GemSone®

System Administration Guide
for GemStone/S

for UNI X

Version 6.3

April 2008

GEMSTONE

System Administration Guide for UNIX

INTELLECTUAL PROPERTY OWNERSHIP

This documentation is furnished for informational use only and is subject to change without notice. GemStone
Systems, Inc. assumes no responsibility or liability for any errors or inaccuracies that may appear in this
documentation.

This documentation, or any part of it, may not be reproduced, displayed, photocopied, transmitted, or otherwise
copied in any form or by any means now known or later developed, such as electronic, optical, or mechanical means,
without express written authorization from GemStone Systems, Inc.

Warning: This computer program and its documentation are protected by copyright law and international treaties.
Any unauthorized copying or distribution of this program, its documentation, or any portion of it, may result in
severe civil and criminal penalties, and will be prosecuted under the maximum extent possible under the law.

The software installed in accordance with this documentation is copyrighted and licensed by GemStone Systems, Inc.
under separate license agreement. This software may only be used pursuant to the terms and conditions of such
license agreement. Any other use may be a violation of law.

Use, duplication, or disclosure by the Government is subject to restrictions set forth in the Commercial Software -
Restricted Rights clause at 52.227-19 of the Federal Acquisitions Regulations (48 CFR 52.227-19) except that the
government agency shall not have the right to disclose this software to support service contractors or their
subcontractors without the prior written consent of GemStone Systems, Inc.

This software is provided by GemStone Systems, Inc. and contributors “as is” and any expressed or implied
warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular
purpose are disclaimed. In no event shall GemStone Systems, Inc. or any contributors be liable for any direct,
indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of
substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory
of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of
the use of this software, even if advised of the possibility of such damage.

COPYRIGHTS

This software product, its documentation, and its user interface © 1986-2008 GemStone Systems, Inc. All rights
reserved by GemStone Systems, Inc.

PATENTS

GemStone is covered by U.S. Patent Number 6,256,637 “Transactional virtual machine architecture”, Patent Number
6,360,219 “Object queues with concurrent updating”, and Patent Number 6,567,905 “Generational Garbage
Collector”. GemStone may also be covered by one or more pending United States patent applications.

TRADEMARKS

GemStone, GemBuilder, GemConnect, and the GemStone logos are trademarks or registered trademarks of
GemStone Systems, Inc. in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Sun, Sun Microsystems, Solaris, and SunOS are trademarks or registered trademarks of Sun Microsystems, Inc. All
SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc.
SPARCstation is licensed exclusively to Sun Microsystems, Inc. Products bearing SPARC trademarks are based upon
an architecture developed by Sun Microsystems, Inc.

HP and HP-UX are registered trademarks of Hewlett Packard Company.

Intel and Pentium are registered trademarks of Intel Corporation in the United States and other countries.
Microsoft, MS, Windows, Windows 2000 and Windows XP are registered trademarks of Microsoft Corporation in
the United States and other countries.

Linux is a registered trademark of Linus Torvalds and others.

Red Hat and all Red Hat-based trademarks and logos are trademarks or registered trademarks of Red Hat, Inc. in the
United States and other countries.

AlX and POWER4 are trademarks or registered trademarks of International Business Machines Corporation.

Other company or product names mentioned herein may be trademarks or registered trademarks of their respective
owners. Trademark specifications are subject to change without notice. All terms mentioned in this documentation
that are known to be trademarks or service marks have been appropriately capitalized to the best of our knowledge;
however, GemStone cannot attest to the accuracy of all trademark information. Use of a term in this documentation
should not be regarded as affecting the validity of any trademark or service mark.

GemsStone Systems, Inc.
1260 NW Waterhouse Avenue, Suite 200
Beaverton, OR 97006

GemStone Systems,Inc. April 2008

Preface

About This Manual

This manual tells how to perform day-to-day administration of an installed
GemStone/S system.

Installation instructions are included with your GemStone/S Installation Guide,
which should be kept with this manual.

This manual is organized in three parts: initial configuration, day-to-day
administration, and appendixes:

Part 1: System Configuration

= Chapter 1, “Configuring the GemStone Server,” tells how to adapt the
GemStone central repository server to the needs of your application. Four
sample configuration files are provided as starting points.

= Chapter 2, “Configuring Gem Session Processes,” tells how to configure the
GemStone processes that provided the services to individual application
clients.

= Chapter 3, “Connecting Distributed Systems,” explains the additional steps
necessary to run GemsStone in a networked environment. It includes examples
of how to set up common configurations.

April 2008

GemStone Systems, Inc. i

System Administration Guide for UNIX

Part 2. System Administration

Chapter 4, “Running GemStone,” tells how to start and stop the GemStone
system, how to troubleshoot start-up problems, how to deal with unexpected
shutdowns, and how to bulk-load objects.

Chapter 5, “User Accounts and Security,” introduces the tools available for
administration tasks and details how to log in to the repository, and how to
create, modify, and remove GemStone user accounts. It also tells how to set up
and modify a user’s privileges and authorizations.

Chapter 6, “Managing Repository Space,” gives procedures for managing the
repository itself; checking free space, adding space, controlling its growth, and
auditing it for consistency. It also how to recover from disk-full conditions.

Chapter 7, “Managing Transaction Logs,” gives procedures for setting up the
optional full incremental logging, managing log space, and archiving the log
files.

Chapter 8, “Monitoring GemsStone,” explains what you should do to monitor
the system in a way that doesn’t interfere with reclaim activity (garbage
collection), where the system logs are located, and what additional
performance monitoring methods are provided.

Chapter 9, “Making and Restoring Backups,” gives procedures for making a
GemStone full backup while the repository is in use, and for restoring the
repository from the full backup and the optional full transaction logs.

Chapter 10, “Managing Growth,” provides background information about the
implementation of the garbage collection function in GemStone.

Chapter 11, “Tuning Performance,” describes how to diagnose and improve
common performance bottlenecks.

Part 3. Appendixes

Appendix A, “GemStone Configuration Options,” explains how GemStone
uses configuration files and describes each configuration option.

Appendix B, “GemStone Utility Commands,” describes each of the GemStone-
supplied commands defined for use by the GemStone data curator.

Appendix C, “Network Resource String Syntax,” lists the syntax for network
resource strings, which allow you to specify the host machine for a GemStone
file or process.

iv

GemStone Systems, Inc. April 2008

System Administration Guide for UNIX

Appendix D, “GemStone Kernel Objects,” lists the GemStone-supplied objects
that are present in your repository after the GemsStone system has been
successfully installed.

Appendix E, “Environment Variables,” lists all environment variables used by
GemsStone, including those that are reserved.

Appendix F, “Localization,” explains the syntax and semantics of the
GemsStone language-dependent file for messages and how you can create a
similar file in another language.

Appendix G, “statmonitor and VSD Reference,” describes how to use the
performance-tuning tools statmonitor and VSD.

Appendix H, “Object State Change Tracking,” describes how to analyze
transaction logs to track data changes in GemStone.

Typographical Conventions

This document uses the following typographical conventions:

Operating system and Topaz commands are shown in bold typeface. For
example:

copydbf

Smalltalk methods, GemStone environment variables, operating system file
names and paths, listings, and prompts are shown in monospace typeface.
For example:

markForCollection

Interactive dialogue from GemStone is shown in an underlined
monospace typeface. For example:

successful login

Lines you type are distinguished from system output by boldface type:

topaz> set gemstone myStone

Place holders that are meant to be replaced with real values are shown in italic
typeface. For example:

StoneName.conf

The symbols $GEMSTONE and %GEMSTONE% refer to the directory where the
GemStone software is installed.

April 2008

GemStone Systems, Inc. \Y

System Administration Guide for UNIX

Technical Support

GemStone provides several sources for product information and support. The
product-specific manuals and online help provide extensive documentation, and
should always be your first source of information. GemStone Technical Support
engineers will refer you to these documents when applicable.

GemStone Web Site: http://support.gemstone.com

GemsStone’s Technical Support website provides a variety of resources to help
you use GemStone products. Use of this site requires an account, but registration
is free of charge. To get an account, just complete the Registration Form, found in
the same location. You’ll be able to access the site as soon as you submit the web
form.

The following types of information are provided at this web site:

Help Request allows designated support contacts to submit new requests for
technical assistance and to review or update previous requests.

Documentation for GemStone/S is provided in PDF format. This is the same
documentation that is included with your GemStone/S product.

Release Notes and Install Guides for your product software are provided in PDF
format in the Documentation section.

Downloads and Patches provide code fixes and enhancements that have been
developed after product release. Most code fixes and enhancements listed on the
GemsStone Web site are available for direct downloading.

Bugnotes, in the Learning Center section, identify performance issues or error
conditions that you may encounter when using a GemStone product. A bugnote
describes the cause of the condition, and, when possible, provides an alternative
means of accomplishing the task. In addition, bugnotes identify whether or not a
fix is available, either by upgrading to another version of the product, or by
applying a patch. Bugnotes are updated regularly.

TechTips, also in the Learning Center section, provide information and
instructions for topics that usually relate to more effective or efficient use of
GemsStone products. Some Tips may contain code that can be downloaded for use
at your site.

Community Links provide customer forums for discussion of GemStone product
iSsues.

Technical information on the GemStone Web site is reviewed and updated
regularly. We recommend that you check this site on a regular basis to obtain the

Vi

GemStone Systems, Inc. April 2008

System Administration Guide for UNIX

latest technical information for GemStone products. We also welcome
suggestions and ideas for improving and expanding our site to better serve you.

You may need to contact Technical Support directly for the following reasons:
= Your technical question is not answered in the documentation.

< You receive an error message that directs you to contact GemsStone Technical
Support.

< You want to report a bug.
< You want to submit a feature request.

Questions concerning product availability, pricing, keyfiles, or future features
should be directed to your GemStone account manager.

When contacting GemStone Technical Support, please be prepared to provide the
following information:

< Your name, company name, and GemStone/S license number
< The GemStone product and version you are using

< The hardware platform and operating system you are using

= A description of the problem or request

< Exact error message(s) received, if any

Your GemStone support agreement may identify specific individuals who are
responsible for submitting all support requests to GemStone. If so, please submit
your information through those individuals. All responses will be sent to
authorized contacts only.

For non-emergency requests, the support website is the preferred way to contact
Technical Support. Only designated support contacts may submit help requests
via the support website. If you are a designated support contact for your
company, or the designated contacts have changed, please contact us to update
the appropriate user accounts.

Email: support@gemstone.com
Telephone: (800) 243-4772 or (503) 533-3503

Requests for technical assistance may also be submitted by email or by telephone.
We recommend you use telephone contact only for more serious requests that
require immediate evaluation, such as a production system that is non-
operational. In these cases, please also submit your request via the web or email,
including pertinent details such error messages and relevant log files.

April 2008

GemStone Systems, Inc. vii

System Administration Guide for UNIX

If you are reporting an emergency by telephone, select the option to transfer your
call to the technical support administrator, who will take down your customer
information and immediately contact an engineer.

Non-emergency requests received by telephone will be placed in the normal
support queue for evaluation and response.

24x7 Emergency Technical Support

GemStone offers, at an additional charge, 24x7 emergency technical support. This
support entitles customers to contact us 24 hours a day, 7 days a week, 365 days a
year, if they encounter problems that cause their production application to go
down, or that have the potential to bring their production application down. For
more details, contact your GemStone account manager.

vili GemStone Systems, Inc. April 2008

Contents

Chapter 1. Configuring the GemStone Server 1
1.1 ConfigurationOverview. e 3
The Server ConfigurationFile 4

Sample Configurations 4
Recommendations About Disk Usage 6

Why Use Multiple Drives? 6

When to Use Raw Partitions 9

Developing a Replication Strategy. 10

1.2 How to Establish Your Configuration 11
Gathering Application Information. 11
Planning Operating System Resources 11
Estimating Memory Needs 11

Estimating Swap SpaceNeeds 12

Estimating File Descriptor Needs 12

Reviewing Kernel Tunable Parameters 13

Checking the System Clock. 14

To Set the Page Cache Options and the Number of Sessions. 14

Shared PageCache 14

Stone’s Private Page Cache 16

April 2008 GemStone Systems, Inc. iX

System Administration Guide for UNIX

Procedure 17
Diagnostics. 18

Using Mid-Level Caches 19

To Configure the Repository Extents 21
Estimating ExtentSize, 21
Choosing the Extent Location 21

Setting a Maximum Size foranExtent 22
Pregrowing Extentstoa Fixed Size 22
Allocating Data to Multiple Extents. 24
Replicating Extents 29

To Configure the TransactionLogs. 30
ChoosingaloggingMode 30
Estimatingthe Log Size. 31
Choosing the Log Location and Size Limit. 32
ReplicatingLogs. 33

To Configure Server Response to Gem Fatal Errors. 34
To Set File Permissions forthe Server 34
Recommended: Use the SetuidBit 34
Alternative: Use Group Write Permission 36

Access to Other ServerFiles 36
1.3HowtoSetUpaRawPartition 37
Sample Raw PartitionSetup., 38
Changing Between Files and Raw Partitions 39
Extents 39
TransactionLogs 39

1.4 How to Access the Server ConfigurationatRun Time. 40
To Access Current SettingsatRunTime 40
To Change SettingsatRunTime 41
1.5 How to Tune Server Performance 43
To Tune the Shared Page Cache. 43
Adjusting the Cache Size. 43
Matching Spin Lock Limit to Number of Processors 43
Clustering Objects That Are Accessed Together. 44

To Reduce Excessive Swapping. 44
To Control Checkpoint Frequency 44
Adding Page Servers 45
To Add AlIOPage Servers 46

Do You Need Free List Page Servers?. 46

GemStone Systems, Inc. April 2008

System Administration Guide for UNIX

To Add Free ListPage Servers. 47

1.6 How to Run a Second Repository. 47
1.7 How to Operate a Duplicate Server / Warm Standby 49
Managing Page Reclamation in Warm Standbys. 52

Chapter 2. Configuring Gem Session Processes 53
2L0VEIVIEW 53
Linked and RPC Applications 54

The Session ConfigurationFile 55

2.2 How to Configure Gem Session Processes. 56
Gathering Application Information. 56
Planning Operating System Resourceso v v v ... 56
Estimating Memory Needs. 56

Estimating Swap Space Needs 57

Estimating File Descriptor Needs 57

Reviewing Kernel Tunable Parameters 57

To Set Ownership and Permissions for Session Processes 58

To Set Access for Linked Applications 59

To Set Access for All Other Applications 59

To Set Accessto OtherFiles 59

2.3 How to Access the ConfigurationatRun Time 60
To Access Current SettingsatRunTime 60

To Change SettingsatRunTime. 61

2.4 How to Tune Session Performance 62
To Tune the Temporary ObjectSpace. 62

To Tune the Private Page Cache. 62

To Limitthe SessionI/ORate 63
Changing the 170 Limit During a Long Operation 64

To Reduce Excessive Swapping of Sleeping Sessions 65
25Howto Installa CustomGem., 65
Chapter 3. Connecting Distributed Systems 67
3L OVEIVIEW . . o o 68
GemStone NetLDIs 70
Captive AccountMode 70

