOops generates an error when either of the following conditions is TRUE for any object:

 • idxSize < 0
 • (idxSize + number_of_named_instance_variables) > maxSmallInt

Example

OopType classes[3];
OopType sizes[3];
OopType newObjs[3];

classes[0] = OOP_CLASS_STRING;
classes[1] = OOP_CLASS_IDENTITY_SET;
classes[2] = OOP_CLASS_ARRAY;
sizes[0] = 50;
sizes[1] = 0; /* ignored for NSCs anyway */
sizes[2] = 3;

GciNewOops(3, classes, sizes, newObjs);

See Also

GciNewOop, page 280
GciNewOopUsingObjRep, page 283
GciReleaseAllOops, page 336
GciReleaseOops, page 337
GciStoreTrav, page 392
282 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciNewOopUsingObjRep

Create a new GemStone object from an existing object report.

Syntax

void GciNewOopUsingObjRep(anObjectReport)
GciObjRepSType * anObjectReport;

Input Arguments

anObjectReport A pointer to an object report.

Result Arguments

anObjectReport A modified object report that contains the OOP of the new object
(hdr.objId), the object’s segment (hdr.segment), the number of named
instance variables in the object (hdr.namedSize), the updated number of the
object’s indexed variables (hdr.idxSize), and the object’s complete size (the
sum of its named and unnamed variables, hdr.objSize).

Description

This function allows you to submit an object report that creates a GemStone object and specifies the
values of its instance variables. You can use this function to define a String, pointer, or NSC object
with known OOPs.

The object report consists of two parts: a header (a GciObjRepHdrSType structure) followed by a
value buffer (an array of values of the object’s instance variables). For more information on object
reports, see “The Object Report Structure” on page 96.

NOTE:
This function is most useful with applications that are linked with GciRpc (the “remote
procedure call” version of GemBuilder). If your application will be linked with
GciLnk (the “linkable” GemBuilder), you’ll usually achieve best performance by
using the simple GciFetch... and GciStore... functions rather than object traversal.
For more information, see “GciRpc and GciLnk” on page 53.

GciNewOopUsingObjRep provides automatic byte swizzling for binary floats.
September 2011 VMware, Inc. 283

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
Error Conditions

In addition to general GemBuilder error conditions, this function generates an error if any of the
following conditions exist:

 • If (idxSize < 0)
 • If (idxSize + namedSize) > maxSmallInt
 • If firstOffset > (objSize + 1)
 • For pointer objects and NSCs, if valueBuffSize is not divisible by 4
 • If the specified oclass is not the OOP of a Smalltalk class object
 • If the specified oclass and implementation (objImpl) do not agree
 • If objId is a binary float, then startIndex must be one and valueBuffSize must be the actual size

for the class of objId.

Note that you cannot use this function to create new special objects (instances of SmallInteger,
Character, Boolean, or UndefinedObject).

Word Alignment

You must use the macro GCI_ALIGN to ensure that the object report’s value buffer begins at a word
boundary. For example:

buffsize = (long) GCI_ALIGN(sizeof(GciObjRepSType)) +
 (4 * tsize) + 1000;
284 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
Example

unsigned int buffsize;
int i;
char * myBytes;

buffsize = (long) GCI_ALIGN(sizeof(GciObjRepSType)) +

 (4 * tsize) + 1000;
myObject = (GciObjRepSType *) malloc(buffsize);
myObject->firstOffset = 1;
myObject->oclass = OOP_CLASS_STRING;
myObject->idxSize = (long)tsize;
myObject->segment = OOP_NIL;
myObject->objImpl = GC_FORMAT_BYTE;
myObject->valueBuffSize = (long)tsize;
myBytes = (char *)GCI_VALUE_BUFF(myObject);/* auto-aligns */
for (i = 0; i < tsize; i += 1) {
myBytes[i] = GCI_CHR_TO_OOP(i % 256);
}
GciNewOopUsingObjRep(myObject);

See Also

GciNewOop, page 280
GciReleaseAllOops, page 336
GciReleaseOops, page 337
GciTraverseObjs, page 411
September 2011 VMware, Inc. 285

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciNewString

Create a new String object from a C character string.

Syntax

OopType GciNewString(cString)
const char * cString;

Input Arguments

cString Pointer to a character string.

Return Value

The OOP of the newly created object.

Description

Returns a new instance of OOP_CLASS_STRING with the value that cString points to.
286 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciNewSymbol

Create a new Symbol object from a C character string.

Syntax

OopType GciNewSymbol(cString)
const char * cString;

Input Arguments

cString Pointer to a character string.

Return Value

The OOP of the newly-created object.

Description

Returns a new instance of OOP_CLASS_SYMBOL with the value that cString points to.
September 2011 VMware, Inc. 287

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciNscIncludesOop

Determines whether the given OOP is present in the specified unordered collection.

Syntax

BoolType GciNscIncludesOop(theNsc, theOop)
oopType theNsc;
oopType theOop;

Input Arguments

theNsc The unordered collection in which to search.
theOop The OOP to search for.

Return Value

True if the OOP was found; false otherwise.

Description

GciNscIncludesOop searches the specified unordered collection to determine if it includes the
specified object. It is equivalent to the GemStone Smalltalk method
NonsequenceableCollection >> includesIdentical:.
288 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
Example

OopType NscContainsOop(OopType nscOop, OopType anOop)
{

BoolType result;

if (!GciIsKindOfClass(nscOop, OOP_CLASS_IDENTITY_BAG))
return OOP_NIL; /* error: nscOop is not an NSC */

result = GciNscIncludesOop(nscOop, anOop);
if (result)

return OOP_TRUE;
else

return OOP_FALSE;
}

See Also

GciAddOopToNsc, page 103
GciAddOopsToNsc, page 104
GciRemoveOopFromNsc, page 339
GciRemoveOopsFromNsc, page 341
September 2011 VMware, Inc. 289

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciObjExists

Determine whether or not a GemStone object exists.

Syntax

BoolType GciObjExists(theObject)
OopType theObject;

Input Arguments

theObject The OOP of an object.

Return Value

Returns TRUE if theObject exists, FALSE otherwise.

Description

This function tests an OOP to see if the object to which it points is a valid object.
290 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciObjInCollection

Determine whether or not a GemStone object is in a Collection.

Syntax

BoolType GciObjInCollection(anObj, aCollection)
OopType anObj;
OopType aCollection;

Input Arguments

anObj The OOP of an object for which to check.
aCollection The OOP of a collection.

Return Value

Returns TRUE if anObj exists in aCollection, FALSE otherwise.

Description

Searches the specified collection for the specified object. If aCollection is an NSC (a kind of Bag
or Set), this is a tree lookup. If aCollection is a kind of Array or String, this is a sequential scan. This
function is equivalent to the Smalltalk method Object>>in:.
September 2011 VMware, Inc. 291

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciObjRepSize

Find the number of bytes in an object report.

Syntax

long GciObjRepSize(anObjectReport)
const GciObjRepHdrSType *anObjectReport;

Input Arguments

anObjectReport A pointer to an object report returned by GciFindObjRep.

Return Value

Returns the size of the specified object report.

Description

This function calculates the number of bytes in an object report. Before your application allocates
memory for a copy of the object report, it can call this function to obtain the size of the report.

NOTE
This function is most useful with applications that are linked with GciRpc (the “remote
procedure call” version of GemBuilder). If your application will be linked with
GciLnk (the “linkable” GemBuilder), you’ll usually achieve best performance by
using the simple GciFetch... and GciStore... functions rather than object traversal.
For more information, see “GciRpc and GciLnk” on page 53.

Example

OopType theOop;
long reportSize;
GciObjRepHdrSType * where;

where = GciFindObjRep(myBuff, theOop);
reportSize = GciObjRepSize(where);
292 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
See Also

GciFindObjRep, page 202
GciMoreTraversal, page 242
GciTraverseObjs, page 411
September 2011 VMware, Inc. 293

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GCI_OOP_IS_BOOL

(MACRO) Determine whether or not a GemStone object represents a Boolean value.

Syntax

GCI_OOP_IS_BOOL(theOop)

Input Arguments

theOop The OOP of the object to test.

Result Value

A C Boolean value. Returns TRUE if the object represents a Boolean, FALSE otherwise.

Description

This macro tests to see if theOop represents a Boolean value.

See Also

GCI_LONG_IS_SMALL_INT, page 237
GCI_OOP_IS_SMALL_INT, page 295
GCI_OOP_IS_SPECIAL, page 296
294 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GCI_OOP_IS_SMALL_INT

(MACRO) Determine whether or not a GemStone object represents a SmallInteger.

Syntax

GCI_OOP_IS_SMALL_INT(theOop)

Input Arguments

theOop The OOP of the object to test.

Result Value

A C Boolean value. Returns TRUE if the object represents a SmallInteger, FALSE otherwise.

Description

This macro tests to see if theOop represents a SmallInteger.

See Also

GCI_LONG_IS_SMALL_INT, page 237
GCI_OOP_IS_BOOL, page 294
GCI_OOP_IS_SPECIAL, page 296
September 2011 VMware, Inc. 295

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GCI_OOP_IS_SPECIAL

(MACRO) Determine whether or not a GemStone object has a special representation.

Syntax

GCI_OOP_IS_SPECIAL(theOop)

Input Arguments

theOop The OOP of the object to test.

Result Value

A C Boolean value. Returns TRUE if the object has a special representation, FALSE otherwise.

Description

This macro tests to see if theOop has a special representation.

See Also

GCI_LONG_IS_SMALL_INT, page 237
GCI_OOP_IS_BOOL, page 294
GCI_OOP_IS_SMALL_INT, page 295
296 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciOopToBool

Convert a Boolean object to a C Boolean value.

Syntax

BoolType GciOopToBool(theObject)
OopType theObject;

Input Arguments

theObject The OOP of the Boolean object to be translated into a C Boolean value.

Return Value

Returns the C Boolean value that corresponds to the GemStone object. In case of error, this function
returns FALSE.

Description

This function translates a GemStone Boolean object into the equivalent C Boolean value.

Example

BoolType aBool;
OopType theObj;

aBool = GciOopToBool(theObj);

See Also

GCI_BOOL_TO_OOP, page 113
September 2011 VMware, Inc. 297

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GCI_OOP_TO_BOOL

(MACRO) Convert a Boolean object to a C Boolean value.

Syntax

GciOopToBool(theObject)

Input Arguments

theObject The OOP of the Boolean object to be translated into a C Boolean value.

Result Value

A C Boolean value. Returns the C Boolean value that corresponds to the GemStone object. In case
of error, this macro returns FALSE.

Description

This macro translates a GemStone Boolean object into the equivalent C Boolean value.
GCI_OOP_TO_BOOL runs faster than the equivalent function, GciOopToBool. If the argument is
out of range for the result type, GciOopToBool is called to generate an error.

Example

BoolType aBool;
OopType theObj;

aBool = GCI_OOP_TO_BOOL(theObj);

See Also

GCI_BOOL_TO_OOP, page 113
298 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciOopToChr

Convert a Character object to a C character value.

Syntax

char GciOopToChr(theObject)
OopType theObject;

Input Arguments

theObject The OOP of the Character object to be translated into a C character value.

Return Value

Returns the C character value that corresponds to the GemStone object. In case of error, this
function returns zero.

Description

This function translates a GemStone Character object into the equivalent C character value.

Example

char aChar;
OopType theObj;

aChar = GciOopToChr(theObj);

See Also

GCI_CHR_TO_OOP, page 117
September 2011 VMware, Inc. 299

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GCI_OOP_TO_CHR

(MACRO) Convert a Character object to a C character value.

Syntax

GCI_OOP_TO_CHR(theObject)

Input Arguments

theObject The OOP of the Character object to be translated into a C character value.

Result Value

The GCI_OOP_TO_CHR macro returns the C character value that corresponds to the GemStone
object. In case of error, it returns zero.

Description

The GCI_OOP_TO_CHR macro translates a GemStone Character object into the equivalent C
character value.

Example

char aChar;
OopType theObj;

aChar = GCI_OOP_TO_CHR(theObj);

See Also

GCI_CHR_TO_OOP, page 117
GciOopToChr, page 299
300 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciOopToEncodedLong

Convert an OOP to a long integer encoded such that the value of the long is representable as a
SmallInteger.

Syntax

long GciOopToEncodedLong(theOop)
oopType theOop;

Input Arguments

theOop The OOP to be converted.

Return Value

The encoded long integer, or LONG_MAX if an error occurs.

Description

Converts an object pointer (OOP) to an instance of a long integer encoded such that the vale of the
long can be represented as a Smalltalk SmallInteger. The OOP must not be a special object such as
a SmallInteger, Boolean, or Character.

OOPS representing nonatomic objects can be represented in 30 bits; the correct mapping operation
can convert them to a C long integer without losing the information necessary to reconstitute them.

CAUTION
Manipulating objects as OOPs can result in nonexistent object errors,
invalid references, and a corrupted database.
September 2011 VMware, Inc. 301

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
Example

OopType OopToEncodedSmallInt(OopType theOop)
{

long encodedLong;

if (GCI_OOP_IS_SPECIAL(theOop) ||
/* specials are not allowed */

 GCI_OOP_IS_SMALL_INT(theOop))
/* neither are small ints */

return OOP_NIL;

encodedLong = GciOopToEncodedLong(theOop);
return GCI_LONG_TO_OOP(encodedLong);
/* guaranteed to be a small int */

}

See Also

GciEncodedLongToOop, page 150
302 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciOopToFlt

Convert a Float object to a C double value.

Syntax

double GciOopToFlt(theObject)
OopType theObject;

Input Arguments

theObject The OOP of the Float object to be translated into a C floating point value.

Return Value

Returns the C double precision value that corresponds to the GemStone object. In case of any error
other than HOST_ERR_INEXACT_PRECISION, this function returns a PlusQuietNaN.

Description

This function translates a GemStone Float object into the equivalent C double precision value.

If your C compiler’s floating point package doesn’t have a representation that corresponds to one of
the values listed below, GciOopToFlt may generate the following errors when converting
GemStone Float objects into C values:

HOST_ERR_INEXACT_PRECISION
when called to convert a number whose precision exceeds that of the C double type. This error
is not fielded by GemBuilder’s setjmp/longjmp mechanism. If you want to check for this error,
you must explicitly call GciErr after GciOopToFlt.

HOST_ERR_MAGNITUDE_OUT_OF_RANGE
when called to convert a number whose exponent is too large (or small) to be held in a C double
precision value

HOST_ERR_NO_PLUS_INFINITY
when called to convert a value of positive infinity

HOST_ERR_NO_MINUS_INFINITY
when called to convert a value of negative infinity
September 2011 VMware, Inc. 303

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
HOST_ERR_NO_PLUS_QUIET_NAN
when called to convert a positive quiet NaN

HOST_ERR_NO_MINUS_QUIET_NAN
when called to convert a negative quiet NaN

HOST_ERR_NO_PLUS_SIGNALING_NAN
when called to convert a positive signaling NaN

HOST_ERR_NO_MINUS_SIGNALING_NAN
when called to convert a negative signaling NaN

Example

OopType thePriceOop; /* The OOP of a product’s price */
double unitPrice; /* The price of the part */

unitPrice = GciOopToFlt(thePriceOop);

See Also

GciFltToOop, page 204
304 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciOopToLong

Convert a Gemstone object to a C long integer value.

Syntax

long GciOopToLong(theObject)
OopType theObject;

Input Arguments

theObject The OOP of the object to be translated into a C integer value.

Return Value

The GciOopToLong function returns the C long integer value that is equivalent to the value of
theObject.

Description

The GciOopToLong function translates a GemStone object into a C long integer value that has the
same value.

The object identified by theObject must be a SmallInteger, a LargePositiveInteger with a value less
than 2147483648, or a LargeNegativeInteger with a value greater than -2147483649. If the object
is not one of these kinds or it does not meet the value restrictions, GciOopToLong generates the
error OBJ_ERR_NOT_LONG.

Example

OopType anIntObject;
long val;

/* Intervening code goes here, in place of this comment */

val = GciOopToLong (anIntObject);
/* val now contains a long integer which has the same value
as the GemStone object indicated by anIntObject */
September 2011 VMware, Inc. 305

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
See Also

GciLongToOop, page 238
GCI_LONG_TO_OOP, page 240
GCI_OOP_TO_LONG, page 307
GciUnsignedLongToOop, page 420
306 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GCI_OOP_TO_LONG

(MACRO) Convert a GemStone object to a C long integer value.

Syntax

GCI_OOP_TO_LONG(theObject)

Input Arguments

theObject The OOP of the object to be translated into a C integer value.

Result Value

The GCI_OOP_TO_LONG macro returns the C long integer value that is equivalent to the value
of theObject.

Description

The GCI_OOP_TO_LONG macro translates a GemStone object into a C long integer value that
has the same value.

The object identified by theObject must be a SmallInteger, a LargePositiveInteger with a value less
than 2147483648, or a LargeNegativeInteger with a value greater than -2147483649. If the object
is not one of these kinds or it does not meet the value restrictions, GCI_OOP_TO_LONG generates
the error OBJ_ERR_NOT_LONG.

GCI_OOP_TO_LONG runs faster than the equivalent function, GciOopToLong, for
SmallIntegers.
September 2011 VMware, Inc. 307

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
Example

OopType anIntObject;
long val;

/* Intervening code goes here, in place of this comment */

val = GCI_OOP_TO_LONG(anIntObject);
/* val now contains a long integer which has the same value
as the GemStone object indicated by anIntObject */

See Also

GciLongToOop, page 238
GCI_LONG_TO_OOP, page 240
GciOopToLong, page 305
GciUnsignedLongToOop, page 420
308 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciOopToUnsignedLong

Convert a SmallInteger or LargePositiveInteger object to an unsigned long.

Syntax

BoolType GciOopToUnsignedLong(theObject,resultPtr)
OopType theObject;
unsigned long *resultPtr;

Input Arguments

theObject The OOP of the SmallInteger or LargePositiveInteger object to be
translated into a C unsigned long integer value.

Result Arguments

resultPtr The result of the conversion.

Return Value

The GciOopToUnsignedLong function returns TRUE if the conversion was performed
successfully, FALSE if the conversion failed (for example, if the argument is of the wrong class, is
negative, or is too large to be successfully converted). The contents of resultPtr are undefined if the
function returns FALSE.

Description

The GciOopToUnsignedLong function translates a GemStone SmallInteger or
LargePositiveInteger object into a C unsigned long integer that has the same value.

Unsigned longs may have values from 0 up to 2**32 - 1 (2147483648). All SmallInteger values fit
into this range but LargePositiveIntegers may exceed it.

This function is available from either an RPC or linked GCI.
September 2011 VMware, Inc. 309

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
Example

OopType anIntObject;
unsigned long val;

/* Intervening code goes here, in place of this comment */

GciOopToUnsignedLong (anIntObject, val);
/* val now contains an unsigned long integer which has the same
value as the GemStone object indicated by anIntObject */

See Also

GciLongToOop, page 238
GCI_LONG_TO_OOP, page 240
GciOopToLong, page 305
GCI_OOP_TO_LONG, page 307
GciUnsignedLongToOop, page 420
310 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciPathToStr

Convert a path representation from numeric to string.

Syntax

BoolType GciPathToStr(aClass, path, pathSize, maxResultSize, result)
OopType aClass;
const long path[];
ArraySizeType pathSize;
ArraySizeType maxResultSize;
char result[];

Input Arguments

aClass The class of the object for which this path will apply. That is, for each
instance of this class, store or fetch objects along the designated path.

path The path array to be converted to string format.
pathSize The number of integers in the path array.
maxResultSize The maximum allowable length of the resulting path string, excluding the

null terminator.

Result Arguments

result The resulting path string, terminated with a null character. The resulting
string is of the form foo.bar.name. Each element of the path string is
the name of an instance variable (that is, bar is an instance variable of foo,
and name is an instance variable of bar).

Return Value

Returns TRUE if the path array was successfully converted to a string. Returns FALSE otherwise.

Description

The GciPathToStr function converts the numeric representation of a path to its equivalent string
representation.
September 2011 VMware, Inc. 311

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
The functions GciFetchPaths and GciStorePaths allow you to specify paths along which to fetch
from, or store into, objects within an object tree.

A path may be represented as an array of integers, in which each step along the path is represented
by an integral offset from the beginning of an object. For example, an array containing the integers
5 and 2 would represent the offsets of the fifth and second instance variables, respectively.
Alternatively, a path may be represented as a string in which each element is the name of the
corresponding instance variable. For example, address.zip, in which zip is an instance variable of
address.

For more information about paths, see the discussion of the GciFetchPaths function on page 188.

NOTE
This function is most useful with applications that are linked with
GciRpc (the “remote procedure call” version of GemBuilder). If your
application will be linked with GciLnk (the “linkable” GemBuilder),
you’ll usually achieve best performance by using the simple GciFetch...
and GciStore... functions rather than object traversal. For more
information, see “GciRpc and GciLnk” on page 53.

Restrictions

Note that GciPathToStr can convert a numeric path only if:

 • The instance variables of the specified Smalltalk class (aClass) are constrained in such a way
that the path is guaranteed to be valid for all instances.

 • The path touches only named instance variables. If a path leads through the indexed variables
of some object, then no symbolic representation can be used.

If your application does not impose GemStone constraints on classes of all objects from which you
to fetch, or if you want to fetch from indexable objects, then you need to maintain your paths as
arrays of integers.

Error Conditions

The following errors may be generated by this function:

GCI_ERR_RESULT_PATH_TOO_LARGE
The result was larger than the specified maxResultSize.

RT_ERR_PATH_TO_STR_IVNAME
One of the instance variable offsets in the path array was invalid.

RT_ERR_STR_TO_PATH_CONSTRAINT
One of the instance variables in the path string was not sufficiently constrained.
312 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
Example

In the following example, assume that you’ve defined the class Component and populated the set
AllComponents, as shown in the example for the GciFetchVaryingOop function on page 195.

OopType aComponent;
long path[10];
ArraySizeType pathSize;
char result[100];

/* retrieve a random instance of class Component */
aComponent = GciExecuteStr(

"AllComponents select:[i|i.partnumber = 1234]");

path[0] = 3; /* 3 happens to be the offset of the cost instVar */
pathSize = 1;
GciPathToStr(GciFetchClass(aComponent), path, pathSize, 100,

result);

See Also

GciFetchPaths, page 188
GciStorePaths, page 387
GciStrToPath, page 404
September 2011 VMware, Inc. 313

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciPerform

Send a message to a GemStone object.