April 2008 GemStone Systems, Inc. Xi

System Administration Guide for UNIX

NetLDINames. 71

GemStone Page Servers 71
GemStone Network Objects 72

Shared Page Cache in Distributed Systems 74
Distributed SystemsoveraWAN. 75
Disrupted Communications. 75

3.2 How to Arrange Network Security. 76
Default: Password Authentication 78
Usinga.netrcFile. 78

Using the Application Interface 79

Using an NRS #auth Modifier 79

Alternative: Guest Mode With a Captive Account 80

3.3 How to Use Network Resource Strings 81
ToSetaDefault NRS 81

To Use copydbf Between Nodes 82
34HowtoSetUpaRemoteSession. 83
To Duplicate the GemStone Installation 84

To Share a GemStone Directory 85
Configuration Examples oo 85

To Run a Linked Application on a Remote Node 86

To Run the Gem Session Process on the Stone’s Node 89

To Run the Gem and Stone on Different Nodes 91

To Run the Application, Gem, and Stone on Three Nodes . . . 93
Troubleshooting Remote Logins 95

If You Still Have Trouble. 96

Check NetLDILogFiles 97

Chapter 4. Running GemStone 99
4.1 How to Start the GemStone Server, 100
ToStartGemsStone 100
Starting up after unexpected shutdown 101

To Troubleshoot Stone Startup Failures 101

Key File Missingor Invalid. 102

Shared Page Cache Cannot Be Attached 102

Extent Missing or Access Denied 103

Extent Open by AnotherProcess 103

Extent Already Exists. 103

Xii GemStone Systems, Inc. April 2008

System Administration Guide for UNIX

Other Extent Failures 104

Extent Replicate Missing 104

Transaction LogMissing 105

Repository Failure. 105

Other Startup Failures. 106

42Howto StartaNetLDI 107
To Troubleshoot NetLDI Startup Failures 108
43ToListRunning Servers 108
4.4 How to Starta GemStone Session. 108
To Define a GemStone Session Environment 109

To Starta Linked Session. L. 109
ToStartan RPC Session, 111

To Troubleshoot Session Login Failures 112

4.5 How to Identify SessionsLoggedIn 114
4.6 How to Shut Down the Object Server and NetLDI 116
4.7 How to Recover from an Unexpected Shutdown 117
Normal Shutdown Message v v 118

Disk Failure or File System Corruption. 118

Shared Page CacheError. 119

Fatal Error DetectedbyaGem. 119

Some Other Shutdown Message. 120

No Shutdown Messageo it 120

4.8 Diagnosing Problems with Running Sessions 120
4.9 How to Bulk-Load Objects. 121
4.10 Considerations for Large Repositories 122
4.11 Transaction Mode and Disk Space. 122
Chapter 5. User Accounts and Security 125
5.1 The Administrative Accounts 126
5.2 Defining Your GemStone Environment oL 127
5.3User ACCOUNTS. o 127
UserProfiles 127
Predefined Users 130

The SystemUser Account. 131

The UserProfile and Session Symbol Lists 131

The UserGlobals SymbolDictionary 132

April 2008 GemStone Systems, Inc. xiii

System Administration Guide for UNIX

The Globals SymbolDictionary 132
The Published SymbolDictionary 132
Sharing Objects 132
5.4 Using GemBuilder for Administration. 133
Logging in Through GemBuilder. 134
Finding the GemBuilder AdministrationTools 136
Committing Your Changes 136
Logging Out. 136
Administering User Accounts. 138
ToListExistingUsers. 138
ToAddaUser. 139
ToRemoveaUser. 141
ToChangeaPassword 142
To ChangeaUser’'sPrivileges 142
To Add a Dictionary to a Symbol List. 143
To Examine a User’s Group Memberships. 144
ToAddaUsertoaGroup 144
To Remove aUser fromaGroup 145
To List All MembersofaGroup. 146
Assigning Segment Authorizations. 146
To Find Out Who Is Authorized to Read or Write in a Segment. .

146
To Change the AuthorizationofaSegment 147
To Change a User’s Default Segment 149
5.5 Using Topaz for Administration 149
Logging in Through Topaz 150
The PrintitCommand 151
The CommitCommand 151
Administering User Accounts. 151
To ListExistingUsers. 151
ToAddaUser. 152
To Change Your Own Password 154
To Change Another User’s Password. 155
To Examine a User’s Privileges 155
To Assign a PrivilegetoaUser 156
To Revoke aUser’s Privilege. 156
To Redefinea User'sPrivileges 157
To Add a Dictionary to a Symbol List. 157

Xiv

GemStone Systems, Inc. April 2008

System Administration Guide for UNIX

To Examine a User’s Group Memberships 158
ToAddaUsertoaGroup 158
To Remove a User fromaGroup. 159
To List All MembersofaGroup 159
ToRemoveaUserGroup. v v i v v e 159
To Modify Someone’sUserID 160
ToRemovean Account 160
Assigning Segment Authorizations oL 161

To Find Out Who Is Authorized to Read or Write in a Segment .
161

To Change the Authorization of a Segment. 162

To Remove a Group from a Segment’s Authorization List . . 163

To Change a User’s Default Segment 163

To Check a Segment for AuthorizationErrors 164

5.6 How to Configure GemStone Login Security 165
To Constrain the Choice of Passwords 165
Disallowing Particular Passwords. 167

Disallowing Reuse of Passwords. 167

To Require Periodic Password Changes 168
Providing Warning of Password Expiration 169

Finding Accounts With Password About to Expire 169

Finding Out When a Password Was Changed 169

To Disable Inactive Accounts 170
Finding Out When an Account Last LoggedIn 170
ToDisableaUser'sAccount 171

To Limit Logins Until Password IsChanged. 171

To Limit Concurrent Sessions by a Particular Userld 172
ToRecord Login Failures. 172
Disabling Further Login Attempts. 173

To Find Out Which Accounts Have Been Disabled 173

To Verify That an AccountIsDisabled 174

To Find Out Why an Account Was Disabled. 174
Chapter 6. Managing Repository Space 175
6.1 Repository Growth 176
6.2 HowtoCheck FreeSpace 177
6.3 How to Enter Single-UserMode 178
April 2008 GemStone Systems, Inc. XV

System Administration Guide for UNIX

6.4 How to Add Extents and Extent Replicates 180
To Add an Extent While the StoneisRunning 180
Possible Effects on Other Sessions. 180
Repository>>createExtent: 181
Repository>>createExtent: withMaxSize: 181
Repository>>createReplicateOf: named: 182

6.5 How to Remove Extents and Extent Replicates. 183
How to RemoveanExtent. 183

How to Remove an Extent Replicate 183

6.6 How To Reallocate Existing Objects Among Extents. 184
To Reallocate Objects Among a Different Number of Extents. 184

To Reallocate Objects Among the Same Number of Extents. 185

6.7 How to Shrink the Repository. 186
6.8 How to Check Page Fragmentation 189
6.9 How to Recover by Using an Extent Replicate 190
6.10 How to Recover After Repair of the File System. 191
To Recover After a File System Repair Withfsck 191

To Recover When a File System Must Be Restored 191

6.11 How to Recover from Disk-Full Conditions 192
Repository Full 193
Creating Space in an Existing Extent 194
CreatingaNew Extent 194

Transaction Log Space Full 195
Chapter 7. Managing Transaction Logs 197
TLOVEIVIEW o 197
LoggingModes e 198

Use in Recovery from an Unexpected Shutdown 200

Use in Rolling Forward fromaBackup. 201
Preconditions 201
HowthelLogsAreUsed 202

7.2How to Manage Full Logging. 203
To Archive LOgs. o o 203
Compressed transactionlogs 205

To Add alLog and ReplicateatRun Time 205
ToForceaNew TransactionLog 208

XVi GemStone Systems, Inc. April 2008

System Administration Guide for UNIX

To Change to Partial Logging 208

7.3 How to Manage Partial Logging 209
ToChange to Full Logging. 209
Chapter 8. Monitoring GemStone 211
8.1 GemStone System Logs 212
GemStone Server Logs 212
StonelLog. 213

Shared Page Cache MonitorLog. 213
AlOPageServerLog 214

Free List Page ServerLog. 214

GCGEMLOQGS . . . o o 214

Page ManagerLog. 215

Logs Relatedto Gem Sessions 215
NetLDILogs. 216

8.2 How to Auditthe Repository 217
ToPerformaPage Audit. 217

To Perform an Object Auditand Repair 219
AuditErrors 222

Error Recovery. 222

Repair Using Backupand Restore 223

Understanding Object Audit Statistics 223

8.3 Monitoring Performance. 226
To Monitor Page Reads and Writes by aSession 226

To Monitor Cache Statistics 226

Cache Statistics. 238

Chapter 9. Making and Restoring Backups 269
9 LOVEIVIEW . . o v oo e e e e 269
Backups Are Made While GemStone IsRunning 270

Which Files Can Be Backed Up by the Operating System 271

Why Operating System Backups May NotBe Usable. 271

9.2 How to Make a GemStoneBackup, 272
Additional Performance Tips 273
Backups and Garbage Collection. 274

April 2008 GemStone Systems, Inc. XVii

System Administration Guide for UNIX

To Create aBackuponaRemoteNode. 274

To Create a Backup in Multiple Files 275

To Create Compressed Backups. 276

To VerifyaBackupisReadable 277

To ExaminetheBackupLog. 277

9.3 How to Restore a GemStone Repository. 277
A. To Restore to the Pointof theBackup 280
Performance Tips i 283

To Restore Backups fromTape 284

To Restore Multiple-FileBackups 284

B. To Restore Subsequent Transactions. 286

To Restore LogstoaPointinTime 289

Page Reclamation During Restore. 290

Errors While Restoring Transaction Logs. 291

Precautions When Restoring a Subset of Transaction Logs. . .294

9.4 How to Restore from an Operating SystemBackup 294
9.5 How to Recover After Repair of the File System 296
To Recover After a File System Repair withfsck 296

To Recover When a File System Must Be Restored 296

9.6 Version compatibility 297
9.7 Warm Standby Systems 297
Chapter 10. Managing Growth 299
10.1Basicldeas 300
What Is Garbage? 300
ShadoworDead? 302

What Happensto Garbage? 305
Different Ways to CollectGarbage 307

Where. 307

How. 307

What 308

GemStone’s SixWays. 308

Both Marking and Reclaiming. 308

MarkingOnly 308
ReclaimingOnly. 309

10.2 Automatic Garbage Collection. 311

XViii GemStone Systems, Inc. April 2008

System Administration Guide for UNIX

Collecting Local Object Memory. 311
Collecting the NotConnectedSet. 312

Epoch Garbage Collection 312
TheGeGem. 313

Collecting Statistics 314

Determining the Epoch Length 315

10.3 Invoking Garbage Collection. 321
ChoosingWhentoDoWhat 322

To Run markForCollection. 323
Reducing Impact on Other Sessions 325

Scheduling markForCollection. 327

To Run markGcCandidates 327
GcCandidates Removed from Indexed Collections 329

GcGems Specialized to ReclaimPages 330
Managing Garbage Collection Automatically 332

To Start or Stop GecGems Individually 333

Example GcGem Configurations. 336

General Page Reclaim. 339

To Invoke Reclamation 339

To Identify Sessions Holding Up Page Reclamation. 341

To Tune Reclamation 341

To Remove References to Large Objects 343

To Identify Large Objects in the Repository 343

To Search for Referencestoan Object 344

To Remove Referencestoan Object 345

To Identify Candidates Off-line 345
Chapter 11. Tuning Performance 347
11.1 Common Performance Bottlenecks 347
Shared Page Cache TooSmall 348
Commit Record Backlog TooLarge. 351
Swamped Page Server 358
InefficientEpochSweep, 360
Overloaded GcGem. 364
Excessive In-Gem Garbage Collection 366

11.2 Garbage Collectionfor Tuners. 370
Example Garbage CollectionCycle 371

April 2008 GemStone Systems, Inc. XiX

System Administration Guide for UNIX

Step-by-Step Tuning 372

Step 1. Identify live objects. 372

Step 2. Compute possibledead set. 373

Step 3. Return possible dead setto Stone. 374

Step 4. Logged-inGemsvote. 374

Step 5. GcGem votes for logged-outGems.. 375

Step 6. GcGem hunts for specialcases. 375

Step 7. The possibly dead arenowdead. 376

Step 8. Pages and object IDs are reclaimed. 376

Step 9. Page IDs and object IDs are returned to free pools.. . .379

Three Examples. 380
Examplel.Faster 382

Example 2. Nicer 383

Example 3. Fast enough, niceenough. 384

Discussion 385

Appendix A. GemStone Configuration Options 387
A.1 How GemStone Uses Configuration Files. 388
Search for a System-Wide ConfigurationFile 388

Search for an Executable ConfigurationFile. 390
Creating or Using a System ConfigurationFile 391
Creating an Executable ConfigurationFile. 391
Naming Executable ConfigurationFiles 392
Naming Conventions for Configuration Options 393

A.2 Configuration FileSyntax. 393
Errors in ConfigurationFiles 395

Syntax Errors. 395

Option Value Errors. 395

A3 ConfigurationOptions 396
CONCURRENCY_MODE e 396
DBF_ALLOCATION_MODE o e, 397
DBF_EXTENT_NAMES e 397
DBF_EXTENT SIZES. e e e e e 397

DBF PRE GROW. ottt 398
DBF_REPLICATE_NAMES o .. 398
DBF_SCRATCH_DIR. e e 399
DUMP_OPTIONS. e e e 399

XX

GemStone Systems, Inc. April 2008

System Administration Guide for UNIX

GEM_ATTACHED _PAGE_LIMIT 399
GEM_DBF_FILE_LOCK e e 399
GEM_FREE_FRAME LIMIT. 400
GEM_FREE_PAGEIDS CACHE 400
GEM_GCI_LOG_ENABLED. 400
GEM_HALT ON_ERROR i 400
GEM_IO LIMIT o e e 400
GEM_MAX_SMALLTALK STACK DEPTH 401
GEM_NATIVE_CODE _MAX i 401
GEM_NATIVE_CODE THRESHOLD 402
GEM_NOT_CONNECTED_DELTA 402
GEM_NOT_CONNECTED_THRESHOLD. 402
GEM_PGSVR_COMPRESS_PAGE_TRANSFERS 402
GEM_PGSVR_FREE_FRAME_LIMIT. 403
GEM_PGSVR_UPDATE_CACHE ON_READ 403
GEM_PRIVATE PAGE_CACHE KB. 404
GEM_RPCGCIL_TIMEOUT et 404
GEM_TEMPOBJ_CACHE_SIZE. 404
KEYFILE e 405
LOG WARNINGS e 405
SHR_NUM_FREE_FRAME_SERVERS 405
SHR_PAGE CACHE LOCKED. 405
SHR_PAGE_CACHE_NUM_PROCS. 406
SHR_PAGE_CACHE_SIZE_KB i 406
SHR_SPIN_LOCK _COUNT o e i 407
SHR_TARGET_FREE_ FRAME COUNT. 407
STN_CHECKPOINT_INTERVAL. 408
STN_DEAD_X LOCKING_ENABLED. 408
STN_DISABLE_LOGIN_FAILURE_LIMIT
STN_DISABLE_LOGIN_FAILURE_TIME_LIMIT. 408
STN_DISKFULL_TERMINATION_INTERVAL. 409
STN_FREE_FRAME_CACHE_SIZE. 409
STN_FREE_SPACE THRESHOLD 409
STN_GC_SESSION_CONFIGURATION. 410
STN_GC SESSION_ENABLED 410
STN_GEM_ABORT_TIMEOUT 410
STN_GEM_LOSTOT_TIMEOUT 411
STN_GEM_TIMEOQUT e i 412
STN_HALT ON_FATAL ERR, 412
April 2008 GemStone Systems, Inc. XXi

System Administration Guide for UNIX

STN_LOG_LOGIN_FAILURE_LIMIT

STN_LOG_LOGIN_FAILURE_TIME_LIMIT 413
STN_MAX_AIO RATE e 413
STN_MAX_REMOTE_CACHES 413
STN_MAX SESSIONSo 414
STN_NUM_LOCAL_AIO_SERVERS. 414
STN_PAGE_REMOVAL_THRESHOLD 415
STN_PRIVATE_PAGE_CACHE_ KB 415
STN_RECOVERY_PAGE_RECLAIM LIMIT 415
STN_REMOTE_CACHE_PGSVR_TIMEOUT 416
STN_REMOTE_CACHE TIMEOUT 416
STN_REPL_TRAN_LOG_DIRECTORIES 416
STN_REPL_TRAN_LOG_PREFIX 417
STN_SHR_TARGET_PERCENT DIRTY. 417
STN_SIGNAL_ABORT CR_ BACKLOG. 417
STN_TRAN_FULL LOGGING 418
STN_TRAN LOG DEBUG LEVEL 418
STN_TRAN_LOG_DIRECTORIES, 418
STN_TRAN_LOG_LIMIT 418
STN_TRAN_LOG PREFIX 419
STN_TRAN_LOG SIZES i 419

A.4 Miscellaneous Internal Parameters 419
#LogOriginTime. e 420
#SessionlnBackup. 420
#StnCurrentTranLogDirld 420
#StnCurrentTranLogNames 420
#StnLogGemErrors 420
#StnLoginsSuspended 420
#StnTranLogOriginTime 420
Appendix B. GemStone Utility Commands 421
B.lcopydbf 422
B.2gslist. e 427
B3pageaudit 429
B.4removedbf. 430
B.5 startcachewarmer e 431
Bbstartnetldi 432

xXxii

GemStone Systems, Inc. April 2008

System Administration Guide for UNIX

B.7 startstone e e 434
B8stopnetldi 436
B.Ostopstone. 437

B.10topaz e 438
B.llwaitstone. e e 439
Appendix C. Network Resource String Syntax 441
C.LOVEIVIEW o e e e e 441
C2Defaults e 442
C3Notation. e 443

CASyNtax 444
Appendix D. GemStone Kernel Objects 447
D.AUSEIS. . . o o e e e 447
D.2Dictionaries. e e 448
D.3Non-NumericConstants v i 449

D.4 NumericConstants. i 449

D.5 Repository and Segments 449

D.6 Global Collections 451
D.7CUrrent TIMEZONE o o e e e e e e e e e e e e e 454

Zoneinfo 455

Utilities 456

Appendix E. Environment Variables 459
E.1 Public Environment Variables 459

System Variables Used by GemStone. 461

E.2 Reserved Environment Variables. 461
Appendix F. Localization 463
F.1 Translation Files for Messages 464
Specifyingalanguage 464

April 2008 GemStone Systems, Inc. XXiii

System Administration Guide for UNIX

The Message Compiler. 464

The Language Source File 465
Language FileSyntax 466

Language File Semantics 466

TheResultText, 469

Language FileErrors. 470

Creating New Message Files. 471
Formatting Tips 471

Shell Level Access. 472

Untranslated Messages 472

Message Context 473
F2ClassLocale. e 473
F.3 Extended Character Set Support 474
Character Set Representation 475
Categories 475

Configuring Your Application to Use Extended Character Sets. 477
#CharacterDataTables 477
Loading Extended Character Sets. 478
Character Instance Methods. 480
Character Class Methods. 481
Character Table DataFiles. 482

The Unicode Database 482
CommonTasks 483
Troubleshooting. 485

Appendix G. statmonitor and VSD Reference 487
G.1 Using statmonitorand VSDo 487
Starting VSD and statmonitor oL 489
Loading an existing statmonitor output file 490

Maintaining a current view of the data file. 490

Starting statmonitor from VSD and viewing current data . . .490

Viewing Statistics. 492
Customizing YourChart. 496

Filter 498

Using VSD Chart Templates., 498

G.2 Statmonitor command linesyntax. 499
G.3VSD MenuReference 500

XXV GemStone Systems, Inc. April 2008

System Administration Guide for UNIX

Chartmenu. 500

Linemenu 501

GAVSDFiles 502
VSAIC . . . o 502
ysdeonfig .. L L 503
ysdtemplates L 503
Appendix H. Object State Change Tracking 505
Introduction 505
Tranlog Analysis Scripts 506
Prerequisites. 506

Qutput e 507
AsSUMPLIONS. 507

Filter Criteria. 507
printlogs.sh. 508
searchlogs.sh. 509
Tranlog Structure 510
Tranlog Entries 511
Tranlog Entry Types i e 512

Very LargeObjects 513

Full vs. Normal Mode. 514
Tranlog AnalysisExample. 516
Tracking ChangestoanEmployee 517
Changedvs. New Objects. 519

Details of Changestoan Employee 520

Further Analysis 523
ClassOperations. e 523

Deleted Objects e 523
Managing Volume. 524

Index 525

April 2008 GemStone Systems, Inc. XXV

System Administration Guide for UNIX

XXVi GemStone Systems, Inc. April 2008

Chapter

1 Configuring the

Gem3one Server

Figure 1.1 shows the basic GemStone architecture as seen by its administrator. The
object server can be thought of as having two active parts. The server processes
consist of the Stone repository monitor and a set of subordinate processes. These
processes provide resources to individual Gem session processes, which are servers
to application clients.

This chapter tells you how to configure the GemStone server processes, repository,
transaction logs, and shared page cache to meet the needs of a specific application.
For information about configuring session processes for clients, refer to Chapter 2.

The elements shown in Figure 1.1 can be distributed across multiple nodes to meet
your application’s needs. For information about establishing distributed servers,
refer to Chapter 3.

April 2008

GemStone Systems, Inc. 1

System Administration Guide for UNIX

Figure 1.1 The GemStone Object Server

The Object Server

Server Processes

Stone
Repository Monitor
AlO Page
Servers
Page Manager
Free Frame
Page Servers

Transaction Repository
Logs Extents

Shared Page
Cache Monitor

Try to place on different drives
and separate from swap space

Extent
Replicates*

Log
Replicates*

*Optional

Session Processes

Application Clients

@ Application

Application

Shared Page
Cache

]

Swap Space

GemStone Systems, Inc.

April 2008

Configuring the GemStone Server Configuration Overview

1.1 Configuration Overview

Figure 1.1 shows the key parts that define the server configuration:

The Stone repository monitor process acts as a resource coordinator. It
synchronizes critical repository activities and ensures repository consistency.

The shared page cache monitor creates and maintains a shared page cache for the
GemStone server. The monitor balances page allocation among processes,
ensuring that a few users or large objects do not monopolize the cache. The
size of the shared page cache is configurable and should be scaled to match the
size of the repository and the number of concurrent sessions.

The AIO page servers perform asynchronous 1/0 for the Stone repository
monitor. Their primary tasks are to update the extents periodically and to pre-
allocate (grow) the extents at startup when that feature is enabled. The default
configuration uses one AlO page server, but additional ones can be specified
for systems having several extents.

The GecGem is a Gem server process that is dedicated to performing the garbage
collection tasks under supervision of the Stone.

The Page Manager is a background process that assists the Stone with page
disposal in coordination with the remote page caches.

The Free Frame Page Servers are Gem server processes that are dedicated to the
task of adding free frames to the free frame list, from which a Gem can take as
needed. The default configuration uses one free frame page server, but you can
configure as many as 30 free frame page server processes.

Objects are stored on the disk in one or more extents, which can be files in the
file system, data in raw partitions, or a mixture. The location of each extent is
configurable, and optionally each extent can have a replicated extent or
mirrored image to provide tolerance to disk failures.

Transaction logs permit recovery of committed data if a system crash occurs.
They also reduce disk activity by eliminating the need to flush to the extents
all data pages written by each transaction. The optional full logging mode allows
transaction logs to be used with GemStone backups for full recovery of
committed transactions in the event of media failure. Log files optionally can
be replicated.

The transaction logs should reside on a different disk drive (spindle) from the
extents, and neither should be on a drive that contains the operating system swap
space (sometimes called page space).

April 2008

GemStone Systems, Inc. 3

Configuration Overview System Administration Guide for UNIX

The Server Configuration File

At start-up time, GemStone reads a system-wide configuration file. By default this
file is SGEMSTONE/data/system.conf, where GEMSTONE isanenvironment
variable that points to the directory in which the GemStone software is installed.

Appendix A, “GemStone Configuration Options,” tells how to specify an alternate
configuration file and how to use supplementary files to adjust the system-wide
configuration for a specific GemStone executable. The appendix also describes
each of the configuration options.

Here is a brief summary of important facts about the configuration file:

= Lines that begin with # are comments. Settings supplied as comments are the
same as the default values. You can easily change the configuration by altering
the option value and moving the # symbol to the line previously in force.

= Optionsthat begin with “GEM_" are read only by Gem session processes at the
time they start. Chapter 2, “Configuring Gem Session Processes,” describes
their use.

= Options that begin with “SHR_" are read both by the Stone repository monitor
and by the first Gem session process to start on a node remote from the Stone.
These options configure the local shared page cache.

= Other options (those not beginning with “GEM_" or “SHR_") are read by the
Stone repository monitor. If another GemsStone process needs that
information, it is exchanged through a TCP/IP connection with the Stone.

= Ifan option is defined more than once, only the last definition is used. Certain
run-time configuration changes, such as the addition of an extent, cause the
repository monitor to append new configuration statements to the file. Be sure
to check the end of a configuration file for possible entries that override earlier
ones.

Sample Configurations

This section describes four sample configurations that you can use as a starting
point. (Sample configuration files are provided for three, as described later.)
Although the configurations differ in a number of ways, the primary difference is
in the size of application they accommodate.

All four sample configurations are derived from the initial configuration file that
is installed, $GEMSTONE/data/system.conf. The initial configuration
provides a convenient way to begin evaluation or development with a minimum

4 GemStone Systems, Inc. April 2008

Configuring the GemStone Server Configuration Overview

of system resources. That configuration supports three concurrent user sessions
and a repository of up to 100 MB.

NOTE

The sample configuration files contain only the modifications that define
a particular sample configuration.These modifications override the
default settings. For a complete list of options, see system.confin the
GemStone data directory.

Small

Medium

Large

Very Large

handles 170 more efficiently than the initial configuration by using
separate drives (spindles) for the extents and transaction logs. A
larger page cache supports more users. Full transaction logging
provides real-time incremental backup. The sample configuration
file is $GEMSTONE/examples/admin/smal Il .conf.Edit that file
to specify the file name of your extent and the directory names for
transaction logs.

uses raw disk partitions for possibly increased throughput. It
accommodates more users and a larger repository. The sample
configuration file is
$GEMSTONE/examples/admin/medium.conf. Edit that file to
show the raw partition name and size for your extent, and the
partition names and sizes for transaction logs.

uses multiple extents to accommodate a repository of several GB.
The sample configuration file is
$GEMSTONE/examples/admin/large.conf. Edit that file to
show the raw partition names and sizes for your extents, and the
partition names and sizes for transaction logs. Each extent should be
on a separate spindle.

accommodates up to 1000 users and a repository of 50 GB. Start with
the sample configuration file for the Large configuration, but scale
the configuration parameters by using the information in Tables 1.1
and 1.2. Each extent should be on a separate spindle.

To choose a sample configuration, select a column in the first part of Table 1.1 by
matching the characteristics of your application to those shown. The lower part of
that table shows the corresponding changes to be made to the default
configuration file, SGEMSTONE/data/system. conf.(Sample changes have
already been made to the three configuration files in
$GEMSTONE/examples/admin.)

NOTE

Large and very large systems will almost certainly require additional

April 2008

GemStone Systems, Inc. 5

Configuration Overview System Administration Guide for UNIX

tuning. Very large systems will probably need to be distributed across
several powerful servers. If you lack the necessary expertise, consider
consulting GemStone Professional Services.

If you want more information about any of these settings, see the detailed
instructions for establishing your own configuration beginning on page 11.

Table 1.2 gives recommended configurations for repository extents and
transaction logs. Some of these, such as the use of raw disk partitions, depend on
the size of the application.

Recommendations About Disk Usage

You can enhance server performance by distributing the repository files on
multiple disk drives. Under certain circumstances and for certain operating
systems, placing the data in raw disk partitions rather than in a file system can
enhance performance.

Why Use Multiple Drives?

Efficient access to GemStone repository files requires that the server node have at
least three disk drives (that is, three separate spindles or physical volumes) to re-
duce 1/0 contention. For instance:

= one spindle for swap space and UNIX (GemStone executables can also reside
here);

= one spindle for the repository extent, perhaps with a lightly accessed file
system sharing the drive; and

= one spindle for transaction logs (on at least two raw partitions) and possibly
user file systems if they are only lightly used for non-GemStone purposes.

The preceding configuration incorporates several guidelines to bear in mind when
developing your own configuration. They are listed in order of importance;

1. Keep extents and transaction logs separate from operating system swap space.
Don’t place either extents or logs on any spindle that contains a swap partition;
doing so drastically reduces performance.

2. Place the transaction logs on a spindle that does not contain extents. Placing
logs on a different spindle from extents increases the transaction rate for
updates while reducing the impact of updates on query performance. It’s okay
to place multiple logs on the same spindle because only one log file is active at
atime.