Syntax

OopType GciPerform(receiver, selector, args, numArgs)
OopType receiver;
const char selector[];
const OopType args[];
ArraySizeType numArgs;

Input Arguments

receiver The OOP of the receiver of the message.
selector A string that defines the message selector. For keyword selectors, all

keywords are concatenated in the string. (For example, at:put:).
args An array of OOPs. Each element in the array corresponds to an argument

for the message. If there are no message arguments, use a dummy OOP
here.

numArgs The number of arguments to the message. For unary selectors (messages
with no arguments), numArgs is zero.

Return Value

Returns the OOP of the result of Smalltalk execution. In case of error, this function returns
OOP_NIL.

Description

This function sends a message (that is, the selector along with any keyword arguments and their
corresponding values) to the specified receiver (an object in the GemStone database). Because
GciPerform calls the virtual machine, you can issue a soft break while this function is executing.
For more information, see “Interrupting GemStone Execution” on page 32.

The GciSendMsg function provides an alternate method of sending messages to GemStone objects.
For a comparison of those functions, see “Sending Messages to GemStone Objects” on page 30.
314 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
See Also

GciContinue, page 133
GciErr, page 152
GciExecute, page 154
GciNbContinue, page 251
GciNbExecute, page 255
GciNbPerform, page 265
GciNbPerformNoDebug, page 267
GciPerformNoDebug, page 316
GciPerformSymDbg, page 318
GciSendMsg, page 353
September 2011 VMware, Inc. 315

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciPerformNoDebug

Send a message to a GemStone object, and temporarily disable debugging.

Syntax

OopType GciPerformNoDebug(receiver, selector, args, numArgs, flags)
OopType receiver;
const char selector[];
const OopType args[];
ArraySizeType numArgs;
long flags;

Input Arguments

receiver The OOP of the receiver of the message.
selector A string that defines the message selector. For keyword selectors, all

keywords are concatenated in the string. (For example, at:put:).
args An array of OOPs. Each element in the array corresponds to an argument

for the message. If there are no message arguments, use a dummy OOP
here.

numArgs The number of arguments to the message. For unary selectors (messages
with no arguments), numArgs is zero.

flags Flags to disable or permit asynchronous events and debugging in Smalltalk.

Return Value

Returns the OOP of the result of Smalltalk execution. In case of error, this function returns
OOP_NIL.

Description

This function is a variant of GciPerform that is identical to it except for just one difference.
GciPerformNoDebug disables any breakpoints and single step points that currently exist in
GemStone while the message is executing. This feature is typically used while implementing a
Smalltalk debugger.
316 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
The value of flags should be given by using one or both of the following GemBuilder mnemonics:

 • GCI_PERFORM_FLAG_ENABLE_DEBUG makes GciPerformNoDebug behave like
GciPerform with respect to debugging.

 • GCI_PERFORM_FLAG_DISABLE_ASYNC_EVENTS disables asynchronous events.

These two can either be used alone or logically “or”ed together.

See Also

GciContinue, page 133
GciErr, page 152
GciExecute, page 154
GciNbContinue, page 251
GciNbExecute, page 255
GciNbPerform, page 265
GciNbPerformNoDebug, page 267
GciPerform, page 314
GciPerformSymDbg, page 318
GciSendMsg, page 353
September 2011 VMware, Inc. 317

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciPerformSymDbg

Send a message to a GemStone object, using a String object as a selector.

Syntax

OopType GciPerform(receiver, selector, args, numArgs, isNoDebug)
OopType receiver;
OopType selector;
const OopType args[];
ArraySizeType numArgs;
BoolType isNoDebug;

Input Arguments

receiver The OOP of the receiver of the message.
selector The OOP of a String object that defines the message selector. For keyword

selectors, all keywords are concatenated in the String. (For example,
at:put:).

args An array of OOPs. Each element in the array corresponds to an argument
for the message. If there are no message arguments, use a dummy OOP
here.

numArgs The number of arguments to the message. For unary selectors (messages
with no arguments), numArgs is zero.

isNoDebug A flag to disable or permit debugging in Smalltalk.

Return Value

Returns the OOP of the result of Smalltalk execution. In case of error, this function returns
OOP_NIL.

Description

If the isNoDebug flag is FALSE, this function is a variant of GciPerform; if the flag is TRUE, this
function is a variant of GciPerformNoDebug. In either case, its operation is identical to the other
function. The difference is that GciPerformSymDbg takes an OOP as its selector instead of a C
string.
318 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
See Also

GciContinue, page 133
GciErr, page 152
GciExecute, page 154
GciPerform, page 314
GciPerformNoDebug, page 316
GciSendMsg, page 353
September 2011 VMware, Inc. 319

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciPerformTrav

First send a message to a GemStone object, then traverse the result of the message.

Syntax

BoolType GciPerformTrav(receiver, selector, args, numArgs, travBuff, level)
OopType receiver;
const char * selector;
const OopType * args;
unsigned int numArgs;
struct * travArgs;

Input Arguments

receiver The OOP of the receiver of the message.
selector The OOP of a String object that defines the message selector. For keyword

selectors, all keywords are concatenated in the String. (For example,
at:put:).

args An array of OOPs. Each element in the array corresponds to an argument
for the message. If there are no message arguments, use a dummy OOP
here.

numArgs The number of arguments to the message. For unary selectors (messages
with no arguments), numArgs is zero.

travArgs Pointer to a GciClampedTravArgsSType structure. See the
GciClampedTrav function for documentation of the fields in travArgs.

Result Arguments

The result of the GciPerform is the first object in the resulting travBuffs field in travArgs.

Return Value

Returns TRUE if the result is complete and no errors occurred. Returns FALSE if the traversal is not
yet completed. You can then call GciMoreTraversal to proceed, if there is no GciError.
320 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
Description

This function is does the equivalent of a GciPerform using the first four arguments, and then
performs a GciClampedTrav, starting from the result of the perform, and doing a traversal as
specified by travArgs. In all GemBuilder traversals, objects are traversed post depth first.

See Also

GciPerform, page 314
GciClampedTrav, page 118
September 2011 VMware, Inc. 321

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciPerformTraverse

First send a message to a GemStone object, then traverse the result of the message.

Syntax

BoolType GciPerformTraverse(receiver, selector, args, numArgs, travBuff, level)
OopType receiver;
const char selector[];
const OopType args[];
unsigned int numArgs;
ByteType travBuff[];
long level;

Input Arguments

receiver The OOP of the receiver of the message.
selector The OOP of a String object that defines the message selector. For keyword

selectors, all keywords are concatenated in the String. (For example,
at:put:).

args An array of OOPs. Each element in the array corresponds to an argument
for the message. If there are no message arguments, use a dummy OOP
here.

numArgs The number of arguments to the message. For unary selectors (messages
with no arguments), numArgs is zero.

level Maximum traversal depth. When the level is 1, an object report is written
to the traversal buffer for each element in theOops. When level is 2, an
object report is also obtained for the instance variables of each level-1
object. When level is 0, the number of levels in the traversal is not
restricted.

Result Arguments

travBuff A buffer in which the results of the traversal are placed
322 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
Return Value

Returns FALSE if the traversal is not yet completed, but further traversal would cause the
travBuffSize to be exceeded. If the travBuffSize is reached before the traversal is complete, you can
then call GciMoreTraversal to proceed from the point where travBuffSize was exceeded.

Returns TRUE if there are no more objects to be returned by subsequent calls to GciMoreTraversal.

Description

Consider the following function call:

BoolType atEnd;

atEnd = GciPerformTraverse(receiver, selector, args, numArgs,
 travBuff, level);

It is equivalent to the following code:

BoolType result;
OopType tmp[1];

*tmp = GciPerform(receiver, selector, args, numArgs);
atEnd = GciTraverseObjs(tmp, 1, travBuff, level);

GciPerformTraverse provides automatic byte swizzling for binary floats.

See Also

GciContinue, page 133
GciErr, page 152
GciExecute, page 154
GciFindObjRep, page 202
GciMoreTraversal, page 242
GciNewOopUsingObjRep, page 283
GciObjRepSize, page 292
GciPerform, page 314
GciPerformNoDebug, page 316
GciPerformSymDbg, page 318
GciSendMsg, page 353
September 2011 VMware, Inc. 323

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciStoreTrav, page 392
GciTraverseObjs, page 411
324 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciPollForSignal

Poll GemStone for signal errors without executing any Smalltalk methods.

Syntax

BoolType GciPollForSignal()

Return Value

This function returns TRUE if a signal error or an asynchronous error exists, and FALSE otherwise.

Description

GemStone permits selective response to signal errors: RT_ERR_SIGNAL_ABORT,
RT_ERR_SIGNAL_COMMIT, and RT_ERR_SIGNAL_GEMSTONE_SESSION. The default
condition is to leave them all invisible. GemStone responds to each single kind of signal error only
after an associated method of class System has been executed: enableSignaledAbortError,
enableSignaledObjectsError, and enableSignaledGemStoneSessionError
respectively.

After GciInit executes successfully, the GemBuilder default condition also leaves all signal errors
invisible. The GciPollForSignal function permits GemBuilder to check signal errors manually.
However, GemStone must respond to each kind of error in order for GemBuilder to respond to it.
Thus, if an application calls GciPollForSignal, then GemBuilder can check exactly the same kinds
of signal errors as GemStone responds to. If GemStone has not executed any of the appropriate
System methods, then this call has no effect until it does.

GemBuilder treats any signal errors that it finds just like any other errors, through GciErr or the
longjmp mechanism, as appropriate. Instead of checking manually, these errors can be checked
automatically by calling the GciEnableSignaledErrors function.

GciPollForSignal also detects any asynchronous errors whenever they occur, including but not
limited to the following errors: ABORT_ERR_LOST_OT_ROOT,
GS_ERR_SHRPC_CONNECTION_FAILURE, GS_ERR_STN_NET_LOST,
GS_ERR_STN_SHUTDOWN, and GS_ERR_SESSION_SHUTDOWN.
September 2011 VMware, Inc. 325

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
See Also

GciEnableSignaledErrors, page 148
GciErr, page 152
326 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciPopErrJump

Discard a previously saved error jump buffer.

Syntax

void GciPopErrJump(jumpBuffer)
jmp_buf jumpBuffer;

Input Arguments

jumpBuffer A pointer to a jump buffer specified in an earlier call to GciPushErrJump
or GciPushErrHandler.

Description

This function discards one or more jump buffers that were saved with earlier calls to
GciPushErrJump or GciPushErrHandler. Your program must call this function when a saved
execution environment is no longer useful for error handling.

GemBuilder maintains a stack of error jump buffers. After your program calls GciPopErrJump,
the jump buffer at the top of the stack will be used for subsequent GemBuilder error handling. If no
jump buffers remain, your program will need to call GciErr and test for errors locally.

To pop multiple jump buffers in a single call to GciPopErrJump, specify the jumpBuffer argument
from an earlier call to GciPushErrJump or GciPushErrHandler. See the following example.
September 2011 VMware, Inc. 327

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
Example

/* Assume that jump buffers 1-4 are all local to the same
function. */

GciPushErrJump (jumpBuff1);

/* Intervening code goes here, in place of this comment */

GciPushErrJump (jumpBuff2);

/* Intervening code goes here, in place of this comment */

GciPushErrJump (jumpBuff3);

/* Intervening code goes here, in place of this comment */

GciPushErrJump (jumpBuff4);

/* Intervening code goes here, in place of this comment */

GciPopErrJump (jumpBuff1); /* pops buffers 1-4 */

See Also

GciErr, page 152
GciPushErrJump, page 332
GciPushErrHandler, page 331
GciSetErrJump, page 356
328 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciProcessDeferredUpdates

Process deferred updates to objects that do not allow direct structural update.

Syntax

long GciProcessDeferredUpdates(void)

Return Value

Returns the number of objects that had deferred updates.

Description

This function processes updates to instances of classes that have the noStructuralUpdate bit set,
including AbstractDictionary, Bag, Set, and their subclasses. After operations that modify an
instance of once of these classes, either GciProcessDeferredUpdates must be called, or the final
GciStoreTrav must have GCI_STORE_TRAV_FINISH_UPDATES set.

The following GemBuilder calls operate on instances whose classes have noStructuralUpdate set:
GciCreateOopObj, GciStoreTrav, GciStore...Oops, GciAdd...Oops, GciReplace...Oops.
Behavior of other GemBuilder update calls on such instances is undefined.

An attempt to commit automatically executes a deferred update.

Executing a deferred update before all forward references are resolved can produce errors that
require the application to recover by doing a GciAbort or GciLogout.

An OOP buffer used to update the varying portion of an object with noStructuralUpdate must
contain the OOPs to be added to the varying portion of the object, with two exceptions:

 • If the object is a kind of KeyValueDictionary that does not store Associations, the buffer must
contain (key, value) pairs.

 • If the object is a kind of AbstractDictionary that stores Associations or (key, Association) pairs,
the value buffer must contain Associations.

See Also

GciStoreTrav, page 392
September 2011 VMware, Inc. 329

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciProduct

Return an 8-bit unsigned integer that indicates the GemStone/S product.

Syntax

unsigned char GciProduct();

Return Value

Returns an 8-bit unsigned integer indicating the GemStone/S product to which the client library
belongs. Currently-defined integers are:

1 — GemStone/S

2 — GemStone/S 2G

3 — GemStone/S

Description

GciProduct allows a GemBuilder client to determine which GemStone/S product it is talking to.
Combined with GciVersion, it allows the client to adapt to differences between GemBuilder features
across different products and versions.

Although GciProduct can be used by any GemBuilder client, it is specifically provided for the use
of GemBuilder for Smalltalk.

Future products in the GemStone/S line will be assigned integers beginning with 4.

The integer zero is reserved, and will never be assigned to any product.

See Also

GciVersion, page 425
330 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciPushErrHandler

Associate GemBuilder error handling with a jump buffer by pushing a jump buffer onto the stack.

Syntax

void GciPushErrHandler(jumpBuffer)
GCI_SIG_JMP_BUF_TYPEjumpBuffer;

Input Arguments

jumpBuffer A pointer to a jump buffer.

Description

The GciPushErrHandler function pushes jumpBuffer onto the stack of GemBuilder jump buffers.
You must prepare jumpBuffer for pushing by calling GCI_SETJMP(jumpBuffer) before calling
GciPushErrHandler. You must also declare jumpBuffer as type GCI_SIG_JMP_BUF_TYPE in
your application.

As long as jumpBuffer is on the stack, GciPushErrHandler offers a performance gain over
GciPushErrJump, not only in error processing, but in every call to a GemBuilder function.

To use jumpBuffer for a long jump in your application (once it is pushed), call the macro
GCI_LONGJMP. The block of code that fields the long jump must not call GCI_LONGJMP itself.
If that code also processes an error, then it must call the GciHandleError function as its first action.
Failure to meet this requirement will result in unpredictable program behavior.

Example

For an illustration of the use of GciPushErrHandler, refer to the example for the GciHandleError
function on page 213.

See Also

GciHandleError, page 213
September 2011 VMware, Inc. 331

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciPushErrJump

Associate GemBuilder error handling with a jump buffer by pushing a jump buffer onto the stack.

Syntax

void GciPushErrJump(jumpBuffer)
jmp_buf jumpBuffer;

Result Arguments

jumpBuffer A pointer to a jump buffer, as described below.

Description

This function allows your application program to take advantage of the setjmp/longjmp error-
handling mechanism from within any GemBuilder function call. However, you cannot use this
mechanism to handle errors within GciPushErrJump itself, or within the related functions
GciPopErrJump and GciSetErrJump.

When your program calls setjmp, the context of the C environment is saved in a jump buffer that
you designate. To associate subsequent GemBuilder error handling with that jump buffer, you
would then call GciPushErrJump.

GemBuilder maintains a stack of up to 20 error jump buffers. A buffer is pushed onto the stack when
GciPushErrJump is called, and popped when GciPopErrJump is called. When an error occurs
during a GemBuilder call, the GemBuilder function causes a longjmp to the buffer currently at the
top of GemBuilder’s error jump stack, and pops that buffer from the stack. At that time, the previous
environment is restored.

For functions with local error recovery, your program can call GciSetErrJump to temporarily
disable the setjmp/longjmp error handling mechanism (and to re-enable error handling afterwards).

Whenever the jump stack is empty, you must use GciErr to field any GemBuilder errors.

The setjmp and longjmp functions are described in your C compiler documentation.

Example

The pseudo-code in this example illustrates two distinct error jumps: one to handle any application-
dependent errors, and a second to handle any GemBuilder errors. After setting up the error jumps,
332 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
the program instructs GemBuilder to use jumpBuf2 on any error, then enters a while loop getting
and doing work.

myFunction () {
OopType oString, myErrors;
jmp_buf jumpBuf1, jumpBuf2;
GciErrSType error;

/* Assume that you have created the GemStone Dictionary

myErrors, which contains your user-defined English-
language error messages. Obtain the OOP of myErrors
for subsequent use in error handling. */

myErrors = GciExecuteStr("myErrors", OOP_NIL)

/* Intervening code goes here, in place of this comment */

/* Note that setjmp returns 0 when first called. Thus, the

following error-handling code is skipped the first time
through. */

/* trap application-dependent errors here, using longjmp */
if (setjmp (jumpBuf1)) {

/* do error handling */
}

/* trap GemBuilder errors here */
if (setjmp (jumpBuf2)) {

GciErr(&error);
switch(error.category) {

case OOP_COMPILER_ERROR_CAT:
/* do something */
break;

case OOP_RUNTIME_ERROR_CAT:
switch (error.number) {

case ErrMnemonic1:
/* do something */
break;

case ErrMnemonic2:
/* do something */
break;
September 2011 VMware, Inc. 333

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
case default:
/* do something */
break;

}
break;

case OOP_ABORTING_ERROR_CAT:
/* do something */
break;

case OOP_FATAL_ERROR_CAT:
/* do something */
break;

case myErrors:
switch (error.number) {

case ErrMnemonic3:
/* do something */
break;

case default:
/* do something */

}
break;

default:
/* do something */

}
}
/* arm (or rearm) GemBuilder to use jumpBuf2 for error handling */
GciPushErrJump (jumpBuf2);

while (true) {

/* Now do some work. When an error occurs during a
 GemBuilder call, control is passed to the jumpBuf2
 error handler. */

}
}

See Also

GciErr, page 152
GciPopErrJump, page 327
GciSetErrJump, page 356
334 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciRaiseException

Signal an error, synchronously, within a user action.

Syntax

void GciRaiseException(err)
GciErrSType * err;

Input Arguments

err A pointer to the error type to raise.

Description

When executed from within a user action, this function raises an exception and passes the given error
to the error signalling mechanism, causing control to return to Smalltalk.

This function has no effect when executed outside of a user action.
September 2011 VMware, Inc. 335

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciReleaseAllOops

Mark all imported GemStone OOPs as eligible for garbage collection.

Syntax

void GciReleaseAllOops()

Description

The GciReleaseAllOops function removes all OOPs from the user session’s export set, thus
permitting GemStone to consider removing them as a result of garbage collection. Objects that are
connected to persistent objects are not removed during garbage collection, even if they are not in the
export set. It is typical usage to call GciReleaseAllOops after successfully committing a
transaction.

The GciSaveObjs function may be used to make objects ineligible for garbage collection. Note that
results of the GciNew..., GciCreate..., GciSendMsg, GciPerform..., and GciExecute... functions
are automatically ineligible. You must release those objects explicitly if they are to be eligible.

WARNING!
Before releasing all objects, be sure that you do not need to retain any of them for any
reason.

See Also

“Garbage Collection” on page 49
GciReleaseOops, page 337
GciSaveObjs, page 352
336 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciReleaseOops

Mark an array of GemStone OOPs as eligible for garbage collection.

Syntax

void GciReleaseOops(theOops, numOops)
const OopType theOops[];
ArraySizeType numOops;

Input Arguments

theOops An array of OOPs. Each element of the array corresponds to an object to
be released.

numOops The number of elements in theOops.

Description

The GciReleaseOops function removes the specified OOPs from the user session’s export set, thus
permitting GemStone to remove them as a result of garbage collection.

The GciSaveObjs function may be used to make objects ineligible for garbage collection. Note that
results of the GciNew..., GciCreate..., GciSendMsg, GciPerform..., and GciExecute... functions
are automatically ineligible. You must release those objects explicitly if they are to be eligible.

CAUTION
Before releasing any of your objects, be sure that you do not need to retain them for
any reason.

Example

OopType obj[2];

obj[0] = GciFetchOop(OOP_CLASS_ARRAY);
printf("%ld\n", obj[0]);
obj[1] = GciFetchOop(obj[0],1);
printf("%ld\n", obj[1]);
GciReleaseOops(obj, 2);
September 2011 VMware, Inc. 337

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
See Also

“Garbage Collection” on page 49
GciReleaseAllOops, page 336
GciSaveObjs, page 352
338 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciRemoveOopFromNsc

Remove an OOP from an NSC.

Syntax

BoolType GciRemoveOopFromNsc(theNsc, theOop)
OopType theNsc;
OopType theOop;

Input Arguments

theNsc The OOP of the NSC from which to remove an OOP.
theOop The OOP of the object to be removed.

Result Arguments

theNsc The OOP of the modified NSC.

Return Value

Returns FALSE if theOop was not present in the NSC. Returns TRUE if theOop was present in the
NSC.

Description

This function removes an OOP from the unordered variables of an NSC, using structural access.
September 2011 VMware, Inc. 339

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
Example

int i;
OopType oNscObject;
OopType oNum;
BoolType rmvd;

for (i = 0; i < 6; i++) {
oNum = GciLongToOop((long) i);
rmvd = GciRemoveOopFromNsc(oNscObject, oNum);
}

See Also

GciAddOopToNsc, page 103
GciAddOopsToNsc, page 104
GciNscIncludesOop, page 288
GciRemoveOopsFromNsc, page 341
340 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciRemoveOopsFromNsc

Remove one or more OOPs from an NSC.

Syntax

BoolType GciRemoveOopsFromNsc(theNsc, theOops, numOops)
OopType theNsc;
const OopType theOops[];
ArraySizeType numOops;

Input Arguments

theNsc The OOP of the NSC from which to remove the OOPs.
theOops The array of OOPs to be removed from the NSC.
numOops The number of OOPs to remove.

Result Arguments

theNsc The OOP of the modified NSC.

Return Value

Returns FALSE if any element of theOops was not present in the NSC. Returns TRUE if all
elements of theOops were present in the NSC.

Description

This function removes multiple OOPs from the unordered variables of an NSC, using structural
access. If any individual OOP is not present in the NSC, this function returns FALSE, but it still
removes all OOPs that it finds in the NSC.
September 2011 VMware, Inc. 341

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
Example

ArraySizeType remove_cnt = 6;
OopType oNscObject;
OopType bigptrs[L_SUB_SIZE];
BoolType all_rmvd;

all_rmvd = GciRemoveOopsFromNsc(oNscObject, bigptrs, remove_cnt);

See Also

GciAddOopToNsc, page 103
GciAddOopsToNsc, page 104
GciNscIncludesOop, page 288
GciRemoveOopFromNsc, page 339
342 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciReplaceOops

Replace all instance variables in a GemStone object.

Syntax

void GciReplaceOops(theObj, theOops, numOops)
OopType theObj;
const OopType theOops[];
ArraySizeType numOops;

Input Arguments

theOops The array of OOPs used as the replacements.
numOops The number of OOPs in theOops.

Result Arguments

theObj The object whose instance variables are replaced.

Description

GciReplaceOops uses structural access to replace all the instance variables in the object. However,
it does so in a context that is external to the object. Hence, it completely ignores private named
instance variables in its operation.

If theObj is of fixed size, then it is an error for numOops to be of a different size. If theObj is of a
variable size, then it is an error for numOops to be of a size smaller than the number of named
instance variables (namedSize) of the object. For variable-sized objects, GciReplaceOops resets the
number of unnamed variables to numOops - namedSize.

GciReplaceOops is not recommended for use with variable-sized objects unless they are indexable
or are NSCs. Other variable-sized objects, such as KeyValue dictionaries, do not store values at
fixed offsets.
September 2011 VMware, Inc. 343

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
See Also

GciReplaceVaryingOops, page 345
GciStoreIdxOops, page 376
GciStoreNamedOops, page 380
GciStoreOops, page 384
344 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciReplaceVaryingOops

Replace all unnamed instance variables in an NSC object.

Syntax

void GciReplaceVaryingOops(theNsc, theOops, numOops)
OopType theNsc;
const OopType theOops[];
ArraySizeType numOops;

Input Arguments

theOops The array of objects used as the replacements.
numOops The number of objects in theOops.

Result Arguments

theNsc The NSC object whose unnamed instance variables are replaced.

Description

GciReplaceVaryingOops uses structural access to replace all unnamed instance variables in the
NSC object.

See Also

GciReplaceOops, page 343
GciStoreIdxOops, page 376
GciStoreNamedOops, page 380
GciStoreOops, page 384
September 2011 VMware, Inc. 345

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciResolveSymbol

Find the OOP of the object to which a symbol name refers, in the context of the current session’s
user profile.

Syntax

OopType GciResolveSymbol(cString, symbolList)
const char * cString;
OopType symbolList;

Input Arguments

cString The name of a symbol as a character string.
symbolList The OOP of an instance of OOP_CLASS_SYMBOL_LIST or OOP_NIL.

Return Value

The OOP of the object that corresponds to the specified symbol.

Description

Attempts to resolve the symbol name cString using symbol list symbolList. If symbolList is
OOP_NIL, this function searches the symbol list in the user’s UserProfile. If the symbol is not found
or an error is generated, the result is OOP_ILLEGAL. If result is OOP_ILLEGAL and GciErr
reports no error, then the symbol could not be resolved using the given symbolList. If an error such
as an authorization error occurs, the result is OOP_ILLEGAL and the error is accessible by GciErr.

This function is similar to GciResolveSymbolObj, except that the symbol argument is a C string
instead of an object identifier.

See Also

GciResolveSymbolObj, page 347
346 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciResolveSymbolObj

Find the OOP of the object to which a symbol object refers, in the context of the current session’s
user profile.

Syntax

OopType GciResolveSymbolObj(aSymbolObj, symbolList)
OopType aSymbolObj;
OopType symbolList;

Input Arguments

aSymbolObj The OOP of a kind of String. That is, this object’s class must be
OOP_CLASS_STRING or a subclass thereof.

symbolList The OOP of an instance of OOP_CLASS_SYMBOL_LIST or OOP_NIL.

Return Value

The OOP of the object that corresponds to the specified symbol.

Description

Attempts to resolve aSymbolObj using symbol list symbolList. If symbolList is OOP_NIL, this
function searches the symbol list in the user’s UserProfile. If the symbol is not found or an error is
generated, the result is OOP_ILLEGAL. If the result is OOP_ILLEGAL and GciErr reports no
error, then the symbol could not be resolved using the given symbolList. If an error such as an
authorization error occurs, the result is OOP_ILLEGAL and the error is accessible by GciErr.

This function is similar to GciResolveSymbol, except that the symbol argument is an object
identifier instead of a C string.

See Also

GciResolveSymbol, page 346
September 2011 VMware, Inc. 347

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciRtlIsLoaded

Report whether a GemBuilder library is loaded.

Syntax

BoolType GciRtlIsLoaded()

Return Value

Returns TRUE if a GemBuilder library is loaded and FALSE if not.

Description

The GciRtlIsLoaded function reports whether an executable has loaded one of the versions of
GemBuilder. The GemBuilder library files are dynamically loaded at run time. See “The
GemBuilder Shared Libraries” on page 54 for more information.

See Also

GciRtlLoad, page 349
GciRtlUnload, page 351
348 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciRtlLoad

Load a GemBuilder library.

Syntax

BoolType GciRtlLoad(useRpc, path, errBuf[], errBufSize)
BoolType useRpc
const char * path
char errBuf[]
ArraySizeType errBufSize

Input Arguments

useRpc A flag to specify the RPC or linked version of GemBuilder.
path A list of directories (separated by ;) to search for the GemBuilder library.
errBuf A buffer to store any error message.
errBufSize The size of errBuf.

Return Value

Returns TRUE if a GemBuilder library loads successfully. If the load fails, the “The GemBuilder
Shared Libraries” on page 3-2return value is FALSE, and a null-terminated error message is stored
in errBuf, unless errBuf is NULL.

Description

The GciRtlLoad function attempts to load one of the GemBuilder libraries. If useRpc is TRUE, the
RPC version of GemBuilder is loaded. If useRpc is FALSE, the linked version of GemBuilder is
loaded. See “The GemBuilder Shared Libraries” on page 54 for more information.

If path is not NULL, it must point to a list of directories to search for the library to load. If path is
NULL, then a default path is searched.

If a GemBuilder library is already loaded, the call fails.
September 2011 VMware, Inc. 349

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
See Also

GciRtlIsLoaded, page 348
GciRtlUnload, page 351
350 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciRtlUnload

Unload a GemBuilder library.

Syntax

void GciRtlUnload()

Description

The GciRtlUnload function causes the library loaded by GciRtlLoad to be unloaded. Once the
current library is unloaded, GciRtlLoad can be called again to load a different GemBuilder library.
See “The GemBuilder Shared Libraries” on page 54 for more information.

See Also

GciRtlLoad, page 349
GciRtlIsLoaded, page 348
September 2011 VMware, Inc. 351

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciSaveObjs

Mark an array of OOPs as ineligible for garbage collection.

Syntax

void GciSaveObjs(theOops, numOops)
const OopType theOops[];
ArraySizeType numOops;

Input Arguments

theOops An array of OOPs.
numOops The number of elements in theOops.

Description

The GciSaveObjs function places the specified OOPs in the user session’s export set, thus
preventing GemStone from removing them as a result of garbage collection. GciSaveObjs can add
any OOP to the export set.

The GciSaveObjs function does not itself make objects persistent, and it does not create a reference
to them from a persistent object so that the next commit operation will try to do so either. It only
protects them from garbage collection.

Note that results of the GciNew..., GciCreate..., GciSendMsg, GciPerform..., and GciExecute...
functions are automatically added to the export set. The GciRelease... functions may be used to
make objects eligible for garbage collection.

See Also

“Garbage Collection” on page 49
GciAddSaveObjsToReadSet, page 105
GciReleaseAllOops, page 336
GciReleaseOops, page 337
352 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciSendMsg

Send a message to a GemStone object.

Syntax

OopType GciSendMsg(receiver, numMsgParts, msgParts, ...)
OopType receiver;
unsigned int numMsgParts;
const char msgParts[], ...;

Input Arguments

receiver The OOP of the receiver of the message.
numMsgParts The number of parts to the message (the selector, plus any keywords and

their arguments). For unary selectors (messages with no arguments),
numMsgParts is 1. For keyword selectors, numMsgParts is always even
(one value corresponding to each keyword).

msgParts A variable number of arguments. For unary selectors, this is a single string.
For keyword selectors, this is a series of strings (the keywords themselves)
and OOPs (the values corresponding to each keyword). For example:
"at:", oKey, "put:", oValue.

Return Value

Returns the OOP of the message result. In case of error, this function returns OOP_NIL.

Description

This function sends a message (that is, the selector along with any keyword arguments and their
corresponding values) to the specified receiver (an object in the GemStone database). Because
GciSendMsg calls the virtual machine, you can issue a soft break while this function is executing.
For more information, see “Interrupting GemStone Execution” on page 32.

The GciPerform function provides an alternate method of sending messages to GemStone objects.
For a comparison of those functions, see “Sending Messages to GemStone Objects” on page 30.
September 2011 VMware, Inc. 353

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
Example

OopType theIdOop; /* The OOP of an identifier string */

theIdOop = GciNewOop(OOP_CLASS_STRING);
GciStoreBytes(theIdOop, 1L, id, (long)strlen(id));
ourPart = GciSendMsg(partOOP, 2, "newWithId:", theIdOop);

The following example uses GciSendMsg to create a new subclass of Object called TestClass:

theNewClass = GciNewOop(OOP_CLASS_STRING);
GciStoreBytes(theNewClass, 1L, "TestClass", 9);

theDict = GciExecuteStr(

"^ (System myUserProfile symbolList at: 1)", OOP_NIL);

oArray = GciNewOop(OOP_CLASS_ARRAY);
oTestClass = GciSendMsg(OOP_CLASS_OBJECT, 14L, "subclass:",
theNewClass, "instVarNames:", oArray, "classVarNames:",
oArray, "poolDictionaries:", oArray, "inDictionary:", theDict,
"constraints:", oArray, "isInvariant:", OOP_FALSE);

Here are some other illustrations of GciSendMsg calls:

oString = GciSendMsg(oValue, 1, "asString");
oValue = GciSendMsg(oDict, 4, "at:", oKey, "ifAbsent:", oBlock);

See Also

GciContinue, page 133
GciErr, page 152
GciExecute, page 154
GciPerform, page 314
354 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciSessionIsRemote

Determine whether or not the current session is using a Gem on another machine.

Syntax

BoolType GciSessionIsRemote()

Return Value

The GciSessionIsRemote function returns TRUE if the current GemBuilder session is connected to
a remote Gem. It returns FALSE if the current GemBuilder session is connected to a linked Gem.

GciSessionIsRemote raises an error if the current session is invalid.
September 2011 VMware, Inc. 355

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciSetErrJump

Enable or disable the current error handler.

Syntax

BoolType GciSetErrJump(aBoolean)
BoolType aBoolean;

Input Arguments

aBoolean TRUE enables error jumps to the execution environment saved by the most
recent GciPushErrJump or GciPushErrHandler; FALSE disables error
jumps.

Return Value

Returns TRUE if error handling was previously enabled for the jump buffer at the top of the error
jump stack. Returns FALSE if error handling was previously disabled. If your program has no
buffers saved in its error jump stack, this function returns FALSE. (This function cannot generate
an error.)

For most GemBuilder functions, calling GciErr after a successful function call will return zero (that
is, false). In such cases, the GciErrSType error report structure will contain some default values.
(See the GciErr function on page 152 for details.) However, a successful call to GciSetErrJump
does not alter any previously existing error report information. That is, calling GciErr after a
successful call to GciSetErrJump will return the same error information that was present before this
function was called.

Description

This function enables or disables the error handler at the top of GemBuilder’s error jump stack.
356 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
Example

myFunction() {
BoolType prevValue;
GciErrSType error;

prevValue = GciSetErrJump(FALSE);
/* disable error jumps and save the previous setting */

/* Intervening code goes here, in place of this comment */

if (GciErr(&error)) /* handle any errors locally */

localHandler;

/* Intervening code goes here, in place of this comment */

GciSetErrJump(prevValue); /* reset error jump flag */

/* Intervening code goes here, in place of this comment */

GciErr(&error); /* returns PREVIOUS error */
}

See Also

GciErr, page 152
GciPopErrJump, page 327
GciPushErrJump, page 332
GciPushErrHandler, page 331
September 2011 VMware, Inc. 357

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciSetNet

Set network parameters for connecting the user to the Gem and Stone processes.

Syntax

void GciSetNet(StoneName, HostUserId, HostPassword, GemService)
const char StoneName[];
const char HostUserId[];
const char HostPassword[];
const char GemService[];

Input Arguments

StoneName Network resource string for the database monitor process.
HostUserId Login name.
HostPassword Password of the user.
GemService Network resource string for the GemStone service.

Description

Your application, your GemStone session (Gem), and the database monitor (Stone) can all run in
separate processes, on separate machines in your network. The GciSetNet function specifies the
network parameters that are used to connect the current user to GemStone on the host, whenever
GciLogin is called. Network resource strings specify the information needed to establish
communications between these processes (see Appendix B, “Network Resource String Syntax”).
See the System Administration Guide for GemStone/S for complete information on the network
environment.

StoneName identifies the name and network location of the database monitor process (Stone), which
is the final arbiter of all sessions that access a specific database. Every session must communicate
with a Stone, in both linked and remote applications. Hence, StoneName is a required argument.

A Stone process called “gemserver41” on node “lichen” could be described in a network resource
string as:

!tcp@lichen!gemserver41

A Stone of the same name that is running on the same machine as the application could be described
in shortened form simply as:
358 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
gemserver41

GemService identifies the name and network location of the GemStone service that creates a session
process (Gem), which then arbitrates data access between the database and the application. Every
GemStone session requires a Gem. In linked applications, one Gem is present within the same
process as the application; in remote applications no such Gem is present. Therefore, each time an
application user logs in to GemStone (after the first time in linked applications), the GemStone
service must create a new Gem. Hence, GemService is a required argument, except in the special
case of a linked application that limits itself to one GemStone login per application process. In this
special case, specify GemService as an empty string.

For most installations, the GemStone service name is gemnetobject. Specify, for example:

!tcp@lichen!gemnetobject

If you use the C shell (/bin/csh) under UNIX, the GemStone service name is gemnetobjcsh.

HostUserId and HostPassword are your login name and password, respectively, on the machines
that host the Gem and Stone processes. Do not confuse these values with your GemStone username
and password. These arguments provide authentication for such tasks as creating a Gem and
establishing communications with a Stone. When such authentication is required, an application
user cannot login to GemStone until the host login is verified for the machine running the Stone or
Gem, in addition to the GemStone login itself.

Authentication is always required if the netldi process that is related to the Stone is running in secure
mode. In this case, it makes no difference whether the application is linked or remote.
Authentication is also required to create a remote Gem, unless the netldi process is running in guest
mode. Remote applications must always create a Gem, but linked applications may also do so.

With TCP/IP, GemBuilder can also try to find a username and password for authentication on a host
machine in your network initialization file. Because this file contains your password, you should
ensure that other users do not have authorization to read it. Under UNIX, the file is named .netrc
and it should contain lines of the form:

machine machine_name login user_name password passwd

For example:

machine alf login joebob password mypassword

To prevent GemBuilder from looking for authentication information in the network initialization
file, supply a valid non-empty C string for the HostUserId argument. Also supply a non-empty
string for the HostPassword argument to provide a password. An empty string and a NULL pointer
both mean that no password will be used for authentication.
September 2011 VMware, Inc. 359

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
Alternatively, to direct GemBuilder to look in the network initialization file at need, supply an empty
C string or a NULL pointer for the HostUserId argument. In this case, supply a NULL pointer for
the HostPassword argument as well. Any valid string that you supply for a password is ignored in
favor of the information that is present in the network initialization file.

Example

char * StoneName;
char * HostUserId;
char * HostPassword;
char * GemService;
char * gsUserName;
char * gsPassword;

StoneName = "!tcp@alf!gemserver41";
HostUserId = "newtoni";
HostPassword = "gravity";
GemService = "!tcp@lichen!gemnetobject";
gsUserName = "isaac newton";
gsPassword = "pomme";

if (!GciInit()) exit; /* required before first GemBuilder login */

GciSetNet(StoneName, HostUserId, HostPassword, GemService);
GciLogin(gsUserName, gsPassword);

See Also

GciLoadUserActionLibrary, page 232
“Network Resource String Syntax” on page 431
360 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciSetSessionId

Set an active session to be the current one.

Syntax

void GciSetSessionId(sessionId)
GciSessionIdType sessionId;

Input Arguments

sessionId The session ID of an active (logged-in) GemStone session.

Description

This function can be used to switch between multiple GemStone sessions in an application program
with multiple logins.

Example

GciLogin (USERID1, PASSWORD1);

/* Intervening code goes here, in place of this comment */

theFirstSessionId = GciGetSessionId();

/* Intervening code goes here, in place of this comment */

GciLogin (USERID2, PASSWORD2); /* use previous network parameters */

/* Intervening code goes here, in place of this comment */

GciSetSessionId (theFirstSessionId);

See Also

GciGetSessionId, page 209
GciLoadUserActionLibrary, page 232
September 2011 VMware, Inc. 361

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciSetVaryingSize

Set the size of a collection.

Syntax

void GciSetVaryingSize(collection, size)
OopType collection;
long size;

Input Arguments

collection The OOP of the collection whose size you are specifying.
size The desired number of elements in the collection.

Description

GciSetVaryingSize changes the size of a collection, adding nils to grow it, or truncating it, as
necessary. It is equivalent to the Smalltalk method Object >> size:. It does not change the
number of any named instance variables.

Example

OopType MakeNewArrayOfSize(OopType sizeOop)
{

long size;
OopType result;

if (!GCI_OOP_IS_SMALL_INT(sizeOop))
return OOP_NIL; /* error: arg is not a small int */

size = GCI_OOP_TO_LONG(sizeOop); /* convert to long */
result = GciNewOop(OOP_CLASS_ARRAY); /* get new array */
GciSetVaryingSize(result, size); /* set the size */
return result;

}

362 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
See Also

GciFetchVaryingSize, page 200
September 2011 VMware, Inc. 363

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciShutdown

Logout from all sessions and deactivate GemBuilder.

Syntax

void GciShutdown()

Description

This function is intended to be called by image exit routines, such as the on_exit system call. In the
linkable GemBuilder, GciShutdown calls GciLogout. In the RPC version, it logs out all sessions
connected to the Gem process and shuts down the networking layer, thus releasing all memory
allocated by GemBuilder.

It is especially important to call this function explicitly on any computer whose operating system
does not automatically deallocate resources when a process quits. This effect is found on certain
small, single-user systems.
364 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciSoftBreak

Interrupt the execution of Smalltalk code, but permit it to be restarted.

Syntax

void GciSoftBreak()

Description

This function sends a soft break to the current user session (set by the last GciLogin or
GciSetSessionId).

GemBuilder allows users of your application to terminate Smalltalk execution. For example, if your
application sends a message to an object (via GciSendMessage or GciPerform), and for some
reason the invoked Smalltalk method enters an infinite loop, the user can interrupt the application.

GciSoftBreak interrupts only the Smalltalk virtual machine (if it is running), and does so in such a
way that the it can be restarted. The only GemBuilder functions that can recognize a soft break
include GciSendMessage, GciPerform, and GciContinue, and the GciExecute... functions.

In order for GemBuilder functions in your program to recognize interrupts, your program will need
an interrupt routine that can call the functions GciSoftBreak and GciHardBreak. Since
GemBuilder does not relinquish control to an application until it has finished its processing, soft and
hard breaks must be initiated from an interrupt service routine.

If GemStone is executing when it receives the break, it replies with the error message
RT_ERR_SOFT_BREAK. Otherwise, it ignores the break.

For an example of how GciSoftBreak is used, see the GciClearStack function on page 126.

See Also

GciClearStack, page 126
GciContinue, page 133
GciExecute, page 154
GciHardBreak, page 215
GciPerform, page 314
GciSendMsg, page 353
September 2011 VMware, Inc. 365

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciStoreByte

Store one byte in a byte object.

Syntax

void GciStoreByte(theObject, atIndex, theByte)
OopType theObject;
long atIndex;
ByteType theByte;

Input Arguments

theObject The OOP of the GemStone byte object.
atIndex The index into theObject at which to store the byte.
theByte The 8-bit value to be stored.

Result Arguments

theObject The resulting GemStone byte object.

Description

The GciStoreByte function stores a single element in a byte object at a specified index, using
structural access.

GciStoreByte raises an error if theObject is a binary float. You must store all the bytes of a binary
float if you store any.
366 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
Example

int numI;
OopType oIndexedObject;

oIndexedObject = GciNewOop(OOP_CLASS_STRING);

for (numI = 0; numI < tsize; numI += 1) {
GciStoreByte(oIndexedObject, (long)(numI + 1),

 (ByteType)(numI % 256));
}

See Also

GciFetchByte, page 165
GciFetchBytes, page 167
GciStoreBytes, page 368
September 2011 VMware, Inc. 367

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciStoreBytes

(MACRO) Store multiple bytes in a byte object.

Syntax

void GciStoreBytes(theObject, startIndex, theBytes, numBytes)
OopType theObject;
long startIndex;
const ByteType theBytes[];
ArraySizeType numBytes;

Input Arguments

theObject The OOP of the GemStone byte object.
startIndex The index into theObject at which to begin storing bytes.
theBytes The array of bytes to be stored.
numBytes The number of elements to store.

Result Arguments

theObject The resulting GemStone byte object.

Description

The GciStoreBytes macro uses structural access to store multiple elements from a C array in a byte
object, beginning at a specified index. A common application of GciStoreBytes would be to store
a text string.

Error Conditions

GciStoreBytes raises an error if theObject is a binary float. Use GciStoreBytesInstanceOf instead
for binary floats.
368 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
Example

ByteType id[MAXLEN + 1]; /* Holds the ID of the supplier */
OopType theIdOop; /* Holds the OOP of the ID */

getString(id, MAXLEN);
theIdOop = GciNewOop(OOP_CLASS_SYMBOL);
GciStoreBytes(theIdOop, 1L, id, (ArraySizeType)strlen(id));

See Also

GciFetchByte, page 165
GciFetchBytes, page 167
GciStoreByte, page 366
GciStoreBytesInstanceOf, page 370
GciStoreChars, page 372
September 2011 VMware, Inc. 369

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciStoreBytesInstanceOf

Store multiple bytes in a byte object.

Syntax

void GciStoreBytesInstanceOf(theClass, theObject, startIndex, theBytes, numBytes)
OopType theClass;
OopType theObject;
long startIndex;
const ByteType theBytes[];
ArraySizeType numBytes;

Input Arguments

theClass The OOP of the class of the GemStone byte object.
theObject The OOP of the GemStone byte object.
startIndex The index into theObject at which to begin storing bytes.
theBytes The array of bytes to be stored.
numBytes The number of elements to store.