6 GemStone Systems, Inc. April 2008

Configuring the GemStone Server

Configuration Overview

Table 1.1 Settings for Selected Configurations

Server Configuration

Characteristic or Very

Configuration Option Small Medium Large Large
Application Characteristics
Maximum number of user sessions 12 50 300 1000
Size of repository (GB) 0.100 15 16 50
System Requirements
Typical number of CPUs 1-2 2 2-4 | 8 or more
Total real memory (MB) 128 512 2000 8000
Kernel shared memory (MB) 26 251 2004° 3006¢
Number of disk drives 32 32 122 242
Configuration Settings
STN_MAX_SESSIONS 40P 50 300 1000
STN_SIGNAL_ABORT_CR_BACKLOG 20 75 450 1500
STN_PRIVATE_PAGE_CACHE_KB 1600 3500 65000 65000
STN_NUM_LOCAL_AIO_SERVERS 1 1 5 10
STN_FREE_SPACE_THRESHOLD 10 50 100 100
SHR_PAGE_CACHE_SIZE_KB 25000 250000 1750000° | 30000009
Approximate Memory Usage
Stone repository monitor (MB) 4 8 28 55
Each Gem session process (MB) 3.2 3.2 2.8 25

@ These numbers do not allow for optional extent replication. If you replicate extents, each extent
should be on an additional drive. If you replicate transactions logs, all replicate logs can share an

additional drive.

b This setting is the initial setting supplied in system.conf.

¢ Make this setting the largest permitted by the operating system.

d Only Solaris supports a setting this large.

April 2008

GemStone Systems, Inc.

Configuration Overview

System Administration Guide for UNIX

Table 1.2 Configuration Settings for Extents and Transaction Logs

Server Configuration

DBF_REPLICATE_NAMES

(not recommended: OS-leve

Configuration Option Small Medium Large | Very Large
Extents

DBF_EXTENT_NAMES (1 file) (1 raw (8 raw (16 raw

partition) partitions) partitions)

DBF_EXTENT_SIZES (unlimited) 14952 | (1995 each?) | (3995 each?)

DBF_PRE_GROW False True True True

DBF_ALLOCATION_MODE (not used) (not used) 10,10,...,10 10,10,...,10

I mirroring is more efficient)

Transaction Logs
STN_TRAN_FULL_LOGGING
STN_TRAN_LOG_DIRECTORIES

STN_TRAN_LOG_SIZES

STN_REPL_TRAN_LOG_
DIRECTORIES

True

(2 direc-
tories)

10,10

(not recommended: OS-leve

True

(5 raw
partitions)

1992 each

True

(5 raw
partitions)

4992 each

I mirroring is more efficient)

True

(8 parti-
tions)

4992 each

Stone Response
to Gem Fatal Errors

STN_HALT_ON_FATAL_ERROR

FalseP

FalseP

False?

False?

@ For best performance, set DBF_EXTENT_NAMES and STN_TRAN_LOG_SIZES to slightly less than the
actual size of the partition. The values given for extents are based on 2 GB partitions in the Large
configuration and 4 GB partitions in the Very Large configuration.

b For development and testing, a setting of True is recommended.
For deployed systems, a setting of False is recommended.

GemStone Systems, Inc.

April 2008

Configuring the GemStone Server Configuration Overview

NOTE
Under operating systems that use volume managers, you need to be
aware of how logical volume groups are assigned to disk drives (physical
volumes). You should try to assign each of the above (swap, extents, and
transaction logs) to a different disk drive.

3. To benefit from multiple extents on multiple spindles, you must use weighted
allocation mode. If you use sequential allocation, multiple extents provide no
benefit. For details about weighted allocation, see “Allocating Data to Multiple
Extents” on page 24.

4. In addition, if you decide to use more than one AlO page server, you’ll need
to keep extents on several different spindles. You’ll derive no advantage from
multiple page servers unless they can write different pages to different extents
simultaneously, instead of contending for the same disk drive head.

When to Use Raw Partitions

Each raw partition (sometimes called a raw device or raw logical device) is like a
single large sequential file, with one extent or one transaction log per partition. The
use of raw disk partitions can yield better performance, depending on how they
are used and the balancing of system resources:

< Placing transaction logs on raw disk partitions almost certainly yields better
performance.

= Placing extents on raw disk partitions can yield better performance to the
degree that doing so reduces swapping. However, if sufficient RAM is
available for file system buffers and the shared page cache, better performance
may be obtained by placing the extents in the file system.

The use of raw partitions for transaction logs is essential for achieving the highest
transaction rates in an update-intensive application because such applications pri-
marily are writing sequentially to the active transaction log. Using raw partitions
can as much as double the maximum achievable rate by avoiding the extra file sys-
tem operations necessary to ensure that each log entry is recorded on the disk.

Because each partition holds a single log or extent, if you place transaction logs in
raw partitions, you must provide at least two such partitions so that GemStone can
preserve one log when switching to the next. If your application has a high trans-
action volume, you are likely to find that increasing the number log partitions
makes the task of archiving the logs easier.

For information about using raw partitions, see “How to Set Up a Raw Partition”
on page 37.

April 2008

GemStone Systems, Inc. 9

Configuration Overview System Administration Guide for UNIX

Developing a Replication Strategy

There are two needs to consider:

Applications that cannot tolerate loss of committed transactions should mirror
the transaction logs (using OS-level tools) and use full transaction logging. A
mirrored transaction log on another device allows GemStone to recover from
a read failure when it starts up after an unexpected shutdown. The optional
full logging mode allows transactions to be rolled forward from a GemStone
full backup to recover from the loss of an extent.

Applications that require rapid recovery from the loss of an extent (that is,
without the delay of restoring from a backup) should replicate all extents on
other devices, preferably through hardware means, in addition to mirroring
transaction logs. Restoring a large repository (many GB) from a backup may
take hours.

Hardware replication may provide the best solution if the following points are
kept in mind while designing the system:

Extents benefit from efficiency of both random access (8 KB repository pages)
and sequential access (up to 128 MB at a time). Don’t optimize one by
compromising the other. Sequential access is important for such operations as
garbage collection and making or restoring backups. Use of RAID devices
(redundant array of inexpensive drives) or striped file systems that cannot
efficiently support both random and sequential access may reduce overall
performance. Simple disk mirroring may be give better results.

Transaction logs use sequential access exclusively, so the devices can be
optimized for that access.

Avoid volume managers that combine space on multiple physical drives. For
GemsStone, such configurations may result in less efficient access to the
repository. The use of raw devices is preferred for transaction logs.

The DBF_REPLICATE_NAMES and STN_REPL_TRAN_LOG_DIRECTORIES
configurations options listed in Table 1.2 provide an alternative means of
increasing system tolerance to media failure. Changes to DBF_EXTENT_NAMES
and DBF_REPLICATE_NAMES in the configuration file are all that is necessary
before restarting GemStone. However, the cost of added 1/0 to maintain each
replicate may be significant in some applications. The replicated extent should be
on a different disk device (spindle) both for fault tolerance and to reduce 170
contention during ordinary operation.

10

GemStone Systems, Inc. April 2008

Configuring the GemStone Server How to Establish Your Configuration

1.2 How to Establish Your Configuration

Configuring the GemStone object server involves the following steps:

1. Gather application specifics about the size of the repository and the number of
sessions that will be logged in simultaneously.

2. Plan the operating system resources that will be needed: memory and swap
(page) space.

3. Set the size of the GemStone shared page cache and the number of sessions to
be supported.

4. Configure the repository extents and optional replicated extents.
5. Configure the transaction logs and optional replicated logs.

6. Set GemStone file permissions to allow necessary access while providing
adequate security.

Gathering Application Information

You should have the following information at hand when you begin configuring
GemsStone because it is central to the sizing decisions you must make:

= the number of simultaneous sessions that will be logged in to the repository
(in some applications, each user can have more than one session logged in),
and

= the approximate size of your repository (it’s also helpful, but not essential, to
know the approximate number of objects in the repository).

Planning Operating System Resources

GemStone needs adequate memory and swap space to run efficiently. It also needs
adequate kernel resources—for instance, kernel parameters can limit the size of the
shared page cache or the number of sessions that can connect to it.

Estimating Memory Needs

The amount of memory required to run your object server depends mostly on the
size of the repository and the number of users who will be logged in to active Gem-
Stone sessions at one time. These needs are in addition to the memory required for
the operating system and other software.

April 2008 GemStone Systems, Inc. 11

How to Establish Your Configuration System Administration Guide for UNIX

< The Stone and related processes need between 5.5 and 55 MB for the
configurations shown in Table 1.1. That amount of memory is only for the
server processes.

< The shared page cache should be increased in proportion to the overall size of
your repository. Typically it should be at least 4% to 10% of the repository size
to provide adequate performance. In Table 1.1, the size ranges from tens of MB
to three GB.

On a node that is dedicated to running GemsStone, we recommend in general
that you allocate approximately one-third to one-half of your total system
RAM to the shared page cache. If it is not a dedicated node, you may need to
reduce the size to avoid excessive swapping.

< Each Gem session process needs at least 2.5 MB of memory on the node where
it runs (see the discussion of memory needs for session processes on page 56).
Each Gem process that runs on a remote (client) node also needs about 0.25 MB
on the server node for a GemStone page server process that accesses the
repository extents.

Estimating Swap Space Needs

The total swap space on your system (sometimes called page space) in general
should be at least twice the system RAM to provide reasonable flexibility. For ex-
ample, a system with 256 MB of RAM should have at least 512 MB of swap space.
The command to find out how much swap space is available depends on your op-
erating system (examples are swap, swapinfo, pstat, and Isvg). The GemStone in-
stallation instructions for your platform contain an example.

Swap space should not be on a disk drive that contains any of the GemStone repos-
itory files. In particular, do not use operating system utilities like swap or swapon
to place part of the swap space on a disk that also contains the GemStone extents
or transaction logs.

If you want to determine the additional swap space needed just for GemStone, use
the memory requirements derived in the preceding section, including space for the
number of sessions you expect. These figures will approximate GemStone’s needs
beyond the swap requirement for the operating system and other software such
as the X Window System.

Estimating File Descriptor Needs

When they start, most GemStone processes attempt to raise their file descriptor
limit from the default (soft) limit to the hard limit set by the operating system. In
the case of the Stone repository monitor, the processes that raise the limit this way

12 GemStone Systems, Inc. April 2008

Configuring the GemStone Server How to Establish Your Configuration

are the Stone itself and two of its child processes, the AlO page server and the
GcGem. The Stone uses file descriptors this way:

9 for stdin, stdout, stderr, and internal communication

2 for each user session that logs in

1 for each local extent or transaction log within a file system
2 for each extent or transaction log that is a raw partition

1 for each extent or transaction log that is on a remote node

You can cause the above processes to set a limit less than the system hard limit by
setting the GEMSTONE_MAX_FD environment variable to a positive integer. A
value of 0 disables attempts to change the default limit.

The shared page cache monitor always attempts to raise its file descriptor limit to
equal its maximum number of clients plus five for stdin, stdout, stderr, and
internal communication. The maximum number of clients is set by the
SHR_PAGE_CACHE_NUM_PROCS configuration option.

Reviewing Kernel Tunable Parameters

UNIX kernel parameters limit the interprocess communication resources that
GemsStone can obtain. It’s helpful to know what the existing limits are so that you
can either stay within them or plan to raise the kernel limits. There are four
parameters of primary interest:

< The maximum size of a shared memory segment (typically shmmax or a
similar name) limits the size of the shared page cache for each repository
monitor.

For information about platform-specific limitations on the size of the shared
page cache, refer to Chapter 1 of your GemStone/S Installation Guide.

< The maximum number of semaphores per semaphore id limits the number of
sessions that can connect to the shared page cache, because each session uses
one semaphore. (Typically this parameter is semms1 or a similar name,
although it is not tunable under all operating systems.)

< The maximum number of users allowed on the system (typically maxusers
or a similar name) can limit the number of logins and sometimes also is used
as avariable in the allocation of other kernel resources by formula. In the latter
case, you may need to set it somewhat larger than the actual number of users.

< The hard limit set for the number of file descriptors can limit the total number
of logins and repository extents, as described previously.

April 2008

GemStone Systems, Inc. 13

How to Establish Your Configuration System Administration Guide for UNIX

How you determine the existing limits depends on your operating system. If the
information is not readily available, proceed anyway. A later step shows how to
verify that the shared memory and semaphore limits are adequate for the
GemsStone configuration you chose.

Checking the System Clock

The system clock should be set to the correct time. When GemStone opens the
repository at startup, it compares the current system time with the recorded
checkpoint times as part of a consistency check. A system time earlier than the time
at which the last checkpoint was written may be taken as an indication of
corrupted data and prevent GemsStone from starting. The time comparisons use
GMT. It is not necessary to adjust GemStone for changes to and from daylight
savings time in the United States.

To Set the Page Cache Options and the Number of Sessions

Configure the shared page cache and the Stone’s private page cache according to
the size of the repository and the number of sessions that will connect to it
simultaneously.

Shared Page Cache

The GemStone shared page cache system consists of two components, the shared
page cache itself and a monitor process (shrpcmonitor). Figure 1.2 shows the
connections between these two and the main GemStone components when
GemsStone runs on a single node. There is no direct connection between the shared
page cache and the repository.

The shared page cache resides in a segment of the operating system’s virtual
memory that is available to any authorized process. When the Stone repository
monitor or a Gem session process needs to access an object in the repository, it first
checks to see whether the page containing that object is already in the cache. If the
page is already present, the process reads the object directly from shared memory.
If the page is not present, the process reads the page from the disk into the cache,
where all of its objects also become available to other processes.

The name of the shared page cache monitor ordinarily is derived from the name of
the Stone repository monitor and the hostid in “dot” format; for instance,
gemserver63@192.83.233.25. Some utilities, such as gslist, translate the
address to the node’s name before displaying it.

Each shared page cache is associated with exactly one Stone process and
repository, and a Stone may never have more than one shared page cache on the

14

GemStone Systems, Inc. April 2008

Configuring the GemStone Server How to Establish Your Configuration

same node. The Stone spawns the shared page cache automatically during startup.
If other Gem session processes on the same node need to access that repository,
they must connect to the same shared page cache and monitor process to ensure
cache coherency. Use of the shared page cache also reduces disk 1/0 and improves
performance.

Figure 1.2 Shared Page Cache Configuration

A Cache L7
Monitor

Shared Page

Cache
—— Shared Memory R/W .
Repository
—» Disk I/O
————— TCP

Estimating the Size of the Shared Page Cache

The goal in sizing the shared page cache is to make it large enough to hold the
application’s working set of objects, thereby reducing disk 1/0, while not inducing
excessive swapping at the operating system level. Three factors are important in
estimating the size (the minimum cache size in all cases should be 10 MB):

1. The number of objects in the repository

We recommend that you allow room for one-third to one-half of the object
table in the cache. Because each object uses four bytes in the table, use (2 bytes
* number-of-objects) for this factor.

April 2008

GemStone Systems, Inc. 15

How to Establish Your Configuration System Administration Guide for UNIX

2. The size of the repository

We recommend that you keep between 3% and 8% of the repository in the
cache:

add 8% of the first 100 MB of the repository to the previous total,
add 6% of the next 900 MB, and
add 3% of that portion greater than 1 GB.

3. The number of users and the size of their transactions
We recommend adding 0.5 to 1 MB per user for most situations:

add 1 MB per user for the first 10 users,
add 0.5 MB per user for the next 40 users.