Result Arguments

theObject The resulting GemStone byte object.

Description

The GciStoreBytesInstanceOf function uses structural access to store multiple elements from a C
array in a byte object, beginning at a specified index. A common application of
GciStoreBytesInstanceOf would be to store a binary float.

GciStoreBytesInstanceOf provides automatic byte swizzling for binary floats. The presence of the
argument theClass enables the swizzling to be implemented more efficiently. If theObject is a binary
float, then theClass must match the actual class of theObject, startIndex must be one, and numBytes
must be the actual size for theClass. If any of these conditions are not met, then
GciStoreBytesInstanceOf raises an error as a safety check.

If theObject is not a binary float, then theClass is ignored. Hence, you must supply the correct class
for theClass if theObject is a binary float, but you can use OOP_NIL otherwise.
370 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
Example

double pi; /* the value of the new Float obj */
OopType theFloat; /* the OOP of the new Float obj */

pi = 3.1415926;
theFloat = GciNewOop(OOP_CLASS_FLOAT);
GciStoreBytesInstanceOf(OOP_CLASS_FLOAT, theFloat, 1L,
 (ByteType *) &pi, (ArraySizeType) sizeof(pi));

See Also

GciFetchByte, page 165
GciFetchBytes, page 167
GciStoreByte, page 366
GciStoreBytes, page 368
GciStoreChars, page 372
September 2011 VMware, Inc. 371

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciStoreChars

Store multiple ASCII characters in a byte object.

Syntax

void GciStoreChars(theObject, startIndex, aString)
OopType theObject;
long startIndex;
const char * aString;

Input Arguments

theObject The OOP of the GemStone byte object.
startIndex The index into theObject at which to begin storing the string.
aString The string to be stored.

Result Arguments

theObject The resulting GemStone byte object.

Description

The GciStoreChars function uses structural access to store a C string in a byte object, beginning at
a specified index.

GciStoreChars raises an error if theObject is a binary float. ASCII characters have no meaning as
bytes in a binary float.
372 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
Example

char * id; /* String holding the ID of the supplier */
OopType theIdOop; /* Holds the OOP of the ID */

printf("ID = ");
fflush(stdout);
getString(id, MAXLEN);
theIdOop = GciNewOop(OOP_CLASS_SYMBOL);
GciStoreChars(theIdOop, 1L, id);

See Also

GciFetchByte, page 165
GciFetchBytes, page 167
GciStoreByte, page 366
GciStoreBytes, page 368
September 2011 VMware, Inc. 373

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciStoreIdxOop

Store one OOP in a pointer object’s unnamed instance variable.

Syntax

void GciStoreIdxOop(theObject, atIndex, theOop)
OopType theObject;
long atIndex;
OopType theOop;

Input Arguments

theObject The pointer object.
atIndex The index into theObject at which to store the object.
theOop The OOP to be stored.

Result Arguments

theObject The resulting pointer object.

Description

This function stores a single OOP into an indexed variable of a pointer object at the specified index,
using structural access. Note that this function cannot be used for NSCs. (To add an OOP to an
NSC, use the GciAddOopToNsc function on page 103.)
374 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
Example

In the following example, assume that you’ve defined the class Component and populated the set
AllComponents, as shown in the example for the GciFetchVaryingOop function on page 195.

OopType aComponent, newValue;

/* retrieve a random instance of class Component */
aComponent = GciExecuteStr(“AllComponents select:

[i|i.partnumber = 1234]”);

/* store new value into 3rd element of aComponent’s parts list */
newValue = the_new_value ;
GciStoreIdxOop(aComponent, 3L, newValue);

See Also

GciAddOopToNsc, page 103
GciFetchVaryingOop, page 195
GciFetchVaryingOops, page 198
GciStoreIdxOops, page 376
September 2011 VMware, Inc. 375

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciStoreIdxOops

Store one or more OOPs in a pointer object’s unnamed instance variables.

Syntax

void GciStoreIdxOops(theObject, startIndex, theOops, numOops)
OopType theObject;
long startIndex;
const OopType theOops[];
ArraySizeType numOops;

Input Arguments

theObject The pointer object.
startIndex The index into theObject at which to begin storing OOPs.
theOops The array of OOPs to be stored.
numOops The number of OOPs to store.

Result Arguments

theObject The resulting pointer object.

Description

This function uses structural access to store multiple OOPs from a C array into the indexed variables
of a pointer object, beginning at the specified index. Note that this call cannot be used with NSCs.
(To add multiple OOPs to an NSC, use the GciAddOopsToNsc function on page 104.)
376 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
Example

In the following example, assume that you’ve defined the class Component and populated the set
AllComponents, as shown in the example for the GciFetchVaryingOop function on page 195.

OopType aComponent;
OopType oArray[10];
/* retrieve a random instance of class Component */
aComponent = GciExecuteStr(

"AllComponents select:[i|i.partnumber = 1234]");

/* store new values for first 5 elements of aComponent’s parts
 list */
oArray[0] = aValue;

/* Intervening code goes here, in place of this comment */

oArray[4] = aValue;
GciStoreIdxOops(aComponent, 1L, oArray, 5);

See Also

GciAddOopsToNsc, page 104
GciFetchVaryingOop, page 195
GciFetchVaryingOops, page 198
GciReplaceOops, page 343
GciReplaceVaryingOops, page 345
GciStoreIdxOop, page 374
GciStoreIdxOops, page 376
GciStoreNamedOops, page 380
GciStoreOops, page 384
September 2011 VMware, Inc. 377

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciStoreNamedOop

Store one OOP into an object’s named instance variable.

Syntax

void GciStoreNamedOop(theObject, atIndex, theOop)
OopType theObject;
long atIndex;
OopType theOop;

Input Arguments

theObject The object in which to store the OOP.
atIndex The index into theObject’s named instance variables at which to store the

OOP.
theOop The OOP to be stored.

Result Arguments

theObject The resulting object with the new OOP.

Description

This function stores a single OOP into an object’s named instance variable at the specified index,
using structural access.
378 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
Example

In the following example, assume that you’ve defined the class Component and populated the set
AllComponents, as shown in the example for the GciFetchVaryingOop function on page 195.

OopType aComponent;
OopType theName;
OopType newValue;

/* C constants to match Smalltalk class definition */
#define COMPONENT_OFF_PARTNUMBER 1L
#define COMPONENT_OFF_NAME 2L
#define COMPONENT_OFF_COST 3L

/* retrieve a random instance of class Component */
aComponent = GciExecuteStr("AllComponents select:

[i|i.partnumber = 1234]");

/* assign a new value to the name instance variable of aComponent
*/
newValue = a_new_value;
GciStoreNamedOop(aComponent, COMPONENT_OFF_NAME, newValue);

/* alternate approach: assign a new value to a named instance
variable without knowing its offset at compile time */
GciStoreNamedOop(aComponent,
GciIvNameToIdx(GciFetchClass(aComponent), "name"), newValue);

See Also

GciFetchNamedOop, page 173
GciFetchNamedOops, page 175
GciStoreIdxOop, page 374
GciStoreNamedOops, page 380
September 2011 VMware, Inc. 379

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciStoreNamedOops

Store one or more OOPs into an object’s named instance variables.

Syntax

void GciStoreNamedOops(theObject, startIndex, theOops, numOops)
OopType theObject;
long startIndex;
const OopType theOops[];
ArraySizeType numOops;

Input Arguments

theObject The object in which to store the OOPs.
startIndex The index into theObject’s named instance variables at which to begin

storing OOPs.
theOops The array of OOPs to be stored.
numOops The number of OOPs to store. If (numOops+startIndex) exceeds the

number of named instance variables in theObject, an error is generated.

Result Arguments

theObject The resulting object with the new OOPs.

Description

This function uses structural access to store multiple OOPs from a C array into an object’s named
instance variables, beginning at the specified index.
380 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
Example

In the following example, assume that you’ve defined the class Component and populated the set
AllComponents, as shown in the example for the GciFetchVaryingOop function on page 195.

OopType aComponent;
ArraySizeType namedSize
long i;
OopType *oBuffer;

/* retrieve a random instance of class Component */
aComponent = GciExecuteStr(

"AllComponents select:[i|i.partnumber = 1234]");

/* store named instance variables without knowing how many at
compile time */
namedSize = GciFetchNamedSize(aComponent);
oBuffer = (OopType *) malloc(namedSize * sizeof(OopType));
for (i=0; i < namedSize; i++) {
oBuffer[i] = a_new_value; } /* assign new values */
GciStoreNamedOops(aComponent, 1L, oBuffer, namedSize);

See Also

GciFetchNamedOop, page 173
GciFetchNamedOops, page 175
GciReplaceOops, page 343
GciReplaceVaryingOops, page 345
GciStoreIdxOop, page 374
GciStoreIdxOops, page 376
GciStoreNamedOop, page 378
GciStoreNamedOops, page 380
GciStoreOops, page 384
September 2011 VMware, Inc. 381

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciStoreOop

Store one OOP into an object’s instance variable.

Syntax

void GciStoreOop(theObject, atIndex, theOop)
OopType theObject;
long atIndex;
OopType theOop;

Input Arguments

theObject The object in which to store the OOP.
atIndex The index into theObject at which to store the OOP. This function does not

distinguish between named and unnamed instance variables. Indices are
based at the beginning of an object’s array of instance variables. In that
array, the object’s named instance variables are followed by its unnamed
instance variables.

theOop The OOP to be stored.

Result Arguments

theObject The resulting object.

Description

This function stores a single OOP into an object at the specified index, using structural access. Note
that this function cannot be used for NSCs. To add an object to an NSC, use the GciAddOopToNsc
function on page 103.
382 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
Example

In the following example, assume that you’ve defined the class Component and populated the set
AllComponents, as shown in the example for the GciFetchVaryingOop function on page 195.

OopType aComponent;
OopType newValue;

/* C constants to match Smalltalk class definition */
#define COMPONENT_OFF_NAME 2L

/* retrieve a random instance of class Component */

aComponent = GciExecuteStr(

"AllComponents select:[i|i.partnumber = 1234]");

/* Two ways to assign new value to the name instance variable of
 aComponent */

newValue = an_oop;
GciStoreOop(aComponent, COMPONENT_OFF_NAME, newValue);
GciStoreNamedOop(aComponent, COMPONENT_OFF_NAME, newValue);

/* Two ways to assign a new value to the 3rd element of
 aComponent’s parts list without knowing exactly how many named
 instance variables exist */

GciStoreOop(aComponent, GciFetchNamedSize(aComponent) + 3L,

newValue);
GciStoreIdxOop(aComponent, 3L, newValue);

See Also

GciAddOopToNsc, page 103
GciFetchVaryingOop, page 195
GciFetchVaryingOops, page 198
GciFetchOops, page 186
GciStoreOops, page 384
September 2011 VMware, Inc. 383

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciStoreOops

Store one or more OOPs into an object’s instance variables.

Syntax

void GciStoreOops(theObject, startIndex, theOops, numOops)
OopType theObject;
long startIndex;
const OopType theOops[];
ArraySizeType numOops;

Input Arguments

theObject The object in which to store the OOPs.
startIndex The index into theObject at which to begin storing OOPs. This function

does not distinguish between named and unnamed instance variables.
Indices are based at the beginning of an object’s array of instance variables.
In that array, the object’s named instance variables are followed by its
unnamed instance variables.

theOops The array of OOPs to be stored.
numOops The number of OOPs to store.

Result Arguments

theObject The resulting object.

Description

This function uses structural access to store multiple OOPs from a C array into a pointer object,
beginning at the specified index. Note that this call cannot be used with NSCs. To add multiple
OOPs to an NSC, use the GciAddOopsToNsc function on page 104.
384 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
Example

In the following example, assume that you’ve defined the class Component and populated the set
AllComponents, as shown in the example for the GciFetchVaryingOop function on page 195.

OopType aComponent;
OopType newValues[10];
ArraySizeType namedSize;

/* retrieve a random instance of class Component */

aComponent = GciExecuteStr(

"AllComponents select:[i|i.partnumber = 1234]");

/* Assign new values to the named instance variables PLUS the
 first 5 elements of aComponent’s parts list */

namedSize = GciFetchNamedSize(aComponent);
newValues[0] = a_new_value;
.
.
newValues[namedSize-1 + 5] = an_oop;
/* newValues[0..namedSize-1] are named instVar values */
/* newValues[namedSize] is first indexed instVar value */

GciStoreOops(aComponent, 1L, newValues, namedSize + 5);

/* Two ways to assign new values to the first 5 elements of
aComponent’s parts list */

namedSize = GciFetchNamedSize(aComponent);
for (i=0; i < namedSize; i++) {
newValues[i] = a_value;
}
GciStoreOops(aComponent, namedSize + 1, newValues, 5);
GciStoreIdxOops(aComponent, 1, newValues, 5);

See Also

GciAddOopsToNsc, page 104
GciFetchNamedOops, page 175
September 2011 VMware, Inc. 385

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciFetchOop, page 184
GciFetchOops, page 186
GciFetchVaryingOop, page 195
GciReplaceOops, page 343
GciReplaceVaryingOops, page 345
GciStoreIdxOops, page 376
GciStoreNamedOops, page 380
GciStoreOop, page 382
GciStoreOops, page 384
386 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciStorePaths

Store selected multiple OOPs into an object tree.

Syntax

BoolType GciStorePaths(theOops, numOops, paths, pathSizes, numPaths, newValues, failCount)
const OopType theOops[];
ArraySizeType numOops;
const long paths[];
const long pathSizes[];
ArraySizeType numPaths;
const OopType newValues[];
long * failCount;

Input Arguments

theOops A collection of OOPs into which you want to store new values.
numOops The size of theOops.
paths An array of integers. This one-dimensional array contains the elements of

all constituent paths, laid end to end.
pathSizes An array of integers. Each element of this array is the length of the

corresponding path in the paths array (that is, the number of elements in
each constituent path).

numPaths The number of paths in the paths array. This should be the same as the
number of integers in the pathSizes array.

newValues An array containing the new values to be stored into theOops.

Result Arguments

failCount A pointer to a long that indicates which element of the newValues array
could not be successfully stored. If all values were successfully stored,
failCount is 0. If the ith store failed, failCount is i.

Return Value

Returns TRUE if all values were successfully stored. Returns FALSE if the store on any path fails
for any reason.
September 2011 VMware, Inc. 387

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
Description

This function allows you to store multiple objects at selected positions in an object tree with a single
GemBuilder call, exporting only the desired information to the database.

NOTE
This function is most useful with applications that are linked with GciRpc (the “remote
procedure call” version of GemBuilder). If your application will be linked with
GciLnk (the “linkable” GemBuilder), you’ll usually achieve best performance by
using the simple GciFetch... and GciStore... functions rather than object traversal.
For more information, see “GciRpc and GciLnk” on page 53.

Each path in the paths array is itself an array of longs. Those longs are offsets that specify a path
along which to store objects. In each path, a positive integer x refers to an offset within an object’s
named instance variables, while a negative integer -x refers to an offset within an object’s indexed
instance variables. (The function GciStrToPath allows you to convert path information from its
string representation, in which each element is the name of an instance variable, to the equivalent
element of this paths array.)

The newValues array contains (numOops * numPaths) elements, stored in the following order:

[0,0]..[0,numPaths-1]..[1,0]..[1,numPaths-1]..
[numOops-1,0]..[numOops-1,numPaths-1]

The first element of this newValues array is stored along the first path into the first element of
theOops. New values are then stored into the first element of theOops along each remaining element
of the paths array. Similarly, new values are stored into each subsequent element of theOops, until
all paths have been applied to all its elements.

The new value to be stored into object i along path j is thus represented as:

newValues[((i-1) * numPaths) + (j-1)]

The expressions i-1 and j-1 are used because C has zero-based arrays.

If the store on any path fails for any reason, this function stops and generates a GemBuilder error.
Any objects that were successfully stored before the error occurred will remain stored.
388 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
Examples

Example 1: Calling sequence for a single object and a single path

OopType anOop; /* the OOP to use as the root of the path */
long aPath[5]; /* the path itself */
long aSize; /* the size of the path */
OopType newValue;
long failCount;

GciStorePaths(&anOop, 1, aPath, &aSize, 1, &newValue, &failCount);

Example 2: Calling sequence for multiple objects with a single path

OopType oops[3]; /* the OOPs to use as roots of the path */
ArraySizeType numOops; /* the number of objects */
long aPath[5]; /* the path itself */
long aSize; /* the size of the path */
OopType newValues[5];
long failCount;

GciStorePaths(oops, numOops, aPath, &aSize, 1, newValues,

 &failCount);

Example 3: Calling sequence for a single object with multiple paths

OopType anOop; /* the OOP to use as the root of the path */
long paths[50]; /* the paths, stored end-to-end in the array */
long sizes[5]; /* the sizes of the paths */
ArraySizeType numPaths; /* the number of paths */
OopType newValues[5];
long failCount;

GciStorePaths(&anOop, 1, paths, sizes, numPaths, newValues,

 &failCount);
September 2011 VMware, Inc. 389

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
Example 4: Calling sequence for multiple objects with multiple paths

OopType oops[3]; /* the OOPs to use as roots of the path */
ArraySizeType numOops; /* the number of objects */
long paths[50]; /* the paths, stored end-to-end in the array */
long sizes[5]; /* the sizes of the paths */
ArraySizeType numPaths; /* the number of paths */
OopType newValues[3*5]; /* new values for each path for oop1,

 then each path for oop2, etc. */
long failCount;

GciStorePaths(oops, numOops, paths, sizes, numPaths, newValues,

 &failCount);
390 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
Example 5: Integrated Code

In the following example, assume that you’ve defined the class Component and populated the set
AllComponents, as shown in the example for the GciFetchVaryingOop function on page 195.

OopType aComponent;
OopType SourceObjs[10];
OopType newValues[10];
long pathSizes[10];
long paths[10];
char * newName;
BoolType success;

/* retrieve a random instance of class Component */
aComponent = GciExecuteStr(

"AllComponents select:[i|i.partnumber = 1234]");

/* assign a new value to the name instVar of 5th element of
aComponent’s parts list */
SourceObjs[0] = aComponent;
paths[0] = -5;
paths[1] = GciIvNameToIdx(GciFetchClass(aComponent), "name");
pathSizes[0] = 2;
newValues[1] = GciNewOop(OOP_CLASS_STRING);
newName = "Wing Assembly";
GciStoreBytes(newValues[1], 1, newName, strlen(newName));
success = GciStorePaths(sourceObjs, 1, paths, pathSizes, 1,

newValues);
if (!success)
 { /* error processing */ };

See Also

GciFetchPaths, page 188
GciPathToStr, page 311
GciStrToPath, page 404
September 2011 VMware, Inc. 391

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciStoreTrav

Store multiple traversal buffer values in objects.

Syntax

void GciStoreTrav(travBuff, behaviorFlag)
ByteType travBuff [];
long behaviorFlag;

Input Arguments

travBuff A traversal buffer, which contains object data to be stored.
behaviorFlag A flag that determines how the objects should be handled.

Description

The GciStoreTrav function stores data from the traversal buffer travBuff (a C-language structural
description) into multiple GemStone objects. The first element in the traversal buffer is a long
integer that indicates how many bytes are stored in the buffer. The remainder of the traversal buffer
consists of a series of object reports. Each object report is a C structure of type GciObjRepSType,
which includes a variable-length data area. GciStoreTrav stores data object by object, using one
object report at a time. GciStoreTrav raises an error if the traversal buffer contains a report for any
object of special implementation format.

GciStoreTrav allows you to reduce the number of GemBuilder calls that are required for your
application program to store complex objects in the database.

NOTE
This function is most useful with applications that are linked with GciRpc (the “remote
procedure call” version of GemBuilder). If your application will be linked with
GciLnk (the “linkable” GemBuilder), you’ll usually achieve best performance by
using the simple GciFetch... and GciStore... functions rather than object traversal.
For more information, see “GciRpc and GciLnk” on page 53.

The value of behaviorFlag should be given by using one or more of the following GemBuilder
mnemonics: GCI_STORE_TRAV_DEFAULT, GCI_STORE_TRAV_NSC_REP,
GCI_STORE_TRAV_CREATE, GCI_STORE_TRAV_CREATE_PERMANENT, and
GCI_STORE_TRAV_FINISH_UPDATES. The first of these must be used alone. The others can
either be used alone or can be logically “or”ed together.
392 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GCI_STORE_TRAV_CREATE_PERMANENT has no effect, however, unless it is used with
GCI_STORE_TRAV_CREATE. The effect of the mnemonics depends somewhat upon the
implementation format of the objects that are stored.

GciStoreTrav can create new objects and store data into them, or it can modify existing objects with
the data in their object reports, or a combination of the two. By default
(GCI_STORE_TRAV_DEFAULT), it can only modify existing objects, and it raises an error if an
object does not already exist.

When GCI_STORE_TRAV_CREATE is used, it modifies any object that already exists and creates
a new object when an object does not exist. Naturally, any new object is initialized with the data in
its object report. If GCI_STORE_TRAV_CREATE_PERMANENT is not used, then a new object
is created in temporary object space and the garbage collector will make the object permanent only
if the object is or becomes referenced by another permanent object. But if
GCI_STORE_TRAV_CREATE_PERMANENT is also used, then the object is immediately created
as a permanent object, thus providing a performance gain by bypassing the garbage collector.

When GCI_STORE_TRAV_FINISH_UPDATES is used, GciStoreTrav automatically executes
GciProcessDeferredUpdates after processing the last object report in the traversal buffer.

When GciStoreTrav modifies an existing object of byte or pointer format, it replaces that object’s
data with the data in its object report, regardless of behaviorFlag. All instance variables, named (if
any) or indexed (if any), receive new values. Named instance variables for which values are not
given in the object report are initialized to nil or to zero. Indexable objects may change in size; the
object report determines the new number of indexed variables.

Contrast byte and pointer object handling with the default when GciStoreTrav modifies an existing
NSC. It replaces all named instance variables of the NSC (if any), but adds further data in its object
report to the unordered variables, increasing its size. If behaviorFlag indicates
GCI_STORE_TRAV_NSC_REP, then it removes all existing unordered variables and adds new
unordered variables with values from the object report.

GciStoreTrav provides automatic byte swizzling for binary floats.

Use of Object Reports

The GciStoreTrav function stores values in GemStone objects according to the object reports
contained in travBuff. Each object report is of type GciObjRepSType (described on page 96), and
has two parts: a header (of type GciObjRepHdrSType, described on page 96) and a value buffer
(an array of values of the object’s instance variables). GciStoreTrav uses the fields in each object
report as follows:

hdr.valueBuffSize
The size (in bytes) of the value buffer, where object data is stored. If objId is a binary float and
September 2011 VMware, Inc. 393

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
valueBuffSize differs from the actual size for objects of objId’s class, then GciStoreTrav raises
an error.

hdr.namedSize
Ignored by this function.

hdr.idxSize
Used only if the object is indexable. The number of indexed variables in the object stored by
GciStoreTrav is never less than this quantity. It may be more if the value buffer contains
enough data. GciStoreTrav stores all the indexed variables that it finds in the value buffer. If
an existing object has more indexed variables, then it also retains the extras, up to a total of
idxSize, and removes any beyond idxSize. If idxSize is larger than the number of indexed
variables in both the current object and the value buffer, then GciStoreTrav creates slots for
elements in the stored object up to index idxSize and initializes any added elements to nil.

 hdr.firstOffset
Ignored for NSC objects. The absolute offset into the target object at which to begin storing
values from the value buffer. The absolute offset of the object’s first named instance variable
(if any) is one; the offset of its first indexed variable (if any) is one more than the number of its
named instance variables. Values are stored into the object in the order that they appear in the
value buffer, ignoring the boundary between named and indexed variables. Variables whose
offset is less than firstOffset (if any) are initialized to nil or zero. For nonindexable objects,
GciStoreTrav raises an error if valueBuffSize and firstOffset imply a size that exceeds the
actual size of the object. If objId is a binary float and firstOffset is not one, then GciStoreTrav
raises an error.

hdr.objId
The OOP of the object to be stored.

hdr.oclass
Used only when creating a new object, to identify its intended class.

hdr.segment
The segment in which to store the object. This value may be different from the segment where
an existing object is currently stored. The value OOP_NIL implies that the current segment is
used.

hdr.objSize
Ignored by this function. The function sets the object’s size.

hdr.objImpl
Must be consistent with the object’s implementation.

hdr.isInvariant
Boolean value. If equal to 1 (true), then set the stored object to be invariant. GciStoreTrav
raises an error if you try to store an existing object that is already invariant.
394 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
hdr.isIndexable
Ignored by this function.

u.bytes[]
The value buffer of an object of byte format.

u.oops[]
The value buffer of an object of pointer or NSC format.

Handling Error Conditions

If you get a runtime error while executing GciStoreTrav, the recommended course of action is to
abort the current transaction.

See Also

GciMoreTraversal, page 242
GciNbMoreTraversal, page 263
GciNbStoreTrav, page 271
GciNbTraverseObjs, page 275
GciNewOopUsingObjRep, page 283
GciProcessDeferredUpdates, page 329
GciStoreTravDo, page 396
GciTraverseObjs, page 411
September 2011 VMware, Inc. 395

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciStoreTravDo

Store multiple traversal buffer values in objects, execute the specified code, and return the resulting
object.

Syntax

OopType GciStoreTravDo(args)
GciStoreTravDoArgsSType *args;

Input Arguments

args A GciStoreTravDoArgsSType structure containing the following fields:

ByteType* storeTravBuff
The traversal buffer. For details, see “GciStoreTrav”
on page 392.

long behaviorFlag
A flag that determines how the objects should be
handled. For details, see “GciStoreTrav” on page 392.

BoolType doPerform
If this field is TRUE, the function executes a
perform, as described in “GciPerformNoDebug” on
page 316; if FALSE, then executeString, as
described in “GciExecuteStrFromContext” on
page 160.

long doFlags
Flags to disable or permit asynchronous events and
debugging in Smalltalk, as described in
“GciPerformNoDebug” on page 316. These flags
apply whether doPerform is TRUE or FALSE.

The union of two nested structures:
The first containing the input fields for the call to
GciPerformNoDebug (see page 316).

The second containing the input fields for the call to
GciExecuteStrFromContext (see page 160).
396 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
oopType* alteredTheOops
An array allocating memory for OOPs of objects that
will be modified as a consequence of executing the
specified code. For more information, see
“GciAlteredObjs” on page 106.

ArraySizeType alteredNumOops
The number of OOPs in the previous array. On input,
the sender must set this to the anticipated size of
alteredTheOops. Upon completion, this field indicates
the number of OOPs actually written to
alteredTheOops.

oopType* alteredSymbolBuf
An array allocating memory for oldSymbolOop/
canonicalSymbolOop pairs that will be modified as a
consequence of executing the specified code.

ArraySizeType alteredNumPairs
The number of pairs in the previous array. On input,
the sender must set this to the anticipated size of
alteredSymbolBuf. Upon completion, this field
indicates the number of pairs actually written to
alteredSymbolBuf.

BoolType alteredCompleted
Upon output, TRUE if the previous arrays contain the
complete set of objects modified as a result of
executing the specified code; false otherwise. If
FALSE, call GciAlteredObjs for the rest of the
modified objects.

Return Value

Returns the OOP of the result of executing the specified code. In case of error, this function returns
OOP_NIL.

Description

The GciStoreTravDo function works exactly as “GciStoreTrav” on page 392, and also executes the
supplied code in the same network round-trip.
September 2011 VMware, Inc. 397

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
The description of “GciStoreTrav” on page 392 explains the first two arguments. If the value of the
third argument is TRUE, see “GciPerformNoDebug” on page 316 for details of the next five
arguments—flags to enable or disable asynchronous events, and the first nested structure.

If the value of the third argument is FALSE, see “GciExecuteStrFromContext” on page 160 for
details on next set of arguments—flags to enable or disable asynchronous events, and the second
nested structure of five arguments.

The last five input arguments supply needed output after the function has completed. Read
alteredTheOops to get the OOPs of the objects that were modified; read alteredSymbolBuf to get the
pairs of symbols and symbol dictionaries for symbol canonicalization; finally, read
alteredCompleted to determine if the array as originally allocated was large enough to hold all the
modified objects. If the value is false, the array was too small and holds only some of the modified
objects; in this case, call GciAlteredObjs for the rest.

Handling Error Conditions

If you get a run time error while executing GciStoreTravDo, we recommend that you abort the
current transaction.

See Also

GciAlteredObjs, page 106
GciExecuteStrFromContext, page 160
GciMoreTraversal, page 242
GciNbMoreTraversal, page 263
GciNbStoreTrav, page 271
GciNbTraverseObjs, page 275
GciNewOopUsingObjRep, page 283
GciPerformNoDebug, page 316
GciProcessDeferredUpdates, page 329
GciStoreTrav, page 392
GciTraverseObjs, page 411
398 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciStoreTravDoTrav

Combine a GciStoreTravDo() call and a GciClampedTrav() call into a single function.

Syntax

OopType GciStoreTravDoTrav(args)
GciStoreTravDoArgsSType *STDargs;
GciClampedTravArgsSType *CTargs;

Input Arguments

STDargs A GciStoreTravDoArgsSType structure. For details, refer to the discussion
of GciStoreTravDo on page 396.

CTargs A GciClampedTravArgsSType structure. For details, see the discussion of
GciNbClampedTrav on page 247.

Return Value

Returns the OOP returned by the perform/execute. Returns OOP_NIL on failure.

Description

This function allows the client to execute behavior on the Gem and return the traversal of the result
object in a single network round-trip.

See Also

GciClampedTrav, page 118
GciStoreTrav, page 392
GciStoreTravDo, page 396
September 2011 VMware, Inc. 399

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciStrKeyValueDictAt

Find the value in a symbol KeyValue dictionary at the corresponding string key.

Syntax

void GciStrKeyValueDictAt(theDict, keyString, value)
OopType theDict;
const char * keyString;
OopType * value;

Input Arguments

theDict The OOP of a SymbolKeyValueDictionary.
keyString The OOP of a key in the SymbolKeyValueDictionary.

Result Arguments

value A pointer to the variable that is to receive the OOP of the returned value.

Description

Returns the value in symbol KeyValue dictionary theDict that corresponds to key keyString. If an
error occurs or keyString is not found, value is OOP_ILLEGAL. KeyValue dictionaries do not have
associations, so no association is returned. GciStrKeyValueDictAt is equivalent to
GciStrKeyValueDictAtObj except that the key is a character string, not an object.
400 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciStrKeyValueDictAtObj

Find the value in a symbol KeyValue dictionary at the corresponding object key.

Syntax

void GciStrKeyValueDictAtObj(theDict, keyObj, value)
OopType theDict;
OopType keyObj;
OopType * value;

Input Arguments

theDict The OOP of a SymbolKeyValueDictionary.
keyObj The OOP of a key in the SymbolKeyValueDictionary.

Result Arguments

value A pointer to the variable that is to receive the OOP of the returned value.

Description

Returns the value in symbol KeyValue dictionary theDict that corresponds to key keyObj. If an error
occurs or keyObj is not found, value is OOP_ILLEGAL. KeyValue dictionaries do not have
associations, so no association is returned. Equivalent to the Smalltalk expression:

^ #[theDict at:keyObj]
September 2011 VMware, Inc. 401

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciStrKeyValueDictAtObjPut

Store a value into a symbol KeyValue dictionary at the corresponding object key.

Syntax

void GciStrKeyValueDictAtObjPut(theDict, keyObj, theValue)
OopType theDict;
OopType keyObj;
OopType theValue;

Input Arguments

theDict The OOP of the SymbolKeyValueDictionary into which the object is to be
stored.

keyObj The OOP of the key under which the object is to be stored.
theValue The OOP of the object to be stored in the SymbolKeyValueDictionary.

Description

Adds object theValue to symbol KeyValue dictionary theDict with key keyObj. Equivalent to the
Smalltalk expression:

theDict at: keyObj put: theValue
402 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciStrKeyValueDictAtPut

Store a value into a symbol KeyValue dictionary at the corresponding string key.

Syntax

void GciStrKeyValueDictAtPut(theDict, keyString, theValue)
OopType theDict;
const char * keyString;
OopType theValue;

Input Arguments

theDict The OOP of the SymbolKeyValueDictionary into which the object is to be
stored.

keyString The string key under which the object is to be stored.
theValue The OOP of the object to be stored in the SymbolKeyValueDictionary.

Description

Adds object theValue to symbol KeyValue dictionary theDict with key keyString.
GciStrKeyValueDictAtPut is equivalent to GciStrKeyValueDictAtObjPut, except the key is a
character string, not an object.
September 2011 VMware, Inc. 403

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciStrToPath

Convert a path representation from string to numeric.

Syntax

BoolType GciStrToPath(aClass, pathString, maxPathSize, resultPathSize, resultPath)
OopType aClass;
const char pathString[];
ArraySizeType maxPathSize;
ArraySizeType * resultPathSize;
long resultPath[];

Input Arguments

aClass The class of the object for which this path will apply. That is, for each
instance of this class, store or fetch objects along the designated path.

pathString The (null-terminated) path string to be converted to the equivalent numeric
array.

maxPathSize The maximum allowable size of the resulting path array (the number of
elements). This is the size of the buffer that will be allocated for the
resulting path array.

Result Arguments

resultPathSize A pointer to the actual size of resultPath.
resultPath The resulting array of integers. Those integers are offsets that specify a

path from which to fetch objects. A positive integer x refers to an object’s
xth named instance variable. When a path goes through an indexed
instance variable (an Array element, for example), the position of that
object must be represented by a negative integer. The third element of an
Array, for example, would be denoted in a path by -3.

Return Value

Returns TRUE if the path string was successfully translated to an array of integer offsets. Returns
FALSE otherwise.
404 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
Description

The functions GciFetchPaths and GciStorePaths allow you to specify paths along which to fetch
from, or store into, objects within an object tree.

NOTE:
This function is most useful with applications that are linked with
GciRpc (the “remote procedure call” version of GemBuilder). If your
application will be linked with GciLnk (the “linkable” GemBuilder),
you’ll usually achieve best performance by using the simple GciFetch...
and GciStore... functions rather than object traversal. For more
information, see “GciRpc and GciLnk” on page 53.

A path may be represented as a string, in which each element is the name of an instance variable (for
example, ‘address.zip’, in which zip is an instance variable of address.) Alternatively, a path
may be represented as an array of integers, in which each step along the path is represented by the
corresponding integral offset from the beginning of an object (for example, an array containing the
integers 5 and 2 would represent the offsets of the fifth and second instance variables, respectively).

This function (GciStrToPath) converts the string representation of a path to its equivalent numeric
representation, for use with GciFetchPaths or GciStorePaths.

For more information about paths, see the description of the GciFetchPaths function on page 188.

Restrictions

Note that GciStrToPath can convert a numeric path only if the instance variables of the specified
Smalltalk class (aClass) are constrained in such a way that the path is guaranteed to be valid for all
instances.

If your application doesn’t impose GemStone constraints on classes of all objects from which you
to fetch, then you’ll need to maintain your paths as arrays of integers.

Error Conditions

The following errors may be generated by this function:

GCI_ERR_RESULT_PATH_TOO_LARGE
The resultPath was larger than the specified maxPathSize

RT_ERR_STR_TO_PATH_IVNAME
One of the instance variable names in the path string was invalid

RT_ERR_STR_TO_PATH_CONSTRAINT
One of the instance variables in the path string was not sufficiently constrained
September 2011 VMware, Inc. 405

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
Example

In the following example, assume that you’ve defined the class Component and populated the set
AllComponents, as shown in the example for the GciFetchVaryingOop function on page 195.

OopType aComponent;
OopType oSourceObjs[10];
OopType oResults[10];
ArraySizeType pathSize;
long paths[10];
ArraySizeType actualSize;

/* retrieve a random instance of class Component */

aComponent = GciExecuteStr(

"AllComponents select:[i|i.partnumber = 1234]");

/* fetch the name instVar of the first 10 elements of
 aComponent’s part list*/

actualSize = GciFetchVaryingOops(aComponent, 1, oSourceObjs, 10);
GciStrToPath(GciFetchClass(aComponent), "name", 10, &pathSize,

 paths);
GciFetchPaths(oSourceObjs, actualSize, paths, &pathSize, 1,

 oResults);p

See Also

GciFetchPaths, page 188
GciPathToStr, page 311
GciStorePaths, page 387
406 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciSymDictAt

Find the value in a symbol dictionary at the corresponding string key.

Syntax

void GciSymDictAt(theDict, keyString, value, association)
OopType theDict;
const char * keyString;
OopType * value;
OopType * association;

Input Arguments

theDict The OOP of a SymbolDictionary.
keyString The OOP of a key in the SymbolDictionary.

Result Arguments

value A pointer to the variable that is to receive the OOP of the returned value.
association A pointer to the variable that is to receive the OOP of the association.

Description

Returns the value in symbol dictionary theDict that corresponds to key keyString. If an error occurs
or keyString is not found, value is OOP_ILLEGAL. If association is not NULL and an error does
not occur, stores the OOP of the association for keyString at *association, or stores OOP_ILLEGAL
if keyString was not found. Equivalent to GciSymDictAtObj except that the key is a character
string, not an object.

To operate on kinds of Dictionary other than SymbolDictionary, such as KeyValueDictionary, use
GciPerform or GciSendMsg, since the KeyValueDictionary class is implemented in Smalltalk. If
your dictionary will be large (greater than 20 elements) a KeyValueDictionary is more efficient than
a SymbolDictionary.
September 2011 VMware, Inc. 407

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciSymDictAtObj

Find the value in a symbol dictionary at the corresponding object key.

Syntax

void GciSymDictAtObj(theDict, keyObj, value, association)
OopType theDict;
OopType keyObj;
OopType * value;
OopType * association;

Input Arguments

theDict The OOP of a SymbolDictionary.
keyObj The OOP of a key in the SymbolDictionary.

Result Arguments

value A pointer to the variable that is to receive the OOP of the returned value.
association A pointer to the variable that is to receive the OOP of the association.

Description

Returns the value in symbol dictionary theDict that corresponds to key keyObj. If an error occurs
or keyObj is not found, value is OOP_ILLEGAL. If association is not NULL and an error does not
occur, stores the OOP of the association for keyObj at *association, or stores OOP_ILLEGAL if
keyObj was not found. Similar to the Smalltalk expression:

^ #[theDict at:keyObj, theDict: associationAt:keyObj]
408 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciSymDictAtObjPut

Store a value into a symbol dictionary at the corresponding object key.

Syntax

void GciSymDictAtObjPut(theDict, keyObj, theValue)
OopType theDict;
OopType keyObj;
OopType theValue;

Input Arguments

theDict The OOP of the SymbolDictionary into which the value is to be stored.
keyObj The OOP of the key under which the value is to be stored.
theValue The OOP of the object to be stored in the SymbolDictionary.

Description

Adds object theValue to symbol dictionary theDict with key keyObj. Equivalent to the Smalltalk
expression:

theDict at: keyObj put: theValue
September 2011 VMware, Inc. 409

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciSymDictAtPut

Store a value into a symbol dictionary at the corresponding string key.

Syntax

void GciSymDictAtPut(theDict, keyString, theValue)
OopType theDict;
const char * keyString;
OopType theValue;

Input Arguments

theDict The OOP of the SymbolDictionary into which the object is to be stored.
keyString The string key under which the object is to be stored.
theValue The OOP of the object to be stored in the SymbolDictionary.

Description

Adds object theValue to symbol dictionary theDict with key keyString. Equivalent to
GciSymDictAtObjPut, except the key is a character string, not an object.
410 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciTraverseObjs

Traverse an array of GemStone objects.

Syntax

BoolType GciTraverseObjs(theOops, numOops, travBuff, travBuffSize, level)
const OopType theOops[];
ArraySizeType numOops;
ByteType travBuff[];
ArraySizeType travBuffSize;
long level;

Input Arguments

theOops An array of OOPs representing the objects to traverse.
numOops The number of elements in theOops.
travBuffSize The number of bytes in travBuff.
level Maximum traversal depth. When the level is 1, an object report is written

to the traversal buffer for each element in theOops. When level is 2, an
object report is also obtained for the instance variables of each level-1
object. When level is 0, the number of levels in the traversal is not
restricted.

Result Arguments

travBuff A buffer in which the results of the traversal will be placed.

Return Value

Returns FALSE if the traversal is not yet completed. Returns TRUE if there are no more objects to
be returned by subsequent calls to GciMoreTraversal.
September 2011 VMware, Inc. 411

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
Description

This function allows you to reduce the number of GemBuilder calls that are required for your
application program to obtain information about complex objects in the database.

NOTE
This function is most useful with applications that are linked with GciRpc (the “remote
procedure call” version of GemBuilder). If your application will be linked with
GciLnk (the “linkable” GemBuilder), you’ll usually achieve best performance by
using the simple GciFetch... and GciStore... functions rather than object traversal.
For more information, see “GciRpc and GciLnk” on page 53.

There are no built-in limits on how much information can be obtained in the traversal. You can use
the level argument to restrict the size of the traversal.

GciTraverseObjs provides automatic byte swizzling for binary floats.

Organization of the Traversal Buffer

The first element placed in a traversal buffer is a long integer that indicates how many bytes were
actually stored in the buffer by this function. The remainder of the traversal buffer consists of a
series of object reports, each of which is of type GciObjRepSType, as follows:

long
actualBufferSize;
How many bytes were actually stored in the traversal buffer by this function (used by
GciFindObjRep); travBuff[actualBufferSize - 1] is the final byte written.

GciObjRepSType
report_i;
An object report.

GciObjRepSType
report_j;
Another object report.

In order for the traversal buffer to accommodate m objects, each of which is of size n bytes, your
application should allocate at least enough memory so that the traversal buffer’s size can be assigned
according to the following formula:

travBuffSize = sizeof(long) +
m * (long)GCI_ALIGN(sizeof(GciObjRepHdrSType) + n);

The macro GCI_ALIGN ensures that the value buffer portion of each object report begins at a word
boundary.
412 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
This function ensures that each object report header and value buffer begins on a word boundary.
To provide proper alignment, 0 to 3 bytes may be inserted between each header and value buffer.

The Value Buffer

The object report’s value buffer begins at the first byte following the object report header. For byte
objects, the value buffer (u.bytes[]) is an array of type ByteType; for pointer objects and NSCs, the
buffer (u.oops[]) is an array of type OopType. The size of the report’s value buffer
(hdr.valueBuffSize) is the number of bytes of the object’s value returned by this traversal. That
number is no greater than the size of the object.

To obtain a pointer to the value buffer, use the macro

GCI_VALUE_BUFF(theReport)

How This Function Works

This section explains how GciTraverseObjs stores object reports in the traversal buffer and values
in the value buffer.

1. First, GciTraverseObjs verifies that the traversal buffer is large enough to accommodate at
least one object report header (GciObjRepHdrSType). If the buffer is too small, GemBuilder
returns an error.

/* useful macros to simplify the code */
#define OHDR_SIZE ((long)GCI_ALIGN(sizeof(GciObjRepHdrSType)))
#define MIN_TBUF_SIZE (OHDR_SIZE + sizeof(long))

/* check traversal buffer for minimum size */
if (travBuffSize < (MIN_TBUF_SIZE))

/* ERROR: not big enough for one object report header */

2. For each object in the traversal, GciTraverseObjs discovers if there is enough space left in the
traversal buffer to store both the object report header and the object’s values. If there isn’t
enough space remaining, the function returns 0, and your program can call GciMoreTraversal
to continue the traversal. Otherwise (if there is enough space), the object’s values are stored in
the traversal buffer.

3. When there are no more objects left to traverse, GciTraverseObjs returns a nonzero value to
indicate that the traversal is complete.
September 2011 VMware, Inc. 413

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
Special Objects

For each occurrence of an object with a special implementation (that is, an instance of SmallInteger,
Character, Boolean, or UndefinedObject) contained in theOops, this function will return an accurate
object report. For any special object encountered at some deeper point in the traversal, no object
report will be generated.

Authorization Violations

If the user is not authorized to read some object encountered during the traversal, the traversal will
continue. No value will be placed in the object report’s value buffer, but the report for the forbidden
object will contain the following values:

hdr.valueBuffSize0
hdr.namedSize0
hdr.idxSize 0
hdr.firstOffset1
hdr.objId theOop
hdr.oclass OOP_NIL
hdr.segment OOP_NIL
hdr.objSize 0
hdr.objImpl GC_FORMAT_SPECIAL
hdr.isInvariant0

Incomplete Object Reports

To check the completeness of an object report’s value, examine its hdr.objSize field, which contains
the size of the GemStone object represented by the object report. If hdr.objSize is expressed in terms
of bytes, then you can compare it directly to the object report’s hdr.valueBuffSize, which contains
the size of the portion of the object that was actually imported into the object report. If the two
numbers are not the same, then you have an incomplete object report.

If hdr.objSize is expressed in terms of OOPs, as it will be for OOP-based objects, then you must
multiply by 4 before you can compare the value to hdr.valueBuffSize.

Continuing the Traversal

When the amount of information obtained in a traversal exceeds the amount of available memory
(as specified with travBuffSize), your application can break the traversal into manageable amounts
of information by issuing repeated calls to GciMoreTraversal. Generally speaking, an application
can continue to call GciMoreTraversal until it has obtained all requested information.
414 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
During the entire sequence of GciTraverseObjs and GciMoreTraversal calls that constitute a
traversal, any single object report will be returned exactly once. Regardless of the connectivity of
objects in the GemStone database, only one report will be generated for any non-special object.