For applications having more than 50 users, if the cache size computed thus far
(in all three steps) is less than (0.8 MB * total_users), use the larger size.

The cache size thus estimated is only a starting point for system configuration. It
uses a percentage of the repository to estimate the size of the working set of objects,
which can vary drastically depending on the application’s design. In addition, the
degree to which your application clusters objects that are likely to be accessed
together can have a significant impact on space used in the cache.

Once your application is running, you can tune the cache size by monitoring the
free space. See “To Monitor Page Reads and Writes by a Session” on page 226,
especially the statistic NumberOfFreeFrames.

NOTE
For information about platform-specific limitations on the size of the
shared page cache, see Chapter 1 of your GemStone/S Installation Guide.

Stone’s Private Page Cache

As the Stone repository monitor allocates resources to each session, it stores the
information in its private page cache. The size of this cache is set by the
STN_PRIVATE_PAGE_CACHE_KB configuration option, which should be adjusted
according to the number of sessions. The goal is to avoid having the Stone’s private
page cache overflow into the shared page cache, where it would waste valuable
storage. The default size of 1 MB is sufficient for up to 5 sessions. Increase that
setting by 1 MB for each additional 30 sessions.

16

GemStone Systems, Inc. April 2008

Configuring the GemStone Server How to Establish Your Configuration

Procedure

Follow these steps to configure the shared page cache and the Stone’s private page
cache:

Step 1. Set the SHR_PAGE_CACHE_SIZE_KB configuration option using Table 1.1
(on page 7) or your own estimate derived above (remember to convert to KB).
Although we recommend this value as a starting point, smaller values can be
used at the cost of increased disk activity. For instance, for the Medium
configuration’s 250 MB cache:

SHR_PAGE_CACHE_SIZE_KB = 250000;

Step 2. If the number of sessions will be greater than 40, increase the
STN_MAX_SESSIONS configuration option accordingly. Make sure the
SHR_PAGE_CACHE_NUM_PROCS option is set to its default (-1), which causes
GemsStone to calculate a value based on STN_MAX_SESSIONS. For instance,

STN_MAX_SESSIONS = 50;
SHR_PAGE_CACHE_NUM_PROCS = -1;

Step 3. If you expect more than five users, increase the Stone’s private page cache
by 40 to 64 KB per user. Add 40 KB per user for sessions that don’t acquire
locks, and 64 KB for sessions that acquire all three kinds. For instance, for 50
sessions and moderate use of locks, you might increase the default cache size
of 1000 KB to 3500:

STN_PRIVATE_PAGE_CACHE_KB = 3500;

Step 4. Use GemStone’s shmem utility to verify that your UNIX kernel supports
the chosen cache size and number of processes. The command line is

$GEMSTONE/ install/shmem existingFile cacheSizeKB numProcs
where
$GEMSTONE is the directory where the GemStone software is installed,

existingFile is the name of any writable file, which is used to obtain an id (the
file is not altered),

cacheSizeKB is the SHR_PAGE_CACHE_SIZE_KB setting, and

numProcs is either the SHR_PAGE_CACHE_NUM_PROCS setting or, if that is -1,
(STN_MAX_SESSIONS + number_of_extents +
SHR_NUM_FREE_FRAME_SERVERS + STN_NUM_LOCAL_AIO_SERVERS + 2).

April 2008

GemStone Systems, Inc. 17

How to Establish Your Configuration

System Administration Guide for UNIX

Diagnostics

For instance, for the values used in the preceding Steps 1 and 2,

% touch /tmp/shmem
% $GEMSTONE/install/shmem /tmp/shmem 100000 54
% rm /tmp/shmem

If shmem is successful in obtaining a shared memory segment of sufficient
size, no message is printed. Otherwise, diagnostic output will help you
identify the kernel parameter that needs tuning. The total shared memory
requested includes cache overhead of about 20 bytes per KB of cache space
plus about 20 KB per sessions in SHR_PAGE_CACHE_NUM_PROCS. The actual
shared memory segment in this example would be 104865792 bytes (your
system might produce slightly different results).

The shared page cache monitor creates or appends to a log file,
gemStoneNamePidpcmon . 1og, in the same directory as the log for the Stone
repository monitor. The Pid portion of the name is the monitor’s process id. In case
of difficulty, check for this log (the cache monitor removes the log if the cache shuts
down normally).

The operating system kernel must be configured appropriately on each node
running a shared page cache. If startstone or a remote login fails because the
shared cache cannot be attached, check gemStoneName. log and
gemStoneNamePidpcmon. log for detailed information. These configuration
settings are checked at startup:

The kernel shared memory resources must be enabled and sufficient to
provide the page space specified by SHR_PAGE_CACHE_SIZE_KB plus the
cache overhead, and the kernel semaphore resources must also be sufficient to
provide an array of size SHR_PAGE_CACHE_NUM_PROCS + 1 semaphores. Use
the shmem utility to test the settings (see Step 4 above). If multiple Stones are
being run concurrently on the same node, each Stone requires a separate set of
semaphores and separate semaphore id.

Sufficient file descriptors must be available at startup to provide one
descriptor for each of the SHR_PAGE_CACHE_NUM_PROCS processes plus an
overhead of five. Compare your SHR_PAGE_CACHE_NUM_PROCS
configuration setting to the operating system file descriptor limit per process.
Some operating systems report the descriptor limit in response to the C shell
built-in command Limit. You can also use the Bash built-in command ulimit
-a, which produces a similar report.

18

GemStone Systems, Inc. April 2008

Configuring the GemStone Server

How to Establish Your Configuration

On operating systems that permit it, the shared page cache monitor attempts
to raise the descriptor soft limit to the number required. In some cases, raising
the limit may require super-user action to raise the hard limit or to reconfigure

the kernel.

Using Mid-Level Caches

As described above, whenever a Gem session requests a Page Read, the request is
forwarded directly to the page server on the Stone’s host. To reduce the amount of
network traffic that would otherwise all go to the Stone's machine, you can set up
mid-level caches.

As shown in Figure 1.3, if a Gem can't find a page in its local cache, it first looks in
the mid-level cache. If the Gem can't find the page in the mid-level cache, it then
forwards the request to the page server on the Stone’s host.

Figure 1.3 Using Mid-Level Caches

Local
Cache

Mid-Level
Cache

Shared Page
Cache

Shared Page
Cache

N, 7

Shared Page
Cache

<

!

AR

Repository Monitor

Stone

Cache

Shared Page

April 2008

GemStone Systems, Inc.

19

How to Establish Your Configuration System Administration Guide for UNIX

If a Gem is running on the same machine as a mid-level cache, that Gem will use
the mid-level cache as its local cache.

Mid-level caches may not be used in a system that uses replicate extents. You must
reconfigure the stone to no longer use replicate extents before you can use any
mid-level caches.

GemsStone provides several methods in class System that let you connect to, and
obtain information about, the mid-level caches on your system.
Connection Methods

System Class methods in the Shared Cache Management category allow you to
connect to a midlevel cache.

midLevelCacheConnect: hostName

Attempts to connect to a mid-level cache on the specified host, if the cache
already exists. The session's Gem process must be on a machine different from
the machine running the Stone process.

midLevelCacheConnect: hostName cacheSizeKB: aSize
maxSessions: nSess

If a mid-level cache does not already exist on the specified host, and aSize > 0,
attempts to start the cache and connect to it. If a cache is already running on
the host, this method attempts to connect to the cache and ignores the other
arguments.

The size of the mid-level cache is controlled by the method argument aSize,
rather than configuration parameters (as with other shared caches).
Reporting Methods

System Class methods in the Shared Cache Management category return lists of
the shared caches on your system.

remoteCachesReport

Returns a String that lists all shared caches that the Stone process is managing,
not including the cache on the Stone machine.

midLevelCachesReport

Similar to remoteCachesReport, but only includes the mid-level caches.

20

GemStone Systems, Inc. April 2008

Configuring the GemStone Server How to Establish Your Configuration

To Configure the Repository Extents

Configuring the repository extents involves three primary considerations:
= providing sufficient disk space,
< minimizing I/0 contention, and

= providing fault tolerance.

Estimating Extent Size

When you estimate the size of the repository, allow 10 to 20% for fragmentation.
Also allow one-half MB of free space for each session that will be logged in simul-
taneously—if necessary, the extent will be expanded to provide this much head
room. If the free space in extents falls below a level set by the
STN_FREE_SPACE_THRESHOLD configuration option (the default is 1 MB), the
Stone takes a number of steps to avoid shutting down. For information, see “How
to Recover from Disk-Full Conditions” on page 192.

Example 1.1 Extent Size Including Working Space

Size of repository =1GB
Free-Space Allowance

-5 MB * 20 sessions = 10 MB
Fragmentation Allowance

1 GB * 15% = 150 MB
Total with Working Space = 1.16 GB

For planning purposes, you should allow additional disk space for making Gem-
Stone backups (if you do not use tape) and for duplicating the repository when up-
grading to a new release. A GemStone backup typically occupies 75 to 90% of the
total size of the extents, depending on how much space is free in the repository at
the time.

Choosing the Extent Location

You should consider the following factors when deciding where to place the
extents:

= It’s very important to keep extents on a spindle different from operating
system swap space.

April 2008 GemStone Systems, Inc. 21

How to Establish Your Configuration System Administration Guide for UNIX

< Where possible, also keep the extents and transaction logs on separate
spindles.

Specify the location of each extent in the configuration file. The following example
uses two raw disk partitions (your partition names will be different):

DBF_EXTENT_NAMES = /dev/rdsk/clt3d0s5, /dev/rdsk/c2t2d0s6;

Setting a Maximum Size for an Extent

You can specify a maximum size in MB for each extent through the
DBF_EXTENT_SIZES configuration option. When the extent reaches that size,
GemsStone stops allocating space in it. If no size is specified, which is the default,
GemsStone continues to allocate from the extent until that file system or raw
partition is full or until 16 GB is reached.

NOTE
For best performance using raw partitions, the maximum size should be
slightly smaller than the size of the partition, so that GemStone can avoid
having to handle system errors. For example, for a 2 GB partition, set the
size to 1995 MB.

Each size entry is for the corresponding entry in DBF_EXTENT_NAMES. Use a
comma to mark the position of an extent for which you do not want to specify a
limit. For example, the following is for two extents of 500 MB each in raw
partitions.

DBF_EXTENT_NAMES
DBF_EXTENT_SIZES

/dev/rdsk/cl1t3d0s5, /dev/rdsk/c2t2d0s6;
498, 498;

The maximum size of an extent is limited by the operating system and platform,
but under no circumstances can be larger than 16 GB. For specific information
about system dependencies, see the comment in the configuration file for the pa-
rameter DBF_EXTENT_SIZES.

Pregrowing Extents to a Fixed Size

Allocating disk space requires a system call that introduces run time overhead.
Each time an extent is expanded (Figure 1.4), your application must incur this
overhead and then initialize the added extent pages.

22

GemStone Systems, Inc. April 2008

Configuring the GemStone Server How to Establish Your Configuration

Figure 1.4 Growing an Extent on Demand

allocated used

Time ——»

You can increase 1/0 efficiency while reducing file system fragmentation by in-
structing GemStone to allocate an extent to a predetermined size (called pregrow-
ing it) at startup. When DBF_PRE_GROW is set to True, the Stone repository moni-
tor obtains the necessary space when it creates a new extent or starts with an extent
that is smaller than the specified size.

Pregrowing extents avoids repeated system calls to allocate and initialize addition-
al space incrementally. This technique can be used with any number of extents,
and with either raw disk partitions or extents in a file system. It is especially useful
in performance benchmarking. Pregrowing extents also provides a simple way to
reserve space on a disk for a GemStone extent.

Figure 1.5 Pregrowing an Extent

allocated used

Time ——»

April 2008

GemStone Systems, Inc. 23

How to Establish Your Configuration System Administration Guide for UNIX

The disadvantages of pregrowing extents are that it takes longer to start GemStone
the next time or to add an extent dynamically, and unused disk space allocated to
pregrown extents is unavailable for other purposes.

Two configuration options work together to pregrow extents. DBF_PRE_GROW en-
ables the operation, and DBF_EXTENT _SIZES sets the size limit individually for
each extent. For optimal performance, the size should be slightly smaller than the
actual size of the disk partition. When DBF_PRE_GROW is set to True, the Stone re-
pository monitor obtains the necessary space when it creates a new extent or starts
with an extent that is smaller than the specified size.

To pregrow extents, set both of the configuration options (and remove the
comment symbol from DBF_PRE_GROW line). For example:

DBF_EXTENT_SIZES = 498, 498;
DBF_PRE_GROW = TRUE;

Allocating Data to Multiple Extents

If your application is query intensive, you should consider dividing the repository
into multiple extents and placing each extent on a separate spindle so that accesses
can overlap. When GemStone schedules disk writes, it assumes that you have done
so. Because several extents can be active at once, putting them on the same spindle
limits the maximum update rate and causes updating transactions to have unex-
pected impact on the response time for queries.

The DBF_ALLOCATION_MODE configuration option determines whether Gem-
Stone allocates new disk pages to multiple extents by filling each extent sequential-
ly or by balancing the extents using a set of weights you specify. If you have placed
each extent on a separate disk drive as recommended, the weighted allocation
yields better performance because it distributes disk accesses.

Sequential Allocation

By default, the Stone repository monitor allocates disk resources sequentially by
filling one extent to capacity before opening the next extent. (See Figure 1.6.) For
example, if a logical repository consists of three extents named A, B, and C, then
all of the disk resources in A will be allocated before any disk resources from B are
used, and so forth. Sequential allocation is used when the
DBF_ALLOCATION_MODE configuration option is set to SEQUENTIAL.

Weighted Allocation

For weighted allocation, you use DBF_ALLOCATION_MODE to specify the number
of extent pages to be allocated from each extent on each allocation request. The

24

GemStone Systems, Inc. April 2008

Configuring the GemStone Server How to Establish Your Configuration

allocations are positive integers (or zero), with each element corresponding to an
extent of DBF_EXTENT_NAMES. For example:

DBF_EXTENT_NAMES = a.dbf, b.dbf, c.dbf;
DBF_ALLOCATION_MODE = 12, 20, 8;

You can think of the total weight of a repository as the sum of the weights of its
extents. When the Stone allocates space from the repository, each extent
contributes an allocation proportional to its weight.

NOTE
We suggest avoiding the use of very small values for weights, such as
“1,1,1”. It’s more efficient to allocate a group of pages at once, such as
“10,10,107, than to allocate single pages repeatedly.

One reason for specifying weighted allocation of a repository’s extents is to share
the 170 load among the extents. For example, you can create three extents with
equal weights, as shown in Figure 1.7.