When Traversal Can’t Be Continued

Naturally, GemStone will not continue an incomplete traversal if there is any chance that changes to
the database in the intervening period might have invalidated the previous report or changed the
connectivity of the objects in the path of the traversal. Specifically, GemStone will refuse to
continue a traversal if, in the interval before attempting to continue, you:

 • Modify the objects in the database directly, by calling any of the GciStore... or GciAdd...
functions;

 • Call one of the Smalltalk message-sending functions GciSendMsg, GciPerform,
GciContinue, or any of the GciExecute... functions;

 • Abort your transaction, thus invalidating any subsequent information from that traversal.

Any attempt to call GciMoreTraversal after one of these actions will generate an error.

Note that this holds true across multiple GemBuilder applications sharing the same GemStone
session. Suppose, for example, that you were holding on to an incomplete traversal buffer and the
user moved from the current application to another, did some work that required executing Smalltalk
code, and then returned to the original application. You would be unable to continue the interrupted
traversal.

Example

The following example fetches an object report on a Document object stored in the GemStone
database, then obtains more detailed information about the title of that document.

1. First, the example calls GciTraverseObjs to fetch information about each element of the
docList (a collection of Document OOPs) from the database into the first traversal buffer
(buff1).

2. Next, the example calls GciFindObjRep to scan the buffer for a report on the desired document
(myDocument).

3. After locating that object report in the traversal buffer, the program obtains the necessary
information from the buffer: in this case, the class and size of myDocument, a pointer to its
value buffer, and the title and author of that document.

4. The example calls GciFindObjRep again to hunt for a report on myDocument’s title instance
variable.
September 2011 VMware, Inc. 415

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
5. Subsequent GciMoreTraversal calls may be used to obtain additional object reports pertinent
to elements in the specified docList.

BoolType atEnd;

atEnd = GciTraverseObjs(docList, numOops, buff1, maxSz, level);

/* use GciFindObjRep to scan buff1 for a report on myDocument
(an element in the docList) */
myDocumentReport = GciFindObjRep(buff1, myDocument);

/* get all desired information from buff1 */
myClass = myDocumentReport->class;
mySize = myDocumentReport->size;
value = GCI_VALUE_BUFF(myDocumentReport);
myTitle = value[0];
myAuthor = value[1];

/* Intervening code goes here, in place of this comment */

/* now look for a report on myDocument’s title instance var */
titleReport = GciFindObjRep(buff1, myTitle);
theTitle = GCI_VALUE_BUFF(titleReport);

if (!atEnd) /* and you want more information */
 atEnd = GciMoreTraversal(buff2, maxSz);

See Also

GciFindObjRep, page 202
GciMoreTraversal, page 242
GciNbMoreTraversal, page 263
GciNbStoreTrav, page 271
GciNbTraverseObjs, page 275
GciNewOopUsingObjRep, page 283
GciObjRepSize, page 292
GciStoreTrav, page 392
416 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciUncompress

Uncompress the supplied data, assumed to have been compressed with GciCompress.

Syntax

int GciUncompress(dest, destLen, source, sourceLen)
char * dest;
unsigned long * destLen;
const char * source;
unsigned long sourceLen;

Input Arguments

dest Pointer to the buffer intended to hold the resulting uncompressed data.
destLen Pointer to the length, in bytes, of the buffer intended to hold the

uncompressed data.
source Pointer to the source data to uncompress.
sourceLen Length, in bytes, of the source data.

Result Arguments

dest The resulting uncompressed data.

Return Value

GciUncompress returns Z_OK (equal to 0) if the decompression succeeded, or various error values
if it failed; see the documentation for the uncompress function in the GNU open source library at
http://www.gzip.org.

Description

GciUncompress passes the supplied inputs unchanged to the uncompress function in the GNU
open source library Version 1.0.4, and returns the result exactly as the GNU uncompress function
returns it.
September 2011 VMware, Inc. 417

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
Example

OopType CompressByteArray(OopType byteArray)
{

ByteType *inputBuffer, *outputBuffer;
unsigned long inputSize, outputSize;
long result;
OopType resultOop;

if (!GciIsKindOfClass(byteArray, OOP_CLASS_BYTE_ARRAY))
return OOP_NIL; /* error: input arg isn’t byteArray */

inputSize = (unsigned long) GciFetchSize(byteArray);
outputSize = inputSize;

inputBuffer = (ByteType *) malloc((size_t) inputSize);
outputBuffer = (ByteType *) malloc((size_t) outputSize);

if (inputBuffer == NULL || outputBuffer == NULL) {
resultOop = OOP_NIL;

goto COMPRESS_BYTE_ARRAY_FAIL;
}

inputSize = (unsigned long) GciFetchBytes(byteArray,
1, /* start at first element */
inputBuffer,
(ArraySizeType) inputSize /* max bytes to fetch */);

result = GciCompress((char *) outputBuffer,

&outputSize, /* returns as num bytes in output buffer */
(const char *) inputBuffer,
inputSize);

if (result != 0) {

resultOop = GCI_LONG_TO_OOP(result);
goto COMPRESS_BYTE_ARRAY_FAIL;
/* a gzip error, return the error code */

}

418 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
/* build the result object in 1 step */
resultOop = GciNewByteObj(

OOP_CLASS_BYTE_ARRAY,
outputBuffer,
(ArraySizeType) outputSize);

COMPRESS_BYTE_ARRAY_FAIL:;

if (inputBuffer != NULL)
free(inputBuffer);

if (outputBuffer != NULL)
free(outputBuffer);

return resultOop;

}

See Also

GciCompress, page 129
September 2011 VMware, Inc. 419

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciUnsignedLongToOop

Find a GemStone object that corresponds to a C unsigned long integer.

Syntax

OopType GciUnsignedLongToOop(anUnsignedLong)
unsigned long anUnsignedLong;

Input Arguments

anUnsignedLong The C unsigned long integer to be translated into an object.

Return Value

The GciUnsignedLongToOop function returns the OOP of a GemStone object whose value is
equivalent to the C unsigned long integer value of anUnsignedLong.

Description

The GciUnsignedLongToOop function translates the C long integer value anUnsignedLong into a
GemStone object that has the same value.

If the value is in the range 0 .. 1073741823, the resulting object is a SmallInteger. If the value is
larger than 1073741823, the resulting object is a LargePositiveInteger.

See Also

GciLongToOop, page 238
GCI_LONG_TO_OOP, page 240
GciOopToLong, page 305
GCI_OOP_TO_LONG, page 307
GciOopToUnsignedLong, page 309
420 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciUserActionInit

Declare user actions for GemStone.

Syntax

void GciUserActionInit()

Description

GciUserActionInit is implemented by the application developer, but it is called by GciIinit. It
enables Smalltalk to find the entry points for the application’s user actions, so that they can be
executed from the database.
September 2011 VMware, Inc. 421

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
GciUserActionShutdown

Enable user-defined clean-up for user actions.

Syntax

void GciUserActionShutdown()

Description

GciUserActionShutdown is implemented by the application developer, and is called when a
session user action library is unloaded. It enables user-defined clean-up for the application’s user
actions.
422 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GCI_VALUE_BUFF

(MACRO) Find a pointer to the value buffer of an object report.

Syntax

char * GCI_VALUE_BUFF(theReport)

Input Arguments

theReport The object report (assumed to be of type GciObjRepSType *) for whose
value buffer the pointer is sought.

Result Value

A C pointer to the value buffer of the input object report.

Description

This macro is used during object traversals to obtain a pointer to the value buffer of an object report.

This macro is most useful with applications that are linked with GciRpc
(the “remote procedure call” version of GemBuilder). If your
application will be linked with GciLnk (the “linkable” GemBuilder),
you’ll usually achieve best performance by using the simple GciFetch...
and GciStore... functions rather than object traversal. For more
information, see “GciRpc and GciLnk” on page 53.

Example

char * myBytes;
myBytes = (char *)GCI_VALUE_BUFF(&myObjectReport);
September 2011 VMware, Inc. 423

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
See Also

GciMoreTraversal, page 242
GciNewOopUsingObjRep, page 283
GciTraverseObjs, page 411
424 VMware, Inc. September 2011

Chapter 5 - GemBuilder C Functions — A Reference Guide GemBuilder Function and Macro Reference
GciVersion

Return a string that describes the GemBuilder version.

Syntax

const char* GciVersion()

Description

GciVersion returns a string terminated by 0. Version fields in the string are delimited by periods
(.). The first field is the major version number, GCI_VER_MAJOR_DIGIT. The second field is the
minor version number, GCI_VER_MINOR_DIGIT. Any number of additional fields may exist to
describe the exact release of GemBuilder.

For more version information, use the methods in class System in the Version Management
category.
September 2011 VMware, Inc. 425

GemBuilder Function and Macro Reference GemStone/S 6.6 GemBuilder for C
426 VMware, Inc. September 2011

Appendix

A Reserved OOPs
The GemBuilder for C include file gcioop.ht defines C mnemonics for the OOPs
of certain GemStone objects that are already defined in your GemStone software
package. Your C application can compare all these mnemonics with any value of
type OopType. However, the value of any mnemonic is subject to change without
notice in future software releases. Your C application should refer to the OOPs of
predefined GemStone objects by mnemonic name only.

The following mnemonic names for predefined GemStone objects are available to
C programs:

 • A value that, strictly speaking, is not an object at all, but that represents a value
that is never used to represent any object in the database. You can use this
mnemonic to test whether or not an OOP is valid, that is, whether or not it
actually points to any GemStone object.

 • OOP_ILLEGAL

 • Special objects

 • OOP_NIL (nil)
 • OOP_FALSE (FALSE)
 • OOP_TRUE (true)
September 2011 VMware, Inc. 427

GemStone/S 6.6 GemBuilder for C
 • Instances of SmallInteger

 • OOP_MinusOne
 • OOP_Zero
 • OOP_One
 • OOP_Two
 • OOP_MAX_SMALL_INT
 • OOP_MIN_SMALL_INT

 • Instances of Character

 • OOP_ASCII_NUL represents the first ASCII character OOP
 • 255 other OOPs represent the remaining ASCII characters, but they have

no mnemonics

 • Instances of JISCharacter

 • OOP_FIRST_JIS_CHAR_OOP
 • OOP_LAST_JIS_CHAR_OOP

 • The GemStone Smalltalk kernel classes

 • OOP_CLASS_className (in this case, the class name is in capital letters,
with words separated by underscore characters)

 • OOP_LAST_KERNEL_OOP (which has the same value as the last class)
 • OOP_CLASS_EXCEPTION

 • The GemStone error dictionary

 • OOP_GEMSTONE_ERROR_CAT

 • The cluster bucket category

 • OOP_ALL_CLUSTER_BUCKETS
428 VMware, Inc. September 2011

Appendix

B GemStone C Statistics
Interface
This appendix describes the GemStone C Statistics Interface (GCSI), a library of
functions that allow your C application to collect GemStone statistics directly from
the shared page cache without starting a database session.

The GCSI inteface is available on UNIX and Linux platforms only.

B.1 Developing a GCSI Application
The command lines in this appendix assume that you have set the GEMSTONE
environment variable to your GemStone installation directory.

Required Header Files
Your GCSI program must include the following header files:

 • $GEMSTONE/include/shrpcstats.ht — Defines all cache statistics. (For a list
of cache statistics, refer to the “Monitoring GemStone” chapter of the System
Administration Guide for GemStone/S.)

 • $GEMSTONE/include/gcsi.hf — Prototypes for all GCSI functions.

 • $GEMSTONE/include/gcsierr.ht — GCSI error numbers.
September 2011 VMware, Inc. 429

Developing a GCSI Application GemStone/S 6.6 GemBuilder for C
Your program must define a main() function somewhere.

The GCSI Shared Library
GemStone provides a shared library, $GEMSTONE/lib/libgcsi63.so, that
your program will load at runtime.

 • Make sure that $GEMSTONE/lib is included in your LD_LIBRARY_PATH
environment variable, so that the runtime loader can find the GCSI library. For
example:

export LD_LIBRARY_PATH=$GEMSTONE/lib:$LD_LIBRARY_PATH

 • $GEMSTONE/lib/libgcsi63.so is a multi-threaded library, so your
program must also be compiled and linked as a multi-threaded program.

Compiling and Linking
The $GEMSTONE/examples directory includes the sample GCSI program
gsstat.cc, along with a set of sample makefiles that show how to compile the
sample GCSI program, using the compilers that are used to build the GemStone
product.

NOTE
It may still be possible to build your program with another compiler
(such as g++), so long as you specify the appropriate flags to enable
multi-threading.

Whenever you upgrade to a new GemStone version, you must re-compile and re-
link all your GCSI programs. This is because the internal structure of the shared
cache may change from version to version. Assuming you’ve created a makefile,
all you should need to do is change $GEMSTONE and rebuild.

Connecting to the Shared Page Cache
The GCSI library allows your program to connect to a single GemStone shared
page cache. Once the connection is made, a thread is started to monitor the cache
and disconnect from it if the cache monitor process dies. This thread is needed to
prevent your program from "holding on" to the shared cache after all other
processes have detached from it. In this way, your program can safely sleep for a
long time without preventing the operating system from freeing and recycling
shared memory should the Stone be unexpectedly shut down.
430 VMware, Inc. September 2011

Appendix B - GemStone C Statistics Interface GCSI Data Types
The Sample Program
The sample program gsstat.cc (in $GEMSTONE/examples) monitors a
running GemStone repository by printing out a set of statistics at a regular interval
that you specify. The program prints the following statistics:

 • Sess — TotalSessionsCount; the total number of sessions currently logged in
to the system.

 • CR — CommitRecordCount; the number of outstanding commit records that
are currently being maintained by the system.

 • PNR — PagesNeedReclaimSize; the amount of reclamation work that is
pending, that is, the backlog waiting for the GcGem reclaim task.

 • PD — PossibleDeadSize; the number of objects previously marked as
dereferenced in the repository, but for which sessions currently in a
transaction might have created a reference in their object space.

 • DNR — DeadNotReclaimedSize; the number of objects that have been
determined to be dead (current sessions have indicated they do not have a
reference to these objects) but have not yet been reclaimed.

 • FP — The number of free pages in the Stone.

 • OCS — OldestCrSession; the session ID of the session referencing the oldest
commit record. Prints 0 if the oldest commit record is not referenced by any
session, or if there is only one commit record.

 • FF — FreeFrameCount; the number of unused page frames in the shared page
cache.

To invoke gsstat, supply the name of a running Stone (or shared page cache, if
running on a Gem server) and a time interval in seconds. For example:

% gsstat myStone 2

To stop the gsstat program and detach from the cache, issue a CTRL-C.

B.2 GCSI Data Types
The following C types are used by GCSI functions. The file shrpcstats.ht
defines each of the GCSI types (shown in capital letters below). That file is in the
$GEMSTONE/include directory.

ShrPcMonStatSType
Shared page cache monitor statistics.
September 2011 VMware, Inc. 431

GCSI Data Types GemStone/S 6.6 GemBuilder for C
ShrPcStnStatSType
Stone statistics.

ShrPcPgsvrStatSType
Page server statistics.

ShrPcGemStatSType
Gem session statistics.

ShrPcStatUnion
The union of all four statistics structured types: shared page cache
monitor, page server, Stone, and Gem.

ShrPcCommonStatSType
Common statistics collected for all processes attached to the shared
cache.

The Structure for Representing the GCSI Function Result
The structured type GcsiResultSType provides a C representation of the result of
executing a GCSI function. This structure contains the following fields:

typedef struct {
 signed int processId;
 signed int sessionId;
 ShrPcCommonStatSType cmn;
 union ShrPcStatUnion u;
} ShrPcStatsSType;

class GcsiResultSType {
public:
 char vsdName[SHRPC_PROC_NAME_SIZE + 1];
 unsigned int statType;
 ShrPcStatsSType stats;
};
432 VMware, Inc. September 2011

Appendix B - GemStone C Statistics Interface GCSI Data Types
In addition, a set of C mnemonics support representation of the count of each
process-specific structured type.

#define COMMON_STAT_COUNT
(sizeof(ShrPcCommonStatSType)/sizeof(int))

#define SHRPC_STAT_COUNT
(sizeof(ShrPcMonStatSType)/sizeof(int) + \

 COMMON_STAT_COUNT)

#define GEM_STAT_COUNT
(sizeof(ShrPcGemStatSType)/sizeof(int) + \
 COMMON_STAT_COUNT)

#define PGSVR_STAT_COUNT
(sizeof(ShrPcPgsvrStatSType)/sizeof(int) + \
 COMMON_STAT_COUNT)

#define STN_STAT_COUNT
(sizeof(ShrPcStnStatSType)/sizeof(int) + \

COMMON_STAT_COUNT)
September 2011 VMware, Inc. 433

GCSI Data Types GemStone/S 6.6 GemBuilder for C
GcsiAllStatsForMask

Get all cache statistics for a specified set of processes.

Syntax

int GcsiAllStatsForMask(mask, result, resultSize);
unsigned int mask;
GcsiResultSType * result;
int * resultSize;

Input Arguments

mask Indicates what types of processes to collect statistics for.
result Address of an array of kind GcsiResultSType where statistics will be

stored.
resultSize Pointer to an integer that indicates the size of the result in elements (not

bytes). On return, indicates the number of that were stored into result.
Indicates the maximum number of processes for which statistics can be
returned.

Return Value

Returns 0 if successful; otherwise returns an error code, as defined in gcsierr.ht.

Example

Mask bits should be set by a bitwise OR of the desired process types. For example, to get statistics
for the stone and Shared Page Cache Monitor:

unsigned int mask = SHRPC_MONITOR | SHRPC_STONE;
434 VMware, Inc. September 2011

Appendix B - GemStone C Statistics Interface GCSI Data Types
GcsiAttachSharedCache

Attach to the specified shared page cache.

Syntax

int GcsiAttachSharedCache(fullCacheName, errBuf, errBufSize);
const char * fullCacheName;
char * errBuf;
size_t errBufSize;

Input Arguments

fullCacheName Full name of the shared page cache, in the format
stoneName@stoneHostIpAddress. To determine the full name of the
shared cache, use the gslist -x utility.

errBuf A buffer that will contain a string describing an error.
errBufSize Size (in bytes) of errBuf.

Return Value

Returns 0 if successful; otherwise returns an error code, as defined in gcsierr.ht.

See Also

GcsiAttachSharedCacheForStone, page 436
GcsiDetachSharedCache, page 437
September 2011 VMware, Inc. 435

GCSI Data Types GemStone/S 6.6 GemBuilder for C
GcsiAttachSharedCacheForStone

Attaches this process to the specified shared page cache.

Syntax

int GcsiAttachSharedCacheForStone(stoneName, errBuf, errBufSize);
const char * stoneName;
char * errBuf;
size_t errBufSize;

Input Arguments

stoneName Name of the Stone process.
errBuf A buffer that will contain a string describing an error.
errBufSize Size (in bytes) of errBuf.

Return Value

Returns 0 if successful; otherwise returns an error code, as defined in gcsierr.ht.

Description

This function assumes that the cache name is <stoneName>@<thisIpAddress> where
thisIpAddress is the IP address of the local machine. This function may fail if the host is multi-
homed (has more than one network interface). In that case, use GcsiAttachSharedCache (page 435)
to specify the full name of the shared cache.

See Also

GcsiAttachSharedCache, page 435
GcsiDetachSharedCache, page 437
436 VMware, Inc. September 2011

Appendix B - GemStone C Statistics Interface GCSI Data Types
GcsiDetachSharedCache

Detach from the shared page cache.

Syntax

int GcsiDetachSharedCache (void);

Return Value

Returns 0 if successful; otherwise returns an error code, as defined in gcsierr.ht.

See Also

GcsiAttachSharedCache, page 435
GcsiAttachSharedCacheForStone, page 436
September 2011 VMware, Inc. 437

GCSI Data Types GemStone/S 6.6 GemBuilder for C
GcsiFetchMaxProcessesInCache

Return the maximum number of processes that can be attached to this shared cache at any instant.
The result may be used to allocate memory for a calls to the GcsiFetchStatsForAll* family of
functions.

Syntax

int GcsiFetchMaxProcessesInCache(maxProcesses);
int * maxProcesses;

Input Arguments

maxProcesses The maximum number of processes that can be attached to this shared
cache at any instant.

Return Value

Returns 0 if successful; otherwise returns an error code, as defined in gcsierr.ht.
438 VMware, Inc. September 2011

Appendix B - GemStone C Statistics Interface GCSI Data Types
GcsiInit

Initialize the library. This function must be called before all other GCSI functions.

Syntax

GcsiInit(void);
September 2011 VMware, Inc. 439

GCSI Data Types GemStone/S 6.6 GemBuilder for C
GcsiShrPcMonStatAtOffset

Get the SPC monitor cache statistic at the given byte offset within the ShrPcMonStatSType structure
type.

Syntax

int GcsiShrPcMonStatAtOffset(byteOffset, stat);
size_t byteOffset;
unsigned int * stat;

Input Arguments

byteOffset Offset (in bytes) of the desired statistic in the ShrPcStatUnion type.
stat Value of the requested statistic.

Return Value

Returns 0 if successful; otherwise returns an error code, as defined in gcsierr.ht.

See Also

GcsiStnStatAtOffset, page 441
440 VMware, Inc. September 2011

Appendix B - GemStone C Statistics Interface GCSI Data Types
GcsiStnStatAtOffset

Get the Stone cache statistic at the given byte offset within the ShrPcStnStatSType structure type.

Syntax

int GcsiStnStatAtOffset(byteOffset, stat);
size_t byteOffset;
unsigned int * stat;

Input Arguments

byteOffset Offset (in bytes) of the desired statistic in the ShrPcStatUnion type.
stat Value of the requested statistic.

Return Value

Returns 0 if successful; otherwise returns an error code, as defined in gcsierr.ht.

See Also

GcsiInit, page 439
September 2011 VMware, Inc. 441

GCSI Data Types GemStone/S 6.6 GemBuilder for C
GcsiStatsForGemSessionId

Get the cache statistics for the given Gem session id.

Syntax

int GcsiStatsForGemSessionId(sessionId, result);
int sessionId;
GcsiResultSType * result;

Input Arguments

sessionId Session ID of the Gem for which statistics are requested.
result Pointer to a GcsiResultSType structure.

Return Value

Returns 0 if successful; otherwise returns an error code, as defined in gcsierr.ht.