April 2008

GemStone Systems, Inc. 25

How to Establish Your Configuration System Administration Guide for UNIX

Figure 1.6 Sequential Allocation

c.dbf c.dbf c.dbf

b.dbf b.dbf b.dbf

a.dbf a.dbf a.dbf
(primary) (primary) (primary)

Time ————»

26 GemStone Systems, Inc. April 2008

Configuring the GemStone Server How to Establish Your Configuration

Figure 1.7 Equally Weighted Allocation

DBF_ALLOCATION_MODE = 10,10,10;

c.dbf c.dbf

b.dbf b.dbf

a.dbf a.dbf
(primary) (primary)

Time ———»

Although equal weights are most common, you can adjust the relative extent
weights for other reasons, such as to favor a faster disk drive. For example,
suppose we have defined three extents: A, B, and C. If we defined their weights to
be 12, 20, and 8 respectively, then for every 40 disk units (pages) allocated,

12 would come from A, 20 from B, and 8 from C. Another way of stating this
formula is that because B’s weight is 50% of the total repository weight, 50% of all
newly-allocated pages are taken from extent B. Figure 1.8 shows the result.

April 2008 GemStone Systems, Inc. 27

How to Establish Your Configuration System Administration Guide for UNIX

Figure 1.8 Proportionally Weighted Allocation

DBF_ALLOCATION_MODE = 12,20,8;

c.dbf c.dbf

b.dbf b.dbf

a.dbf a.dbf
(primary) (primary)

Time ——»

You can modify the relative extent weights by editing your GemStone
configuration file and modifying the values listed for DBF_ALLOCATION_MODE.
You can also change DBF_ALLOCATION_MODE to SEQUENTIAL without harming
the system. The new values you specify take effect the next time you start the
GemStone system.

NOTE
When you edit DBF_ALLOCATION_MODE, the number of weights you
specify must match the number of files specified in
DBF_EXTENT_NAMES and DBF_REPLICATE_NAMES.

28 GemStone Systems, Inc. April 2008

Configuring the GemStone Server How to Establish Your Configuration

Weighted Allocation for Extents Created at Run Time

Smalltalk methods for creating extents at run time (Repository>>
createExtent: and Repository>>createExtent:withMaxSize:) do not
provide a way to specify a weight for the newly-created extent. If your repository
uses weighted allocation, the Stone repository monitor assigns the new extent a
weight that is the simple average of the repository’s existing extents. For instance,
if the repository is composed of three extents with weights 6, 10, and 20, the default
weight of a newly-created fourth extent would be 12 (36 divided by 3).

Replicating Extents

If you can afford the additional disk space and 1/0 overhead, a replicate (mirror
copy) of your repository offers an excellent means of repository protection. It’s best
if the replicated extent is on a different disk drive and controller. You may not use
mid-level caches if you use replicate extents.

A replicated extent replaces an extent at run time in the case of aread error. Should
either a session process or the repository monitor encounter a read error on an
extent, the replicated extent steps in and replaces that extent for the purposes of
reading. (When the GemStone system encounters a write error on an extent, it
terminates with an error message.)

The DBF_REPLICATE_NAMES configuration option determines which extents are
replicated. Each entry must be one of three types:

= It may be the name of an existing replicated extent.

= It may be the name of a non-existent file; when the Stone repository monitor
starts, it creates a new replicated extent by this name for the corresponding
extent in DBF_EXTENT_NAMES.

= It may be an empty value, marked by a comma; the corresponding extent is not
replicated, and any prior replicated extent is no longer updated (you should
remove the outdated replicated extent).

An empty string (the default) means that no extents are replicated.

To replicate an extent, add the path of the replicated extent to
DBF_REPLICATE_NAMES. This example uses raw partitions to replicate two
extents:

DBF_REPLICATE_NAMES = /dev/rdsk/c3t2d,
/dev/rdsk/c3t2d0s30s3;

You can also create replicated extents at run time, although you must be the only
user logged in. See “Repository>>createReplicateOf: named:” on page 182. You

April 2008

GemStone Systems, Inc. 29

How to Establish Your Configuration System Administration Guide for UNIX

may also want to create replicates of transaction logs; see “To Add a Log and
Replicate at Run Time” on page 205.

To Configure the Transaction Logs

Configuring the transaction logs involves considerations similar to those for
extents:

= choosing a logging mode,
= providing sufficient disk space,
= minimizing 1/0 contention, and

= providing fault tolerance, through both the choice of logging mode and the
optional use of replicated logs.

Choosing a Logging Mode
GemStone provides two modes of transaction logging:

= Full logging provides real-time incremental backup of the repository.
Deployed applications should use this mode. All transactions are logged
regardless of their size, and the resulting logs can used in restoring the
repository from a GemStone backup.

= Partial logging is the default mode, and is intended for use during evaluation
or early stages of application development. Partial logging is also
recommended during bulk loading of the repository. Partial logging allows a
simple operation to run unattended for an extended period and permits
automatic recovery from system crashes that do not corrupt the repository.
Logs created in this mode cannot be used in restoring the repository from a
backup.

To enable full transaction logging, change the configuration setting to True and
restart the Stone repository monitor:

STN_TRAN_FULL_LOGGING = TRUE;

CAUTION
The only backups to which you can apply transaction logs are those made
while the repository is in full logging mode. If you change to full logging,
be sure to make a GemStone backup as soon as circumstances permit.

Changing the logging mode from full to partial logging requires special steps. See
“To Change to Partial Logging” on page 208.

30 GemStone Systems, Inc. April 2008

Configuring the GemStone Server How to Establish Your Configuration

For general information about the logging mode and the administrative differenc-
es, see “Logging Modes” on page 198.

Estimating the Log Size

The disk space your application needs for transaction logs is highly individual be-
cause it depends on the logging mode you choose, your transaction characteristics,
and how often you archive and remove the logs.

If you have configured GemsStone for full transaction logging (that is,
STN_TRAN_FULL_LOGGING is set to True), you must allow sufficient space to log
all transactions until you next archive the logs.

CAUTION
If the Stone exhausts the log space, users will be unable to commit
transactions until space is made available.

You can estimate the space required from your transaction rate and the number of
bytes modified in a typical transaction. Example 1.2 does this for an application
that expects to generate 4500 transactions a day. At any point, the method Repos-
itory>>oldestLogFileldForRecovery identifies the oldest log file needed
for recovery from the most recent checkpoint, if the Stone were to crash. Log files
older than the most recent checkpoint (the default maximum interval is 5 minutes)
are needed only if it becomes necessary to restore the repository from a backup. Al-
though the older logs can be retrieved from archives, you may want to keep them
online until the next GemStone full backup, if you have sufficient disk space.

Example 1.2 Space for Transaction Logs Under Full Logging

Average transaction rate 5 per minute

Duration of transaction processing 15 hours per day

Average transaction size = 5 KB
Archiving interval = Daily
Transactions between Archives

5 per minute * 60 minutes * 15 hours = 4500
Log space (minimum)

4500 transactions * 5 KB = 22 MB

April 2008 GemStone Systems, Inc. 31

How to Establish Your Configuration System Administration Guide for UNIX

If GemStone is configured for partial logging (the default), you need only provide
enough space to maintain transaction logs since the last repository checkpoint. Or-
dinarily, two log files are sufficient: the current log and the immediately previous
log. (In partial logging mode, transaction logs are used only after an unexpected
shutdown to recover transactions since the last checkpoint.) If you use the default
configuration, you should provide space for at least two logs of 2 MB each.

Choosing the Log Location and Size Limit

The considerations in choosing a location for transaction logs are like those for
extents:

« It’s very important to keep transaction logs on a different spindle than
operating system swap space.

< Where possible, also keep the extents and transaction logs on separate
spindles—doing so reduces 1/0 contention while increasing fault tolerance.

« Because update-intensive applications primarily are writing to the transaction
log, storing raw data in a disk partition (rather than in a file system) can yield
somewhat better performance.

GemsStone requires at least two log locations (directories or raw partitions) so it can
switch to another when the current one is filled. When you set the log locations in
the configuration file, you should also check their size limits.

Although the default size of 10 MB is adequate in some situations, update-
intensive applications should consider a larger size (at least 25 to 50 MB) to limit
the frequency with which logs are switched. Each switch causes a checkpoint to
occur, which can impact performance.

WARNING
Because the transaction logs are needed to recover from a system crash,
do NOT place them in directories such as /tmp that are automatically
cleared during power up.

The following example sets up a log in a 2 GB raw partition and a directory of
50 MB logs in the file system. This setup is a workable compromise when the

32 GemStone Systems, Inc. April 2008

Configuring the GemStone Server How to Establish Your Configuration

number of raw partitions is limited. The file system logs give the administrator
time to archive the primary log when it is full.

STN_TRAN_LOG_DIRECTORIES = /dev/rdsk/c4d0s2,
/user3/tranlogs;
STN_TRAN_LOG_SIZES = 1998, 50;

NOTE
For best performance using raw partitions, the size setting should be
slightly smaller than the size of the partition so GemStone can avoid
having to handle system errors.For example, for a 2 GB partition, set it
to 1998 MB.

All of the transaction logs must reside on Stone’s node.

Replicating Logs

Because transaction logs are the primary element of real-time incremental backup
under full transaction logging, you should consider maintaining replicated logs on
another disk drive as protection against media failure. You can choose to replicate
all of the logs or none of them.

When log replicates are in use, the Stone switches to new logs whenever either the
primary (in STN_TRAN_LOG_DIRECTORIES) or the replicated log fills up or a write
error occurs. If either of the new pair cannot be opened, processing continues using
the other. On subsequent attempts to open a new log, the Stone again attempts to
open both a primary and a replicated log.

During recovery from an unexpected shutdown, the Stone first tries to restore
transactions by reading the primary transaction logs. If an error occurs in opening
or reading one of the primary log files, the Stone attempts to read that information
from the corresponding replicate log.

To create replicated logs, enter their location in the configuration file. Be sure you
add as many replicate locations as there are primary log locations. You can list the
same directory more than once, but a raw partition must have only one reference.
You can mix raw partitions and files in the file system. For instance,

STN_REPL_TRAN_LOG_DIRECTORIES = /dev/rdsk/c4d0s3,
/user4/reptranlogs/;

You can add both a log and its replicate at run time if the existing logs are being
replicated. See “To Add a Log and Replicate at Run Time” on page 205.

April 2008

GemStone Systems, Inc. 33

How to Establish Your Configuration System Administration Guide for UNIX

If you want to start replicating transaction logs for an existing repository, you must
shut down the Stone repository monitor, edit the configuration file as explained
above, and then restart the Stone.

To Configure Server Response to Gem Fatal Errors

The Stone repository monitor is configurable in its response to a fatal error
detected by a Gem session process. By default, the Stone halts and dumps a core
image if it receives notification from a Gem that the Gem process died with a fatal
error that would cause the Gem to dump core. By stopping both the Gem and the
Stone at this point, the possibility of repository corruption is minimized. During
application development, it may be helpful to know exactly what the Stone was
doing when the Gem went down.

For deployed production systems, we recommend that you change the default in
the Stone’s configuration file so that the Stone will attempt to keep running:

STN_HALT_ON_FATAL_ERROR = FALSE;

To Set File Permissions for the Server

The primary consideration in setting file permissions for the Server is to protect the
repository extents. All reads and writes should be done through GemStone
repository executables: the Stone and its child processes (the shared page cache
monitor, AlO page server, GcGem, Page Manager, and Free Frame Page Server)
and the Gem session processes. Chapter 3 describes the use of additional page
servers to read and write extents in networked systems.

Recommended: Use the Setuid Bit

The tightest repository security is obtained by having the extents and the
repository executables owned by a single UNIX account, using the UNIX setuid bit
(S bit) on the executable files, and making the extents writable only by that account.
The S bit causes a process to belong to the owner you specify for the file.

Table 1.3 shows the recommended file settings, where gsadmin and gsgroup can be
any ordinary UNIX account and group (do NOT use the root account for this
purpose). The person who starts the repository monitor (Stone) must be logged in

34 GemStone Systems, Inc. April 2008

Configuring the GemStone Server

How to Establish Your Configuration

as gsadmin or have execute permission. The Stone and shared page cache will
belong to the owner you specify for the files.

Table 1.3 Recommended Resource and Process Permissions for the Server

Resource or | Protection File File Process Comments
Process? Mode Owner Group Runs As
repository | -rw------- gsadmin | gsgroup Users read and write
extents repository through Gem-
shared W= Weeme gsadmin | gsgroup Stone processes. The Stpne
memory sets up the page cache in
shared memory.
stoned -r-sr-Xr-X gsadmin | gsgroup | gsadmin | AlO page server and GC
pgsvrmain | -r-sr-xr-x gsadmin | gsgroup | gsadmin | Gem are spawned by
. . stoned and can access
gem -r-Sr-Xr-x gsadmin | gsgroup | gsadmin repository as the gsadmin
account.

aOwnership and permissions for the netldid executable depend on the authentication mode chosen

and are discussed in Chapter 3.

If you are logged in as root when you run the GemsStone installation program, it
offers to set file protections in the manner described in Table 1.3. To set them
manually, do the following as root:

H R HHH

cd $GEMSTONE/sys
chmod u+s gem pgsvr pgsvrmain stoned
chown gsadmin gem pgsvr pgsvrmain stoned
cd $GEMSTONE/data
chmod 600 extentO.dbf
chown gsadmin extentO.dbf

The protection mode for the shared memory segment is fixed in GemStone.

You must take similar steps to provide access for repository clients, which are
presented in Chapter 2. See “To Set Ownership and Permissions for Session
Processes” on page 58.

April 2008

GemStone Systems, Inc.

35

How to Establish Your Configuration System Administration Guide for UNIX

Alternative: Use Group Write Permission

For sites that prefer not to use the setuid bit, the alternative is to make the extents
writable by a particular UNIX group and have all users belong to that group. That
group must be the primary group of the person who starts the Stone (that is, the
one listed in Zetc/passwd). Do the following, where gsgroup is a group of your
choice:

% cd $GEMSTONE/data
% chmod 660 extentO.dbf
% chgrp gsgroup extentO.dbf

Sites that run the linked version of GemBuilder may also prefer to use this
protection so that file outs and other 1/0 operations that do not read or write the
repository will be done using the individual user’s id instead of the single gsadmin
account.

Access to Other Server Files

GemStone creates log files and other special files in several locations, which are
described below. In a multi-user environment, the protection of these resources
must be such that the appropriate file can be created or updated in response to
actions by several users.

/opt/gemstone All users should have read/write/execute access to the
directories /opt/gemstone/log and
/opt/gemstone/locks oneach node. By default, NetLDIs
create log files in that log directory. GemStone processes that
have a name for each instance (currently the Stone, shared
page cache monitor, and NetLDI) create lock files in the locks
directory.

system.conf The user who owns the Stone process must have write
permission for the Stone configuration file, which by default
is $GEMSTONE/data/system.conf. If certain
configuration changes are made while the Stone is running,
the Stone updates that file. For instance, the Stone must record
run-time changes such as those made by
Repository>>createExtent: so that it can restart later
in the correct configuration.

36

GemStone Systems, Inc. April 2008

Configuring the GemStone Server How to Set Up a Raw Partition

1.3 How to Set Up a Raw Partition

WARNING
Using raw partitions requires extreme care. Overwriting the wrong
partition destroys existing information, which in certain cases can make
data on the entire disk inaccessible.

The instructions in this section are incomplete intentionally. You will need to work
with your system administrator to locate a partition of suitable size for your extent
or transaction log. Consult the system documentation for guidance as necessary.

You can mix file-system based files and raw partitions in the same repository, and
you can add a raw partition to existing extents or transaction log locations. The
partition reference in /dev must be readable and writable by anyone using the
repository, so you should give the entry in /dev the same protection as you
would use for the corresponding type of file in the file system.

The first step is to find a partition (raw device) that is available for use. Depending
on your operating system, a raw partition may have a name like
/dev/rdsk/c1t3d0s5, /dev/rsd2e, or /dev/vg03/riIvoll. Most operating
systems have a utility or administrative interface that can assist you in identifying
existing partitions; some examples are prtvtoc, dkinfo, and vgdisplay. A partition
is available if:

= it does not contain the root (/) file system (on some systems, the root volume
group),

= itis not on a device that contains swap space,

= eitheritdoes not contain a file system or that file system can be left unmounted
and its contents can be overwritten, and

= itisnot already being used for raw data.

When you select a partition, make sure any file system tables, such as
/etc/vfstab, do not call for it to be mounted at system boot. If necessary, un-
mount a file system that is currently mounted and edit the system table. Use
chmod and chown to set read-write permissions and ownership of the special de-
vice file the same way you would protect a repository file in a file system. For ex-
ample, set the permissions to 600, and set the owner to the GemStone administra-
tor.

Configure raw partitions as character devices, not as block devices.

If the partition will contain the primary extent (the first or only one listed in
DBF_EXTENT_NAMES), initialize it by using the GemStone copydbf utility to copy

April 2008

GemStone Systems, Inc. 37

How to Set Up a Raw Partition System Administration Guide for UNIX

an existing repository extent to the device. The extent must not be in use when you
copy it. If the partition already contains a GemsStone file, first use removedbf to
mark the partition as being empty.

Partitions for transaction logs do not need to be initialized, nor do secondary ex-
tents into which the repository will expand later.

Sample Raw Partition Setup

The following example configures GemStone to use the raw partition
/dev/rsd2d as the repository extent.

Step 1. If the raw partition already contains a GemStone file, mark it as being
empty. copydbf will not overwrite an existing repository file. For instance,

% removedbf /dev/rsd2d

Step 2. If you are not using an existing repository, make a local copy of the
distribution extent. Using copydbf requires that you have write permission on
the extent (or transaction log) that you are copying.

% cp $GEMSTONE/bin/extentO.dbf tempDirectory
% chmod +w tempDirectory/extent0.db¥f

Step 3. Use copydbf to install a fresh extent on the raw partition. (If you copy an
existing repository, first stop any Stone that is running on it.)

% copydbf tempDirectory/extentO.dbf /dev/rsd2d

Step 4. As root, change the ownership and the permission of the partition special
device file in /dev to what you ordinarily use for extents in a file system. For
instance:

chown gsAdmin /dev/rsd2d
chmod 600 /dev/rsd2d

You should also consider restricting the execute permission for
$GEMSTONE/bin/removedbT to further protect your repository. In
particular, this executable file should not have the setuid (S) bit set.

Step 5. Edit the Stone’s configuration file to show where the extent is located:
DBF_EXTENT_NAMES = /dev/rsd2d;

Step 6. Use startstone to start the Stone repository monitor in the usual manner.

38 GemStone Systems, Inc. April 2008

Configuring the GemStone Server How to Set Up a Raw Partition

Changing Between Files and Raw Partitions

This section tells you how to change your configuration by moving existing
repository extent files to raw partitions or by moving existing extents in raw
partitions to files in a file system. Similar changes can be made for transaction logs.

Extents
To move an extent from the file system to a raw partition, do this:

Step 1. Define the raw disk partition device. Its size should be at least one or two
MB larger than the existing extent file.

Step 2. Stop the Stone repository monitor.

Step 3. Editthe repository’s configuration file, substituting the device name of the
partition for the file name in DBF_EXTENT_NAMES. Set DBF_EXTENT_SIZES for
this extent to be one or two MB smaller than the size of the partition.

Step 4. Use copydbf to copy the extent file to the raw partition. (If the partition
previously contained a GemsStone file, first use removedbf to mark it as
unused.)

Step 5. Restart the Stone.
The procedure to move an extent from a raw partition to the file system is similar:
Step 1. Stop the Stone repository monitor.

Step 2. Edit the repository’s configuration file, substituting the file pathname for
the name of the partition in DBF_EXTENT_NAMES.

Step 3. Use copydbf to copy the extent to a file in a file system, then set the file
permissions to the ones you ordinarily use.

Step 4. Restart the Stone.

Transaction Logs

To switch from transaction logging in the file system to logging in a raw patrtition,
do this:

Step 1. Define the raw disk partition. If you plan to copy the current transaction
log to the partition, its size should be at least one or two MB larger than current
log file.

Step 2. Stop the Stone repository monitor.

April 2008 GemStone Systems, Inc. 39

How to Access the Server Configuration at Run Time System Administration Guide for UNIX

Step 3. Editthe repository’s configuration file, substituting the device name of the
partition for the directory name in STN_TRAN_LOG_DIRECTORIES. Make sure
that STN_TRAN_LOG_SIZES for this location is one or two MB smaller than the
size of the partition.

Step 4. Use copydbf to copy the current transaction log file to the raw partition.
(If the partition previously contained a GemStone file, first use removedbf to
mark it as unused.) You can determine the current log from the last message
“Creating a new transaction log” in the Stone’s log. If you don’t copy the
current transaction log, the Stone will open a new one with the next sequential
fileld, but it may be opened in another location specified by
STN_TRAN_LOG_DIRECTORIES.

Step 5. Restart the Stone.

The procedure to move transaction logging from a raw partition to the file system
is similar:

Step 1. Stop the Stone repository monitor.

Step 2. Edit the repository’s configuration file, substituting a directory pathname
for the name of the partition in STN_TRAN_LOG_DIRECTORIES.

Step 3. Use copydbf to copy the current transaction log to a file in the specified
directory. The copydbf utility will generate a file name like tranlognnn.dbf,
where nnn is the internal fileld of that log.

Step 4. Restart the Stone.

1.4 How to Access the Server Configuration at Run

Time

GemStone provides several methods in class System that let you examine, and in
certain cases modify, the configuration parameters at run time from Smalltalk.

To Access Current Settings at Run Time

Class methods in category Configuration File Access let you examine the system-
Stone configuration. There are three access methods, which all provide similar
server information (similar methods for accessing a session configuration are
described on page 60):

40

GemStone Systems, Inc. April 2008

Configuring the GemStone Server How to Access the Server Configuration at Run Time

stoneConfigurationReport
returns a SymbolDictionary whose keys are the names of
configuration file parameters, and whose values are the current
settings of those parameters in the repository monitor process.

configurationAt: aName
returns the value of the specified configuration parameter, giving
preference to the current session process if the parameter applies to a
Gem.

stoneConfigurationAt: aName
returns the value of the specified configuration parameter from the
Stone process, or returns ni 1 if that parameter is not applicable to a
Stone.

Here is a partial example of the Stone configuration report:

topaz 1> printit

System stoneConfigurationReport asReportString
%

#SHR_SPIN_LOCK_COUNT 1200
#StnDisableLoginFailureTimeLimit 15
#StnDisablelLoginFailureLimit 15
#SHR_PAGE_CACHE_LOCKED false

Keys in mixed capitals and lower case, such as SpinLockCount, are internal run-
time parameters.

To Change Settings at Run Time

The class method System class>>configurationAt: aName put: aValuein
category Runtime Configuration Access lets you change the value of the internal
run-time parameters in Table 1.4 if you have the appropriate privileges. The
options and parameters are described in Appendix A, “GemStone Configuration
Options.” The parameters that can be changed are those for which
ConfigurationParameterDict at: aName returns a negative Smallinteger.
All changeable parameters require that aValue be a Smallinteger.

CAUTION
Configuration parameters should not be changed unless there is a clear
reason for doing so, because incorrect settings can have serious adverse
effects on GemStone performance. Check the entries in Appendix A for
additional guidance about run-time changes to specific parameters.

April 2008

GemStone Systems, Inc. 41

How to Access the Server Configuration at Run Time

System Administration Guide for UNIX

Table 1.4 Server Configuration Parameters Changeable at Run Time

Configuration File Option

Internal Parameter

CONCURRENCY_MODE

#ConcurrencyMode

SHR_SPIN_LOCK_COUNT

#SpinLockCount?

STN_CHECKPOINT_INTERVAL

#StnCheckpointinterval®

STN_DISABLE_LOGIN_FAILURE_LIMIT

#StnDisableLoginFailureLimit

STN_DISABLE_LOGIN_FAILURE_TIME_LIMIT

#StnDisableLoginFailureTimeLimit

STN_DISKFULL_TERMINATION_INTERVAL

#StnDiskFull TerminationInterval?

STN_FREE_SPACE_THRESHOLD

#StnFreeSpaceThreshold?

STN_GC_SESSION_ENABLED

#GcSessionEnabled?

STN_GEM_ABORT_TIMEOUT

#StnGemAbortTimeout?

STN_GEM_LOSTOT_TIMEOUT

#StnGemLostOtTimeout?

STN_GEM_TIMEOUT

#StnGemTimeout?

STN_HALT_ON_FATAL_ERR

#StnHaltOnFatalErr?

STN_LOG_LOGIN_FAILURE_LIMIT

#StnLogLoginFailureLimit

STN_LOG_LOGIN_FAILURE_TIME_LIMIT

#StnLogLoginFailureTimeLimit

STN_REMOTE_CACHE_TIMEOUT

#StnRemoteCacheTimeout?

STN_SIGNAL_ABORT_CR_BACKLOG

#StnSignal AbortCrBacklog?

STN_TRAN_LOG_LIMIT

#StnTranLogLimit?

(none)

#StnLoginsSuspended

& These parameters can be changed only by SystemUser.

The following example first obtains the value of #GcSessionEnabled. The
parameter is one that can be changed at run time by SystemUser:

topaz 1> printit

ConfigurationParameterDict at: #GcSessionEnabled

%
-9
topaz 1> printit

System configurationAt:#GcSessionEnabled put: 0O

%
0

42 GemStone Systems, Inc.

April 2008

Configuring the GemStone Server How to Tune Server Performance

For more information about these methods, see the comments in the image.

1.5 How to Tune Server Performance

A number of configuration options are available for tuning the GemStone server
to make better use of the shared page cache, reduce swapping, and control disk
activity caused by repository checkpoints.

To Tune the Shared Page Cache

Two configuration options can help tailor the shared page cache to the needs of
your application. You may also want to consider object clustering within Smalltalk
as a means of increasing cache efficiency.

Adjusting the Cache Size

Adjust the SHR_PAGE_CACHE_SIZE_KB configuration option according to the total
number of objects in the repository and the number accessed at one time. Ideally,
the shared page cache should be large enough to hold one-third to one-half of the
object table and all the pages on which currently used objects reside.

You should review the configuration recommendations given earlier (“Estimating
the Size of the Shared Page Cache” on page 15) in light of your application’s design
and usage patterns. Estimates of the number of objects queried or updated are
particularly useful in tuning the cache.

You can use the shared page cache statistics for a running application to monitor
the amount of unused space. See “To Monitor Page Reads and Writes by a Session”
on page 226, especially the statistic FreeFrameCount.

Matching Spin Lock Limit to Number of Processors

The SHR_SPIN_LOCK_COUNT configuration option specifies the number of times a
process should attempt to obtain a lock in the shared page cache using the spin
lock mechanism before resorting to setting a semaphore and sleeping. We
recommend you leave SHR_SPIN_LOCK_COUNT set to -1 (the default setting),
which causes GemStone to determine if multiple processors are installed and set
the parameter accordingly.

April 2008 GemStone Systems, Inc. 43

How to Tune Server Performance System Administration Guide for UNIX

Clustering Objects That Are Accessed Together

Appropriate clustering of objects by the application can allow a smaller shared
page cache by reducing the number of data pages in use at once. For general
information about clustering objects, see the GemStone Programming Guide.

To Reduce Excessive Swapping

Be careful not to make the shared page cache so large that it forces excessive swap-
ping. If your node is dedicated to running GemStone, our general recommenda-
tion (given earlier) is that you use up to one-half of its RAM for the cache. If it is
not a dedicated node, you may need to limit the cache size to a smaller proportion.

Excessive swapping also can be caused by the need to awaken (and swap in) sleep-
ing sessions that are outside of a transaction. The Stone repository monitor takes
this action (by sending a Signaled Abort message) when it runs out of space in the
shared page cache to store the old commit records on which the sleeping sessions
are based. Each such session must awaken long enough to update its view of the
repository. You can reduce this type of swapping activity by increasing the
STN_SIGNAL_ABORT_CR_BACKLOG configuration option, which causes the Stone
to keep more transactions in memory. For example, you might determine a desired
interval between Signaled Abort messages, and then use your application’s commit
rate to calculate the setting of STN_SIGNAL_ABORT_CR_BACKLOG. You may heed
to take the following additional steps:

= Increase the STN_PRIVATE_PAGE_CACHE_KB configuration option to
(STN_SIGNAL_ABORT_CR_BACKLOG + 10)/30 MB.

= Increase the size of the shared page cache. The default backlog of 20 commit
records requires about one MB, assuming a typical small transaction occupies
about 50 KB.

If your configuration uses multiple extents in the file system, you may be able to
reduce swapping by limiting the size of file system buffers. Some operating sys-
tems do not support this restriction.

To Control Checkpoint Frequency

Each checkpoint guarantees that the committed state of the repository has been
written to the extent files and to any replicated extents. If the checkpoints interfere
with other GemStone activity, you may want to adjust their frequency.

< |n full transaction logging mode, most checkpoints are determined by the
STN_CHECKPOINT_INTERVAL configuration option, which by default is five
minutes. A few Smalltalk methods, such as System class>>checkpoint

44

GemStone Systems, Inc. April 2008

Configuring the GemStone Server How to Tune Server Performance

and Repository>>ful IBackupTo: , force acheckpoint at the time they are
invoked. A checkpoint also is performed each time the Stone begins a new
transaction log, so you may want to increase the size of these logs to reduce the
frequency of checkpoints.

NOTE
If System class>>checkpoint is called within a transaction
that has not changed persistent data, then the underlying commit
method is treated as an abort and the checkpoint doesn’t occur, although
the method still returns true.

< |npartial logging mode, checkpoints also are triggered by any transaction that
is larger than STN_TRAN_LOG_LIMIT, which sets the size of the largest entry
that is to be appended to the transaction log. The default limit is 100 Kilobytes
of log space. If checkpoints are too frequent in partial logging mode, it may
help to raise this limit. Conversely, during bulk loading of data with large
transactions, it may be desirable to lower this limit to avoid creating large log
files.