See Also

GcsiStatsForGemSessionWithName, page 443
GcsiStatsForPgsvrSessionId, page 444
GcsiStatsForProcessId, page 445
GcsiStatsForShrPcMon, page 446
GcsiStatsForStone, page 447
442 VMware, Inc. September 2011

Appendix B - GemStone C Statistics Interface GCSI Data Types
GcsiStatsForGemSessionWithName

Get the cache statistics for the first Gem in the cache with the given cache name.

Syntax

int GcsiStatsForGemSessionWithName(gemName, result);
char * gemName;
GcsiResultSType * result;

Input Arguments

gemName The case-sensitive name of the Gem for which statistics are requested.
result Pointer to a GcsiResultSType structure.

Return Value

Returns 0 if successful; otherwise returns an error code, as defined in gcsierr.ht.

See Also

GcsiStnStatAtOffset, page 441
GcsiStatsForPgsvrSessionId, page 444
GcsiStatsForProcessId, page 445
GcsiStatsForShrPcMon, page 446
GcsiStatsForStone, page 447
September 2011 VMware, Inc. 443

GCSI Data Types GemStone/S 6.6 GemBuilder for C
GcsiStatsForPgsvrSessionId

Get the cache statistics for the given page server with the given session id. Remote Gems have page
servers on the Stone’s cache that assume the same session ID as the remote Gem.

Syntax

int GcsiStatsForPgsvrSessionId(sessionId, result);
int sessionId;
GcsiResultSType * result;

Input Arguments

sessionId Session ID of the page server for which statistics are requested.
result Pointer to a GcsiResultSType structure.

Return Value

Returns 0 if successful; otherwise returns an error code, as defined in gcsierr.ht.

See Also

GcsiStatsForGemSessionId, page 442
GcsiStatsForGemSessionWithName, page 443
GcsiStatsForProcessId, page 445
GcsiStatsForShrPcMon, page 446
GcsiStatsForStone, page 447
444 VMware, Inc. September 2011

Appendix B - GemStone C Statistics Interface GCSI Data Types
GcsiStatsForProcessId

Get the cache statistics for the given process ID.

Syntax

int GcsiStatsForProcessId(pid, result);
int pid;
GcsiResultSType * result;

Input Arguments

pid Process ID for which statistics are requested.
result Pointer to a GcsiResultSType structure.

Return Value

Returns 0 if successful; otherwise returns an error code, as defined in gcsierr.ht.

See Also

GcsiStatsForGemSessionId, page 442
GcsiStatsForGemSessionWithName, page 443
GcsiStatsForPgsvrSessionId, page 444
GcsiStatsForShrPcMon, page 446
GcsiStatsForStone, page 447
September 2011 VMware, Inc. 445

GCSI Data Types GemStone/S 6.6 GemBuilder for C
GcsiStatsForShrPcMon

Get the cache statistics for the shared page cache monitor process for this shared page cache.

Syntax

int GcsiStatsForShrPcMon(result);
GcsiResultSType * result;

Input Arguments

result Pointer to a GcsiResultSType structure.

Return Value

Returns 0 if successful; otherwise returns an error code, as defined in gcsierr.ht.

See Also

GcsiInit, page 439
GcsiStatsForGemSessionId, page 442
GcsiStatsForGemSessionWithName, page 443
GcsiStatsForPgsvrSessionId, page 444
GcsiStatsForProcessId, page 445
GcsiStatsForStone, page 447
446 VMware, Inc. September 2011

Appendix B - GemStone C Statistics Interface GCSI Data Types
GcsiStatsForStone

Get the cache statistics for the Stone if there is a Stone attached to this shared page cache.

Syntax

int GcsiStatsForStone(result);
GcsiResultSType * result;

Input Arguments

result Pointer to a GcsiResultSType structure.

Return Value

Returns 0 if successful; otherwise returns an error code, as defined in gcsierr.ht.

See Also

GcsiStnStatAtOffset, page 441
GcsiStatsForGemSessionId, page 442
GcsiStatsForGemSessionWithName, page 443
GcsiStatsForPgsvrSessionId, page 444
GcsiStatsForProcessId, page 445
GcsiStatsForStone, page 447
September 2011 VMware, Inc. 447

GCSI Data Types GemStone/S 6.6 GemBuilder for C
GCSI Errors

The following errors are defined for the GemStone C Statistics Interface.

Table 1 GCSI Errors

Error Name Definition
GCSI_SUCCESS The requested operation was successful.
GCSI_ERR_NO_INIT GcsiInit() must be called before any other

Gcsi functions.
GCSI_ERR_CACHE_ALREADY_ATTACHED The requested shared cache is already

attached.
GCSI_ERR_NOT_FOUND The requested session or process was not

found.

GCSI_ERR_BAD_ARG An invalid argument was passed to a Gcsi
function.

GCSI_ERR_CACHE_CONNECTION_SEVERED The connection to the shared cache was
lost.

GCSI_ERR_NO_STONE Stone statistics were requested on a cache
with no stone process.

GCSI_ERR_CACHE_NOT_ATTACHED No shared page cache is currently
attached.

GCSI_ERR_NO_MORE_HANDLES The maximum number of shared caches
are attached.

GCSI_ERR_CACHE_ATTACH_FAILED The attempt to attach the shared cache has
failed.

GCSI_ERR_WATCHER_THREAD_FAILED The cache watcher thread could not be
started.

GCSI_ERR_CACHE_WRONG_VERSION The shared cache version does not match
that of the libgcsixx.so library.
448 VMware, Inc. September 2011

Appendix

C Linking to Static User
Action Code
Shared libraries on UNIX platforms cannot link to non-shared code, which creates
a problem if a user action needs to call code in a static library and no equivalent
shared library is available. For this reason, GemBuilder provides a way to link non-
shared code into a custom Gem. Static linking requires that all entry points be
resolved at link time. You must have a C development environment, and if you
create an RPC product, you must ship the libraries with it.

C.1 Creating the Custom Gem
A Gem is customized if you have defined user actions that it can execute in its own
process. To produce a custom Gem with static user action functions, complete the
following steps:

Step 1. Modify the user action code.

The static user action code must define StaticUserActionInit, which will be
called by the Gem the static code is linked into, and the code must include the
files staticua.hf and gci.hf. Define StaticUserActionInit in exactly the
same way as GCIUSER_ACTION_INIT_DEF (see Example 3.1 on page 63).
Include gciuser.hf also, if you wish to use the GCI_DECLARE_ACTION
macro.
September 2011 VMware, Inc. 449

Deploying Static User Actions for Custom Gems GemStone/S 6.6 GemBuilder for C
Step 2. Test the static user action code.

You can implement your own Topaz to test the code. Use the
GciLoadUserActionLibrary function to implement your version of the Topaz
loadua command. To use a custom Topaz, just execute it.

Step 3. Link the static code into a custom Gem.

Once the code is compiled, you can create a custom Gem by linking your user
action code with gemrpcobj.o, which contains the object code for an RPC
Gem.

Each command line illustrates how to link a set of user actions for a Gem. The
link step produces a custom Gem executable named usrgem.

Solaris (Sun):

$ CC -xildoff -i usract.o $GEMSTONE/lib/gciualib.o
$GEMSTONE/lib/gemrpcobj.o -o usrgem -B dynamic
-lCrun -lc -lpthread -ldl -lrt -lsocket -lnsl -lm
-B static -lstdc++ -lgcc_eh

AIX (IBM):

$ /usr/vacpp/bin/xlc_r -Wl,-bmaxdata:0xD0000000/dsa
usract.o $GEMSTONE/lib/gciualib.o
$GEMSTONE/lib/gemrpcobj.o -o usrgem -L/usr/lib/threads
-lpthreads -lm -lc_r -ldl -lbsd -Wl,-bstatic,-bh:0
-lstdc++ -lsupc++ -lgcc -lgcc_eh -lgcc_s

Linux:

$ g++ usract.o $GEMSTONE/lib/gciualib.o
$GEMSTONE/lib/gemrpcobj.o -Wl,
-Bdynamic,--allow-multiple-definition,--warn-once
-lpthread -lcrypt -ldl -lc -lm -lrt -o usrgem

C.2 Deploying Static User Actions for Custom Gems
This section describes how to make static user actions available to custom RPC
Gem processes at run time. A linked Gem has the same user actions available as
does the application with which it is linked.
450 VMware, Inc. September 2011

Appendix C - Linking to Static User Action Code Deploying Static User Actions for Custom Gems
How GemStone Starts Gem Processes
When an application logs in to GemStone, an RPC Gem process must be started for
the GemStone session, unless it is the first GemStone login from a linked
application. (One Gem is already running in the application process in that case.)
The application calls the GciLogin function. GemBuilder then sends a network
resource string (NRS) to the NetLDI process on the machine where the RPC Gem
process is to be created. The NRS tells the NetLDI everything it needs to know in
order to start the Gem process.

An RPC Gem is a GemStone service. The NRS specifies at least the service name of
the RPC Gem. It can also supply more information to govern the operation of the
process. Consult Appendix B, “Network Resource String Syntax,” for details.

To make the custom Gem available to any application user, it is generally
necessary to define a new service name in the GemStone services file in a shared
GemStone installation. Then either the application or application user must specify
that service name as the default for starting Gems.

A custom Gem requires a specially-linked executable file. The new GemStone
service generally runs the executable file from a special script that sets the
execution environment.

By default, GemBuilder starts RPC Gems by sending an NRS with just the default
service name, gemnetobject. If the GEMSTONE_NRS_ALL environment
variable is set in the application process, its value overrides the GemStone default.
The application programmer can override these values by calling GciSetNet. Such
means can be used to specify different settings for the gemnetobject service, or
to specify a different service altogether. They can also supply a different (non-
GemStone) default for the application. GciSetNet can also be used to specify the
NRS for RPC Gems directly based upon user input.1

When GemBuilder asks the NetLDI to start an RPC Gem process, the NetLDI reads
the GemStone services file. This file, named services.dat, is found in the
GemStone bin directory. The file associates a service name with an executable file
to be run when the service is requested. Each service name in the file must be
unique, but more than one service name can be associated with a single executable
file. The NetLDI executes the file associated with the service name to start the new
process.

1. Topaz sets its RPC Gem NRS from user input with the set gemnetid command.
GemBuilder for Smalltalk sets the RPC Gem NRS when you add or edit the Gem service of
a session entry from the GemStone Session Browser.
September 2011 VMware, Inc. 451

Deploying Static User Actions for Custom Gems GemStone/S 6.6 GemBuilder for C
For more details on placing custom Gems into your GemStone installation, please
see your System Administration Guide for GemStone/S.

Starting a Private Custom Gem Under UNIX
Assume that you have built (linked) a custom Gem, usrgem, and have placed it in
the directory usrgemdir. Assume also that the user actions that it contains have
already been debugged. You should not run this configuration with user actions
that have not been debugged (see “Risk of Database Corruption” on page 4-78 for
details). To use usrgem yourself, but without allowing others to use it for now,
perform the following steps:

Step 1. Select a name for a script that will execute the custom Gem while it
remains private. Be sure that the name does not match any entry in the
GemStone services file, $GEMSTONE/bin/services.dat. We will call this
script run_usrgem for the purposes of this procedure.

Step 2. Determine which shell you wish to use for run_usrgem. GemStone
recommends using the Bourne shell unless your standard environment is C
shell and you also wish the user actions to depend on environment variables.
Copy the appropriate GemStone script to your home directory:

For Bourne shell:

$ cp $GEMSTONE/sys/gemnetobject $HOME/run_usrgem

For C shell:

$ cp $GEMSTONE/sys/gemnetobjcsh $HOME/run_usrgem

Step 3. Modify run_usrgem.

❐ Modify the line that defines the script’s gemname variable. Set its value to
usrgem.

❐ Modify the line that defines the script’s gemdir variable. Set its value to
usrgemdir.

❐ Find the lines that define the script’s systemConfig and exeConfig variables.
If you wish to specify custom GemStone configuration files for the custom
Gem, modify the appropriate line(s) accordingly.

The Gem service name associated with the private usrgem is now run_usrgem,
because the script of that name is in your home directory. To run the custom Gem,
supply its service name (NRS) as the application requires. From Topaz, you can
452 VMware, Inc. September 2011

Appendix C - Linking to Static User Action Code Name Conflicts with Dynamic User Actions
use the set gemnetid command. If you are using GemBuilder for Smalltalk, add or
edit the Gem service of a session entry from the GemStone Session Browser.

C.3 Name Conflicts with Dynamic User Actions
When user actions are installed in a process, they are given a name by which
GemBuilder refers to them. These names must be unique. In case of a name
conflict, a static user action in a custom Gem always takes precedence. If the
custom Gem attempts to dynamically load a user action library containing a user
action with the same name as one the Gem’s static user actions, the load operation
fails. If an application attempts to load a user action library with a user action by
the same name as one of the Gem’s static user actions, the load operation succeeds,
but the application user action with the conflicting name is ignored. The static Gem
user action is always used.
September 2011 VMware, Inc. 453

Name Conflicts with Dynamic User Actions GemStone/S 6.6 GemBuilder for C
454 VMware, Inc. September 2011

Index

September 2011
Index
A
aborting transactions 25
adding

OOPs to an NSC 38, 103, 104
alignment of traversal buffer 108, 284
application

binding 55
improving performance 40, 43, 50, 188,

242, 263, 271, 275, 336, 337, 387,
392, 396, 411

linking 20
application user action 69
application user actions 60
authorization

traversal 414
violation, what to do 25

B
binding to GemBuilder 55

boolean
converting to an object 113
represented as a special object 27

byte object
fetching bytes from 35, 165, 167
fetching the size 177, 193
implementation type 35, 179
storing bytes in 36, 366, 368, 370

C
C mnemonic

sizes and offsets into objects 92
C types defined for GemBuilder functions 92,

93
call stack

clearing 48, 126
calling

the virtual machine 133, 154, 158, 160,
251, 255, 257, 259, 265, 314, 353

user actions
from GemStone 67
VMware, Inc. 455

GemStone/S 6.6 GemBuilder for C
changed object, and re-reading 106, 115
changing class definitions 33
character

converting to an object 117
instance defined in GemStone 428
represented as a special object 27

checking for GemBuilder errors 47, 152
clamped object traversal 121, 227, 248
class

compiling methods 21, 123
fetching an object’s 35, 170
modifying 33
object report 202

clearing the call stack 48
cluster bucket

mnemonic for category 428
committing transactions 24, 132, 250
compiling

applications 77
C code 76
class methods 21, 123
instance methods 21, 220
methods 21, 220
user actions 77

compressing objects 129, 417
concurrency conflict 132, 250

what to do 24
configuration files 219, 220
constraint violation, what to do 25
context

call stack 126
error handling 48
of GemStone system 133, 135, 251, 252

continuable error 133, 135, 251, 252
continuing

after an error 47, 133, 135, 251, 252
traversal 243, 415

controlling
sessions 132, 232, 236, 250, 358
transactions 102, 132, 245, 250

converting between
longs and OOPS 150, 301
objects and booleans 113, 297, 298

objects and characters 117, 299, 300
objects and floating point numbers 204,

303
objects and integers 238, 240, 305, 307, 420
path representations 43, 311, 404
special objects and C values 27

creating
class methods 123
database objects 21
GemStone sessions 24, 232, 358
instances of a GemStone class 34
objects 39, 283

current session, defined 24
custom Gem executable

user action 450

D
debugging

function, enabling 143
information, finding 332, 356
use GciRpc 54, 78
user action 68

default
directory, host file access 46
login parameter value 218, 358

defining
new methods 21

disabling
error handlers 356

DLLs 55

E
enabling

debugging functions 143
error handlers 356

enumerating named instance variables 125,
230

error
checking 47, 152
continuing execution after 133, 135, 251,

252
456 VMware, Inc. September 2011

GemStone/S 6.6 GemBuilder for C
dictionary 26, 428
handling 47, 327, 332, 356
jump buffer 47, 327, 332, 356
mnemonics 92
polling 47, 152

executing code in
GemBuilder, advantages over GemStone

21
GemStone 21, 31, 154, 156, 158, 160, 255,

257, 259
advantages over GemBuilder 21

host file access method 46
executing user action 69
export set 49
exporting objects to GemStone 21, 34

F
false, GemStone special object 26, 27, 28, 113,

427
fetching

bytes from a byte object 35, 165, 167
class 35, 170
object implementation format 35, 179
object size 177, 193, 200
objects by using paths 43, 188
OOPs from a pointer object 37, 173, 175,

195, 198
OOPs from an NSC 38, 184, 186

finding
debugging information 332, 356
object reports in a traversal buffer 202
objects in a traversal buffer 42

floating point number
as a byte object 36
converting to an object 204

format of an object, fetching 35, 179

G
garbage collection 336, 337

saving and releasing objects 49
GciAbort 102

GciAddOopsToNsc 104
GciAddOopToNsc 103
GciAddSaveObjsToReadSet 105
GCI_ALIGN (macro) 108
GciAlteredObjs 106
GciAppendBytes 109
GciAppendChars 110
GciAppendOops 111
GciBegin 112
GCI_BOOL_TO_OOP (macro) 113
GciCallInProgress 45, 114
GciCheckAuth 115
GCI_CHR_TO_OOP (macro) 117
GciClampedTrav 118
GciClampedTraverseObjs 121
GciClassMethodForClass 123
GciClassNamedSize 125
GciClearStack 126
GciCommit 132
GciCompress 129
GciContinue 133
GciContinueWith 135
GciCreateByteObj 137
GciCreateOopObj 139
GciCTimeToDateTime 141
GciDateTimeSType 94
GciDateTimeToCTime 142
GciDbgEstablish 143
GCI_DECLARE_ACTION 63
GciDirtyObjsInit 145
GciDirtySaveObjs 146
GciEnableSignaledErrors 148
GciEncodedLongToOop 150
GciErr 152
GciErrSType 94
GciExecute 154
GciExecuteFromContext 156
GciExecuteStr 158
GciExecuteStrFromContext 160
GciFetchByte 165
GciFetchBytes 167
GciFetchChars 169
GciFetchClass 170
September 2011 VMware, Inc. 457

GemStone/S 6.6 GemBuilder for C
GciFetchDateTime 172
GciFetchNamedOop 173
GciFetchNamedOops 175
GciFetchNamedSize 177
GciFetchNameOfClass 178
GciFetchObjectInfo 180
GciFetchObjImpl 179
GciFetchObjInfo 182
GciFetchOop 184
GciFetchOops 186
GciFetchPaths 188
GciFetchSize 193
GciFetchVaryingOop 195
GciFetchVaryingOops 198
GciFetchVaryingSize 200
GciFindObjRep 202
GciFltToOop 204
GciGetFreeOop 205
GciGetFreeOops 207
GciGetSessionId 209
GciHandleError 213
GciHardBreak 45, 215
GciHiddenSetIncludesOop 216
GciInit 45, 218
GciInitAppName 219
GciInstallUserAction 222
GciInstMethodForClass 220
GciInUserAction 223
GciIsKindOf 224
GciIsKindOfClass 225
GciIsRemote 226
GCI_IS_REPORT_CLAMPED (macro) 227
GciIsSubclassOf 228
GciIsSubclassOfClass 229
GciIvNameToIdx 230
GciLnk

GciIsRemote 226
Loading 348, 349, 351
object traversal function 54
path access function 54
use only with debugged applications 78
use to enhance performance 54
user action 71

GciLoadUserActionLibrary 232
GciLogin 234
GciLogout 236
GCI_LONG_IS_SMALL_INT (macro) 237
GCI_LONGJMP

and GciPushErrHandler 331
GciLongToOop 238
GCI_LONG_TO_OOP (macro) 240
GciMoreTraversal 242
GciNbAbort 245
GciNbBegin 246
GciNbClampedTraverseObjs 248
GciNbCommit 250
GciNbContinue 251
GciNbContinueWith 252
GciNbEnd 253
GciNbExecute 255
GciNbExecuteStr 257
GciNbExecuteStrFromContext 259
GciNbMoreTraversal 263
GciNbPerform 265
GciNbTraverseObjs 275
GciNewByteObj 277
GciNewCharObj 278
GciNewDateTime 279
GciNewOop 280
GciNewOops 281
GciNewOopUsingObjRep 283
GciNewString 286
GciNewSymbol 287
GciNscIncludesOop 288
GciObjExists 290
GciObjInCollection 291
GciObjInfoSType 95
GciObjRepHdrSType 96
GciObjRepSize 292
GciObjRepSType 96
GCI_OOP_IS_BOOL (macro) 294
GCI_OOP_IS_SMALL_INT (macro) 295
GCI_OOP_IS_SPECIAL (macro) 296
GciOopToBool 297
GCI_OOP_TO_BOOL (macro) 298
GciOopToChr 299
458 VMware, Inc. September 2011

GemStone/S 6.6 GemBuilder for C
GCI_OOP_TO_CHR (macro) 300
GciOopToEncodedLong 301
GciOopToFlt 303
GciOopToLong 305
GCI_OOP_TO_LONG (macro) 307
GciPathToStr 311
GciPerform 314
GciPerformNoDebug 316
GciPerformSymDbg 318
GciPerformTraverse 322
GciPollForSignal 325
GciPopErrJump 327
GciProcessDeferredUpdates 329
GciProduct 330
GciPushErrHandler 331
GciPushErrJump 332
GciRaiseException 335
GciReleaseAllOops 336
GciReleaseOops 337
GciRemoveOopFromNsc 339
GciRemoveOopsFromNsc 341
GciReplaceOops 343
GciReplaceVaryingOops 345
GciResolveSymbol 346
GciResolveSymbolObj 347
GciRpc

loading 348, 349, 351
multiple GemStone sessions 54
object traversal function 54
path access function 54
use in debugging your application 54

GciRtlIsLoaded 348
GciRtlLoad 349
GciRtlUnLoad 351
GciSaveObjs 352

in user actions 62
GciSendMsg 353
GciSessionIsRemote 355
GciSetErrJump 356
GCI_SETJMP

and GciPushErrHandler 331
GciSetNet 358
GciSetSessionId 361

GciShutdown 364
GCI_SIG_JMP_BUF_TYPE

and GciPushErrHandler 331
GciSoftBreak 45, 365
GciStoreByte 366
GciStoreBytes 368
GciStoreBytesInstanceOf 370
GciStoreChars 372
GciStoreIdxOop 374
GciStoreIdxOops 376
GciStoreNamedOop 378
GciStoreNamedOops 380
GciStoreOop 382
GciStoreOops 384
GciStorePaths 387
GciStoreTrav 392
GciStoreTravDo 396
GciStrKeyValueDictAtObj 401
GciStrKeyValueDictAtObjPut 402
GciStrKeyValueDictAtPut 403
GciStrToPath 404
GciSymDictAt 407
GciSymDictAtObj 408
GciSymDictAtObjPut 409
GciSymDictAtPut 410
GciTraverseObjs 411
GciUncompress 417
GciUnsignedLongToOop 420
GciUserActionInit 63, 421
GCIUSER_ACTION_INIT_DEF 63
GciUserActionShutdown 63, 64, 422
GCIUSER_ACTION_SHUTDOWN_DEF 64
GCI_VALUE_BUFF (macro) 423
GciVersion 425
GCSI

compiling and linking 430
connecting to shared page cache 430
data types 431
errors 448
function library 429
sample program

explained 431
introduced 430
September 2011 VMware, Inc. 459

GemStone/S 6.6 GemBuilder for C
shared library 430
GcsiAllStatsForMask 434
GcsiAttachSharedCache 435
GcsiDetachSharedCache 437
GcsiFetchMaxProcessesInCache 438
GcsiInit 439
GcsiResultSType 432
GcsiResultSType (structured type) 432
GcsiShrPcMonStatAtOffset 440
GcsiStatsForGemSessionId 442
GcsiStatsForGemSessionWithName 443
GcsiStatsForPgsvrSessionId 444
GcsiStatsForProcessId 445
GcsiStatsForShrPcMon 446
GcsiStatsForStone 447
GcsiStnStatAtOffset 441
GemBuilder

libraries 54, 79
library file

gcilnk50.* 55
gcirpc50.* 55

loading 348, 349, 351
run-time binding 55

GemRpc, user action 72, 450
GemStone C Statistics Interface, see GCSI 429
GemStone service name 358
GemStone-defined object, making available to

applications 26
gssstat.cc, sample GCSI program 430

H
handling errors 327, 332, 356
hard break 102, 215, 245

defined 32
hidden set 216
host

file access, default directory 46
password 358
username 358

host-specific C definition 92

I
implementation of an object

fetching 35, 179
object report 121, 202, 248

implementing a user action 61
importing objects

from GemStone 21, 34
improving application performance 40, 43,

50, 188, 242, 263, 271, 275, 336, 337,
387, 392, 396, 411

include file (GCI)
gci.ht 92
gcioop.ht 427

include file (GemBuilder)
flag.ht 92
gcicmn.ht 92
gcierr.ht 92
gci.ht 26
gcioc.ht 92
gcioop.ht 26, 28, 92
gcirtl.hf 92
gcirtl.ht 93
gcirtlm.hf 92
gciuser.hf 92
staticua.hf 93
version.ht 93

incomplete
object report 414

indexable instance variable, fetching the value
of an object’s 198

initializing GemBuilder 23, 218
initiating a GemStone session 232
installing a user action 222
instance

GemStone-defined 427
method, compiling 21, 220
variable 36

enumerating for a class 125, 230
integer, converting to an object 238, 240, 420
interrupt

GemStone (hard break) 32
handling 32, 45
issuing 32, 102, 215, 245, 365
460 VMware, Inc. September 2011

GemStone/S 6.6 GemBuilder for C
virtual machine (soft break) 32, 133, 251,
365

invariance, object vs. class 98

J
jump buffer, error handling in GemBuilder 47,

327, 356
jump buffer, error handling in the

GemBuilder 332

K
kernel class 280, 281

mnemonics 26, 428

L
level traversal 42, 242, 263, 275, 411
library

GemBuilder 54, 79
name conflicts 453
run-time loading 65
search 56
static 449
user action 62

linkable GemBuilder (GciLnk)
GciIsRemote 226
use to enhance performance 54

linking
applications 20
applications and user actions 70, 71

loading
user action 65

loading GemBuilder 348, 349, 351
logging in to GemStone 24, 232, 358
logging out from GemStone 24, 236
logical access to objects 21, 30
login parameter 232
longjmp, setjmp 47, 332, 356
long-running user actions 50

M
macros defined 92
message

GemBuilder function 31
sending 30, 265, 314, 353

method
calling C functions from 222
compiling 21, 123, 220

mnemonic
GemStone error 47, 92

modifying
objects directly in C 21, 34

caution 34
multiple GemStone sessions 72

GciRpc 54
switching among 209, 361

multiple objects
defining 283
exporting 202, 242, 263, 271, 275, 387,

392, 396, 411
importing 188, 202, 242, 263, 271, 275,

392, 396, 411

N
named instance variable

fetching 173, 175
number of 125, 177, 230
pointer object 36

network 358
minimizing traffic 40, 43, 188, 242, 263,

271, 275, 387, 392, 396, 411
node 358
parameter 232, 358
traffic, minimizing 43

nil, GemStone special object 26, 27, 28, 427
node name, network 358
nonblocking functions 44
non-sequenceable collection

searching 288
non-sequenceable collection (NSC) 38

adding OOPs to 38, 103, 104
September 2011 VMware, Inc. 461

GemStone/S 6.6 GemBuilder for C
fetching OOPs from 38, 184, 186
fetching the size 177, 193
implementation type 35, 38, 179
removing OOPs from 38, 339, 341

number of an object’s instance variables
object report 121, 202, 248

number of named instance variables in a class
125

number, converting to an object 204, 238, 240,
420

numeric representation of a path 43, 188, 311,
387, 404

O
object

byte implementation type 35
control function 50, 336, 337, 352
converting to

boolean 297, 298
character 299, 300
floating-point number 303
integer 305, 307

creating 39, 283
identity 26
importing or exporting multiple 40
mnemonic 26
NSC implementation type 38
pointer implementation type 36
releasing 49, 236, 336, 337
report 121, 202, 242, 248, 263, 271, 275,

283, 392, 396, 411
finding in a traversal buffer 202
incomplete 414
size 292
special objects 414
structure summary 42
traversal buffer 41
word alignment 108

representation in C 21, 34
saving 49
sending messages 265, 314, 353

OOP (object-oriented pointer)
adding to an NSC 38, 103, 104
defined 26
fetching from an NSC 38, 184, 186, 195,

198
removing from an NSC 38, 339, 341
searching an NSC for 288
searching for 216

OOP map bloat 50
operating system considerations 45

P
password

GemStone 232, 358
host 358

path access
function, GciLnk 54
function, GciRpc 54
to objects 43, 188, 311, 387, 404

pause message 133, 135, 251, 252
performance, improving application 40, 43,

50, 188, 242, 263, 271, 275, 336, 337,
387, 392, 396, 411

persistence and user action results 61
pointer object

fetching OOPs from 37, 173, 175, 195, 198
fetching the size 177, 193
implementation type 35, 36, 179
storing OOPs in 37, 374, 376, 378, 380,

382, 384
polling for GemBuilder errors 47, 152
primitive, user-defined 222
private method, compilation restrictions 123,

220

R
read set 105

transaction 105
reclaiming storage 336, 337
releasing objects 49, 236, 336, 337
remote procedure call GemBuilder (GciRpc)

GciIsRemote 226
462 VMware, Inc. September 2011

GemStone/S 6.6 GemBuilder for C
use in debugging your application 54
removing OOPs from an NSC 38, 339, 341
report, of an object 121, 202, 242, 248, 263, 271,

275, 283, 292, 392, 396, 411
re-reading objects from the database 24
reserved OOP 26
resolving symbols 32, 123, 154, 158, 160, 220,

255, 257, 259
run-time binding

GemBuilder 55
run-time loading 65

S
saving objects 49

export set 49
scavenging temporary objects 50
schema 20
segment of an object

object report 202
sending messages to GemStone objects 21, 30,

265, 314, 353
service name, GemStone 358
session

control 23, 232, 236, 358
creating (logging in) 24, 232, 358
current 24
defined 23
finding the current ID number 209
setting the current ID number 361
switching among multiple 209, 361
terminating (logging out) 24, 236

session user action 69
session user actions 60
setjmp, longjmp 47, 332, 356
shared libraries

GemBuilder 54
user action 59

SIGIO 45
signal (system function) 45
signal errors 325
size of an object

fetching 177, 193

object report 202
size of an object report, calculating 292
SmallInteger

represented as a special object 27
soft break 133, 251, 365

defined 32
special object

implementation type 35, 179
object report 414
traversal of 414

stack
clearing the call 126

starting GemBuilder 23, 218
static user actions 449
statistics, collecting directly from shared page

cache 429
stopping GemBuilder 23, 364
storing

bytes in a byte object 36, 366, 368, 370
objects by using paths 43, 387
OOPs in a pointer object 37, 374, 376, 378,

380, 382, 384
string

as a byte object 35
fetching 35, 165, 167, 169
representation of a path 43, 311, 404
storing 36, 366, 368, 372

structural access 34, 103, 104, 125, 165, 167,
170, 173, 175, 177, 179, 184, 186, 193,
195, 198, 230, 280, 281, 283, 339, 341,
366, 368, 370, 374, 376, 378, 380, 382,
384

function 100
caution when using 100

switching among multiple GemStone sessions
209, 361

symbol
as a byte object 35
resolution 32, 123, 154, 156, 158, 160, 220,

255, 257, 259
September 2011 VMware, Inc. 463

GemStone/S 6.6 GemBuilder for C
T
terminating GemStone sessions 236
testing an application

use GciRpc 78
tracing a GemBuilder call while debugging

143
transaction

aborting 25, 102, 245
committing 24, 132, 250
control 102, 132, 245, 250
management 106, 115
workspace, creating 232, 358
workspace, terminating 236

traversal 40, 118, 121, 202, 242, 248, 263, 271,
275, 322, 392, 396, 411

buffer 41, 242, 263, 271, 275, 392, 396, 411
finding object reports 42, 202
word alignment 108

clamped object 227
function

GciLnk 54
GciRpc 54

inability to continue 243, 415
level 42, 242, 263, 275, 411
special object 414
threshold 121, 242, 248, 263, 271, 275, 392,

396, 411
value buffer 423
word alignment 108

true, GemStone special object 26, 27, 28, 113,
427

U
uncommitted object, releasing 49, 236, 336,

337
uncompressing objects 417
underscore character, private method 123, 220
unnamed instance variable, fetching 195, 198
updating the C representation of database

objects 106, 115
user action

application 60, 69

calling from GemStone 67
configurations 69
debugging 68
defined 59
executing 69
implementing 61
include file 92, 93
installation macro defined 92, 93
installation verified 67
installing 222
library 62
linked application 71
loading 65
making results persistent 61
name conflicts 453
RPC application 70
run-time loading 65
session 60, 69
static 449
userAction instance method 67

user action libraries 59
user name

GemStone 232, 358
host 358

user profile, searching the symbol list in 123,
154, 158, 160, 220, 255, 257, 259

user session
creating 232, 358
terminating 236

user, searching the symbol list for 32

V
value buffer

object report 202, 242, 263, 271, 275, 283,
392, 396, 411

traversal 423
word alignment 108

value of an instance variable, object report
121, 202, 248

version
GemBuilder 425
464 VMware, Inc. September 2011

GemStone/S 6.6 GemBuilder for C
virtual machine
call stack 48

clearing 48, 126
control function 133, 135, 154, 158, 160,

251, 252, 255, 257, 259, 265, 314,
353

W
word alignment 108, 284
September 2011 VMware, Inc. 465

GemStone/S 6.6 GemBuilder for C
466 VMware, Inc. September 2011

	1 Introduction
	1.1 GemBuilder Application Overview
	Figure 1.1 The Role of GemBuilder in Application Development
	Deciding Where to Do the Work
	Representing GemStone Objects in C
	Smalltalk Access to Objects
	Calling C Functions from Smalltalk Methods

	The GemBuilder Functions

	1.2 Session Control
	Starting and Stopping GemBuilder
	Remote Login Setup
	Logging In and Out
	Transaction Management
	Committing a Transaction
	Aborting a Transaction
	Controlling Transactions Manually

	1.3 Representing Objects in C
	GemStone-defined Object Mnemonics
	Converting Between Special Objects and C Values
	Example 1.1

	Byte-swizzling of Binary Floating-point Values

	1.4 Manipulating Objects in GemStone
	Sending Messages to GemStone Objects
	Example 1.2

	Executing Code in GemStone
	Example 1.3

	Interrupting GemStone Execution
	Modification of Classes

	1.5 Manipulating Objects Through Structural Access
	Direct Access to Metadata
	Byte Objects
	Example 1.4

	Pointer Objects
	Example 1.5

	Nonsequenceable Collections (NSC Objects)
	Example 1.6

	1.6 Creating Objects
	1.7 Fetching and Storing Objects
	Efficient Fetching and Storing with Object Traversal
	Example 1.7
	How Object Traversal Works
	Figure 1.2 Object Traversal and Paths

	The Object Traversal Functions

	Efficient Fetching And Storing with Path Access
	Path Representations

	1.8 Nonblocking Functions
	1.9 Operating System Considerations
	Interrupt Handling in Your GemBuilder Application
	Executing Host File Access Methods

	1.10 Error Handling and Recovery
	Polling for Errors
	Error Jump Buffers
	The Call Stack
	GemStone System Errors

	1.11 Garbage Collection
	1.12 Preparing to Execute GemStone Applications
	GemStone Environment Variables

	2 Building Applications with GemBuilder for C
	2.1 GciRpc and GciLnk
	Use GciRpc for Debugging
	Use GciLnk for Performance
	Multiple GemStone Sessions

	2.2 The GemBuilder Shared Libraries
	2.3 Binding to GemBuilder at Run Time
	Building the Application
	Searching for the Library
	How UNIX Matches Search Names with Shared Library Files
	How Windows Matches Search Names with DLL Files

	3 Writing C Functions To Be Called from GemStone
	3.1 Shared User Action Libraries
	3.2 How User Actions Work
	3.3 Developing User Actions
	Write the User Action Functions
	Create a User Action Library
	The gciua.hf Header File
	The Initialization and Shutdown Functions
	Example 3.1
	Example 3.2

	Compiling and Linking Shared Libraries
	Using Existing User Actions in a User Action Library
	Using Third-party C Code With a User Action Library

	Loading User Actions
	Loading User Action Libraries At Run Time
	Specifying the User Action Library
	Creating User Actions in Your C Application
	Verify That Required User Actions Have Been Installed

	Write the Code That Calls Your User Actions
	Remote User Actions
	Limit on Circular Calls Among User Actions and Smalltalk

	Debug the User Action

	3.4 Executing User Actions
	Choosing Between Session and Application User Actions
	Figure 3.1 Access to Application and Session User Actions

	Running User Actions with Applications
	With an RPC Application
	Figure 3.2 Application User Actions and RPC Applications in GemStone Processes

	With a Linked Application
	Figure 3.3 Session User Actions and Linked Applications in GemStone Processes

	Running User Actions with Gems
	Figure 3.4 Session User Actions and RPC Gems in GemStone Processes

	Running User Actions with Applications and Gems
	Figure 3.5 RPC Applications and Gems with User Actions in GemStone Processes
	Figure 3.6 Application and Session User Actions in GemStone Processes

	4 Compiling and Linking
	4.1 Development Environment and Standard Libraries
	4.2 Compiling C Source Code for GemStone
	The C++ Compiler
	Compilation Options
	Compilation Command Lines

	4.3 Linking C Object Code with GemStone
	Risk of Database Corruption
	GemStone Link Files
	The Linker
	Link Options
	Command Line Assumptions
	Linking Applications That Bind to GemBuilder at Run Time
	Linking User Actions into Shared Libraries

	5 GemBuilder C Functions — A Reference Guide
	5.1 Function Summary Tables
	Table 5.1 Functions for Controlling Sessions and Transactions
	Table 5.2 Functions for Handling Errors and Interrupts and for Debugging
	Table 5.3 Functions for Compiling and Executing Smalltalk Code in the Database
	Table 5.4 Functions for Accessing Symbol Dictionaries
	Table 5.5 Functions for Creating and Initializing Objects
	Table 5.6 Functions and Macros for Converting Objects and Values
	Table 5.7 Object Traversal and Path Functions and Macros
	Table 5.8 Structural Access Functions and Macros
	Table 5.9 Utility Functions

	5.2 GemBuilder Include Files
	5.3 GemBuilder Data Types
	The Structure for Representing the Date and Time
	The Error Report Structure
	The Object Information Structure
	The Object Report Structure
	The Object Report Header Structure
	Table 5.10 Object Implementation Restrictions on Instance Variables

	The User Action Information Structure

	5.4 Structural Access Functions
	5.5 UNIX Interrupt Handling
	5.6 Reserved Prefixes
	5.7 GemBuilder Function and Macro Reference
	GciAbort
	GciAddOopToNsc
	GciAddOopsToNsc
	GciAddSaveObjsToReadSet
	GciAlteredObjs
	GCI_ALIGN
	GciAppendBytes
	GciAppendChars
	GciAppendOops
	GciBegin
	GCI_BOOL_TO_OOP
	GciCallInProgress
	GciCheckAuth
	GCI_CHR_TO_OOP
	GciClampedTrav
	GciClampedTraverseObjs
	GciClassMethodForClass
	GciClassNamedSize
	GciClearStack
	GciCompress
	GciCommit
	GciContinue
	GciContinueWith
	GciCreateByteObj
	GciCreateOopObj
	GciCTimeToDateTime
	GciDateTimeToCTime
	GciDbgEstablish
	GciDirtyObjsInit
	GciDirtySaveObjs
	GciEnableSignaledErrors
	GciEncodedLongToOop
	GciErr
	GciExecute
	GciExecuteFromContext
	GciExecuteStr
	GciExecuteStrFromContext
	GciExecuteStrTrav
	GciFetchByte
	GciFetchBytes
	GciFetchChars
	GciFetchClass
	GciFetchDateTime
	GciFetchNamedOop
	GciFetchNamedOops
	GciFetchNamedSize
	GciFetchNameOfClass
	GciFetchObjImpl
	GciFetchObjectInfo
	GciFetchObjInfo
	GciFetchOop
	GciFetchOops
	GciFetchPaths
	GciFetchSize
	Table 5.11 Differences in Reported Object Size

	GciFetchVaryingOop
	GciFetchVaryingOops
	GciFetchVaryingSize
	GciFindObjRep
	GciFltToOop
	GciGetFreeOop
	GciGetFreeOops
	GciGetSessionId
	GciGsSocketRead
	GciGsSocketWrite
	GciHandleError
	GciHardBreak
	GciHiddenSetIncludesOop
	Table 5.12 Hidden Set Indexes

	GciInit
	GciInitAppName
	GciInstMethodForClass
	GciInstallUserAction
	GciInUserAction
	GciIsKindOf
	GciIsKindOfClass
	GciIsRemote
	GCI_IS_REPORT_CLAMPED
	GciIsSubclassOf
	GciIsSubclassOfClass
	GciIvNameToIdx
	GciLoadUserActionLibrary
	GciLogin
	GciLogout
	GCI_LONG_IS_SMALL_INT
	GciLongToOop
	GCI_LONG_TO_OOP
	GciMoreTraversal
	GciNbAbort
	GciNbBegin
	GciNbClampedTrav
	GciNbClampedTraverseObjs
	GciNbCommit
	GciNbContinue
	GciNbContinueWith
	GciNbEnd
	GciNbExecute
	GciNbExecuteStr
	GciNbExecuteStrFromContext
	GciNbExecuteStrTrav
	GciNbMoreTraversal
	GciNbPerform
	GciNbPerformNoDebug
	GciNbPerformTrav
	GciNbStoreTrav
	GciNbStoreTravDo
	GciNbStoreTravDoTrav
	GciNbTraverseObjs
	GciNewByteObj
	GciNewCharObj
	GciNewDateTime
	GciNewOop
	GciNewOops
	GciNewOopUsingObjRep
	GciNewString
	GciNewSymbol
	GciNscIncludesOop
	GciObjExists
	GciObjInCollection
	GciObjRepSize
	GCI_OOP_IS_BOOL
	GCI_OOP_IS_SMALL_INT
	GCI_OOP_IS_SPECIAL
	GciOopToBool
	GCI_OOP_TO_BOOL
	GciOopToChr
	GCI_OOP_TO_CHR
	GciOopToEncodedLong
	GciOopToFlt
	GciOopToLong
	GCI_OOP_TO_LONG
	GciOopToUnsignedLong
	GciPathToStr
	GciPerform
	GciPerformNoDebug
	GciPerformSymDbg
	GciPerformTrav
	GciPerformTraverse
	GciPollForSignal
	GciPopErrJump
	GciProcessDeferredUpdates
	GciProduct
	GciPushErrHandler
	GciPushErrJump
	GciRaiseException
	GciReleaseAllOops
	GciReleaseOops
	GciRemoveOopFromNsc
	GciRemoveOopsFromNsc
	GciReplaceOops
	GciReplaceVaryingOops
	GciResolveSymbol
	GciResolveSymbolObj
	GciRtlIsLoaded
	GciRtlLoad
	GciRtlUnload
	GciSaveObjs
	GciSendMsg
	GciSessionIsRemote
	GciSetErrJump
	GciSetNet
	GciSetSessionId
	GciSetVaryingSize
	GciShutdown
	GciSoftBreak
	GciStoreByte
	GciStoreBytes
	GciStoreBytesInstanceOf
	GciStoreChars
	GciStoreIdxOop
	GciStoreIdxOops
	GciStoreNamedOop
	GciStoreNamedOops
	GciStoreOop
	GciStoreOops
	GciStorePaths
	GciStoreTrav
	GciStoreTravDo
	GciStoreTravDoTrav
	GciStrKeyValueDictAt
	GciStrKeyValueDictAtObj
	GciStrKeyValueDictAtObjPut
	GciStrKeyValueDictAtPut
	GciStrToPath
	GciSymDictAt
	GciSymDictAtObj
	GciSymDictAtObjPut
	GciSymDictAtPut
	GciTraverseObjs
	GciUncompress
	GciUnsignedLongToOop
	GciUserActionInit
	GciUserActionShutdown
	GCI_VALUE_BUFF
	GciVersion

	A Reserved OOPs
	B GemStone C Statistics Interface
	B.1 Developing a GCSI Application
	Required Header Files
	The GCSI Shared Library
	Compiling and Linking
	Connecting to the Shared Page Cache
	The Sample Program

	B.2 GCSI Data Types
	The Structure for Representing the GCSI Function Result

	GcsiAllStatsForMask
	GcsiAttachSharedCache
	GcsiAttachSharedCacheForStone
	GcsiDetachSharedCache
	GcsiFetchMaxProcessesInCache
	GcsiInit
	GcsiShrPcMonStatAtOffset
	GcsiStnStatAtOffset
	GcsiStatsForGemSessionId
	GcsiStatsForGemSessionWithName
	GcsiStatsForPgsvrSessionId
	GcsiStatsForProcessId
	GcsiStatsForShrPcMon
	GcsiStatsForStone
	GCSI Errors
	Table 1 GCSI Errors

	C Linking to Static User Action Code
	C.1 Creating the Custom Gem
	C.2 Deploying Static User Actions for Custom Gems
	How GemStone Starts Gem Processes
	Starting a Private Custom Gem Under UNIX

	C.3 Name Conflicts with Dynamic User Actions

	Index