For information about tuning STN_TRAN_LOG_LIMIT in partial logging mode,
see CheckpointCount in the discussion of cache statistics on page 240.

A checkpoint also occurs each time the Stone repository monitor is shut down
gracefully, as by invoking stopstone or System class>>shutDown. This
checkpoint permits the Stone to restart without having to recover from transaction
logs. It also permits extent files to be copied in a consistent state.

Adding Page Servers

GemStone uses page servers for three purposes:
= to write dirty pages to disk,

= totransfer pages from the Stone host to the shared page cache host, if different,
and

« toadd free frames to the free frame list, from which a Gem can take as needed.

Page servers referred to as AlO page servers perform all three functions. By default,
at least one such page server is running at all times, though you can add more as
needed. In addition, you can add one or more free list page servers: page servers
dedicated only to the third task in the list above, adding free frames to the free list.

Under certain circumstances, free list page servers can improve overall system
performance. For example, if Gems are performing many operations requiring
writing pages to disk, the AlO page server may have to spend all its time writing

April 2008

GemStone Systems, Inc. 45

How to Tune Server Performance System Administration Guide for UNIX

pages, never getting a chance to add free frames to the free list. Alternatively, if
Gems are performing operations that require only reading, the AlO page server
will see no dirty frames in the cache—the signal that prompts it to take action. In
that case, it may sleep for a second, even though free frames are present in the
cache and need to be added to the free list.

To Add AIO Page Servers

By default the Stone spawns a single page server process on its local node to
perform asynchronous 1/0 (AlO) between the shared page cache and the extents.
This page server ordinarily is the process that updates extents on the local node
during a checkpoint. (In some cases, the Stone may use additional page servers
temporarily during startup to pregrow multiple extents.)

If your configuration has over four extents and you are trying to achieve the
maximum possible commit rate, consider increasing the number of AlO page
servers in use during ordinary operation. You can do this by changing the
STN_NUM_LOCAL_AIO_SERVERS configuration option (page 414).

Additional page servers are unlikely to benefit you unless the host computer has
at least two CPUs, and the disk drive hardware supports concurrent writes to
multiple extents. For multiple page servers to be effective, they must be able to
execute at the same time and write to disk at the same time.

Do You Need Free List Page Servers?

A Gem can get free frames either from the free list (the quick way), or, if sufficient
free frames are not listed, by scanning the shared page cache for a free frame
instead. (What constitutes sufficient free frames is determined by the configuration
parameter GEM_FREE_FRAME_LIMIT; for details, see “GEM_FREE_FRAME_LIMIT”
on page A-400.) If a Gem has to spend a large proportion of its time scanning the
shared page cache, its performance may be unacceptable. Under these
circumstances, extra free list page servers can sometimes help. On a single-CPU
system, one extra free list page server might be all that’s required; for systems with
multiple CPUs, you may wish to start one at a time, checking statistics, until the
problem is resolved.

By default, when you start the Stone, it tries to spawn one free list page server
process on its local node. Free list page servers require a running NetLDI process,
however; if the NetLDI process is not already running on the node, the attempt
fails and the Stone writes a message to its log file.

Certain cache statistics can help you determine whether additional free list page
servers will improve system performance. (For details about these and other
statistics, see “Cache Statistics” on page 238.)

46

GemStone Systems, Inc. April 2008

Configuring the GemStone Server How to Run a Second Repository

If Gems have to scan the shared page cache for free frames, the cache statistic
FramesFromFindFree will be greater than zero. If this is the case—especially if
it significantly greater—consider starting one or more free list page servers.

If the FreeFrameCount is consistently lower than the FreeFrameLimit, a free
list page server might help (though other factors enter into the question as
well).

If FramesAddedToFreeList rises significantly after starting a free list page server,
the new page server has indeed benefited you; likewise, if FramesFromFindFree is
reduced to zero, or near zero.

To Add Free List Page Servers

You can change the number of free list page server processes that will be started
when the shared page cache is created by setting a configuration parameter,
SHR_NUM_FREE_FRAME_SERVERS.

Default: 1
Minimum: 1
Maximum: (SHR_PAGE_CACHE_NUM_PROCS - 5)

1.6 How to Run a Second Repository

You can run more than one repository on a single node—for example, separate
production and development repositories. There are several points to keep in
mind:

Each repository requires its own Stone repository monitor process, extent files,
transaction logs, and configuration file. (Each Stone will also start its own
shared page cache monitor, garbage collector session, and AlO page server.)

You must give each Stone a unique name at startup. That name is used to
identify the server and to maintain separate log files. Users will connect to the
repository by specifying the Stone’s name.

A single v6.3 NetLDI serves all Stones and Gem session processes on a given
node.

Multiple Stones can share a single installation directory, provided you create
separate repository extents, transaction logs, and configuration files. If
performance is a concern, the first step should be to isolate each Stone’s data
directory and the system swap space on separate drives. Then, review the
discussion “Recommendations About Disk Usage” on page 6.

April 2008

GemStone Systems, Inc. a7

How to Run a Second Repository System Administration Guide for UNIX

The following example shows the steps necessary to create a separate repository
for application development (we’ll identify it by the prefix dev). This repository
will run in parallel with the initial repository that you installed by following the
instructions in the Installation Guide.

We’ll use the $GEMSTONE installation tree to avoid having to duplicate files that
can be shared, but we’ll create a separate data directory on another disk to reduce
170 contention.

Step 1. Copy a fresh repository extent and configuration file to the new data
directory. Make the files writable by the development group.

% mkdir /user2/devdata

% cd /user2/devdata

% cp $GEMSTONE/bin/extentO.dbf .

% cp $GEMSTONE/bin/initial.config system.conf
% chmod ug+w extentO.dbf system.conf

Step 2. Editthe new configuration file so it specifies the proper extent file. Change
the transaction log directories to the new data directory.

DBF_EXTENT_NAMES = /user2/devdata/extentO.dbf;
STN_TRAN_LOG_DIRECTORIES = /user2/devdata,
/user2/devdata;

Step 3. Set the environment variable GEMSTONE_SYS_CONF so it points to the
new configuration file. GemStone will use that file instead of the default,
which is $6EMSTONE/data/system.conf. For example:

(C shell)
$ setenv GEMSTONE_SYS_CONF /Zuser2/devdata/system.conf

or (Bourne or Korn shell)
$ GEMSTONE_SYS_CONF=/user2/devdata/system.conf
$ export GEMSTONE_SYS_ CONF

Step 4. Start the Stone for the development repository, giving it the name
devserver63. GemStone will create log files with that server name as the prefix.

$ startstone devserver63

48 GemStone Systems, Inc. April 2008

Configuring the GemStone Server How to Operate a Duplicate Server / Warm Standby

Step 5. Start linked Topaz, then set the GemStone name to devserver63 and log in
as DataCurator:

% topaz -1

topaz> set gemstone devserver63
topaz> set username DataCurator
topaz> login

GemStone Password?

successful login

topaz 1>

At this point, you are logged in much as during the initial installation and you can
begin installing user accounts for developers. However, the repository is the one
in devdata. Any changes you commit to this repository will not affect
$GEMSTONE/data/extent0.dbf, and existing applications can use the latter
repository independently.

1.7 How to Operate a Duplicate Server / Warm Standby

Some customers may want to keep a duplicate of a production GemStone server
running almost in parallel as a “warm” standby. The duplicate continually runsin
restore mode, restoring each transaction log from the production server after the
log is closed. If anything goes wrong with the primary production server, the
warm standby can be brought into use very quickly.

This section tells how to set up the warm standby server and restore the logs. For
general information about restoring backups and transaction logs, see “How to Re-
store a GemStone Repository” on page 277. This discussion assumes you are famil-
iar with that procedure.

An important point to remember is that the transaction logs copied from the
primary server, called the archive logs here, must be kept separate from the
transaction logs created by the standby server. You can do that by using different
log directories or different file name prefixes. If transaction logs are being
replicated, the replicated logs also must be kept separate from those created by the
warm standby.

To operate a warm standby, the server must be running in full logging mode.

April 2008 GemStone Systems, Inc. 49

How to Operate a Duplicate Server / Warm Standby System Administration Guide for UNIX

Set up and run the warm standby

Step 1. Install the duplicate server. For fault tolerance, it’s best to do a complete
GemStone installation on a second node.

Step 2. Decide on a naming convention or location that you will use on the warm
standby to keep the archive logs (the logs from the primary Stone) separate
from those being created by the warm standby itself. For instance, if both
Stones use the default prefix of tranlog, you might copy tranlog123.dbf on
the production server to $6EMSTONE/data/prodtranlogl123.dbf onthe
warm standby server.

Step 3. Make a full backup of the primary server. (Instructions start on page 272.)
You’ll have to do this at least once, when you start this project; however,
regular backups will simplify matters when you need to synchronize the
primary and the standby systems.

Step 4. Restore the backup of the primary into the warm standby server, and leave
the standby system running in restore mode. (Instructions for restoring
backups start on page 277.).

Step 5. On the warm standby, tell the Stone where to find the archive logs by
sending the following message:

Repository>>setArchivelLogDirectories:arrayOfDirectorySpecs
tranlogPrefix:tranlogPrefixString
replicateDirectories:arrayOfReplicateDirSpecs
replicatePrefix:replicPrefixString

The arguments specify the directories (or raw partitions) to which the primary
system’s logs will be copied, and the log prefix they will have. For details, see
the method comments in the image.

The settings continue in effect until the Stone is shut down.
The following example uses the names from Step 2:

topaz 1> run

SystemRepository setArchivelLogDirectories:
#("$GEMSTONE/data”™)

tranlogPrefix: "prodtranlog*

replicateDirectories: #()

replicatePrefix: **

%

50

GemStone Systems, Inc. April 2008

Configuring the GemStone Server How to Operate a Duplicate Server / Warm Standby

Step 6. As each transaction log completes on the primary server, copy the log to
the location that the standby is using for archive logs, and replay the
transaction log using Repository>>restoreFromArchivelLogs. (More
detailed instructions start on page 286.)

If the primary system’s transaction logs are very large, they will be restored
less frequently, but take a longer time to restore. If you need to get the standby
system in operation quickly, this is a disadvantage. You may wish to limit the
size of your transaction logs as described in “Choosing the Log Location and
Size Limit” on page 32. When a transaction log grows to the specified limit,
GemsStone starts a new transaction log.

Alternately, you can force a new log on the primary server by sending
Repository>>startNewlLog. By running a script that starts a new log at
regular intervals on your primary system, you can ensure that the warm
standby is updated regularly regardless of the level of activity.

Continue repeating this step. You may find it necessary to shut down the
standby from time to time. Ensure that you shut down the stone using
stopstone. This does not affect the restore status, but you may need to update
the archive log directories (see step 5).

Activate the warm standby in case of failure in the primary
Step 1. Replay the primary’s latest transaction log on the standby system.

Step 2. Execute Repository>>commitRestore to terminate the restore
process and enable logins.

Step 3. Client applications will have to reconnect to the standby system, which
now becomes the primary system. Applications may have to perform their
own failure recovery code as necessary, as well.

NOTE
Design your applications so that, after detecting a failure, they can
determine which system is the new primary and reconnect correctly.

Step 4. Correct the problem on the failed system and restart it.

Depending on how much time has elapsed since the standby system became
the primary system, either make a full backup of the new primary system and
restore it on the system that failed, or replay the new primary system’s
transaction logs on the system that failed. Maintain that system in restore
mode as the new standby.

April 2008

GemStone Systems, Inc. 51

How to Operate a Duplicate Server / Warm Standby System Administration Guide for UNIX

Managing Page Reclamation in Warm Standbys

Indexing operations, migrations, markForCol lection, and certain other
operations can produce large numbers of pages with shadow objects. (For a
detailed explanation of shadow objects and related concepts, see Chapter 10,
“Managing Growth.”) Under ordinary system operation, these pages are
reclaimed in the background without precluding foreground operations.
However, when replaying transaction logs, the Stone can only reclaim these
shadowed pages in the foreground, which can slow operation unacceptably.

Using the method Repository>>restoreNoReclaimFromLog: restores
transaction logs more quickly, without performing reclaim; but these unreclaimed
pages restored into the standby cannot be reclaimed in the background, and will
cause excessive growth in the warm backup.

The Stone configuration parameter STN_RECOVERY_PAGE_RECLAIM_LIMIT
provides control over the amount of reclaim that is done. This limits the maximum
number of pages to reclaim for each transaction log record processed. The default
value of this parameters is 2000. A transaction log is composed of many transaction
log records, so using the default setting, 2000 pages are reclaimed many times
within each transaction log. By setting this parameter to a much lower value, less
reclaim is done, providing a compromise between standby growth and speed of
replaying transaction logs.

For finer control, you may execute the method
Repository>>restoreReclaimPages one or more times between replaying
each transaction log. This method also uses the setting for
STN_RECOVERY_PAGE_RECLAIM_LIMIT to determine how many shadow
pages to reclaim each time it is executed.

By using the method restoreNoReclaimFromLog: instead of
restoreFromlLog:, and executing restoreReclaimPages in a loop between
restoring transaction log, you can ensure that logs are restored as quickly as
possible and that page reclamation be managed efficiently.

52

GemStone Systems, Inc. April 2008

Chapter

) Configuring Gem
Session Processes

This chapter tells how to configure the GemStone session processes for your
application. For additional information about running session processes on a node
remote from the Stone repository monitor, refer also to Chapter 3.

2.1 Overview

A GemStone session involves six main components in a client-server relationship
(Figure 2.1):

= the user application,

= asession manager process (Gem), which acts as a server for a particular
application,

= the Stone repository monitor,
= the shared page cache monitor and cache,
= the Stone’s AIO page server, and

= the repository itself.

April 2008 GemStone Systems, Inc. 53

Overview System Administration Guide for UNIX

Figure 2.1 GemStone Session Elements

(Application)

Gem
Session Process

Repository
Monitor

AIO
Page Server

Repository

Shared Cache
Monitor

Cache

The Gem session process provides the bulk of the repository capabilities as seen by
the application. From the viewpoint of the application, the Gem is the object server:

= Itlogs in tothe repository through the Stone repository monitor, and it obtains
object locks, free object identifiers, and free pages from the repository monitor.

= It presents the application with a consistent view of the repository during a
transaction and tracks which objects the application accesses.

= |t executes Smalltalk methods within the repository.

= lItreads the repository as the application accesses objects, and (with the help of
the AIO page server) it updates the repository when the application
successfully commits a transaction.

Linked and RPC Applications

The Gem session process can be run as a separate process (as in Figure 2.1) or
integrated with the application into a single process, in which case the application
is called a linked application. When the Gem runs as a separate process, it responds
to Remote Procedure Calls (RPCs) from the application, in which case the
application is called an RPC application. Applications that use a separate Gem
process start that process automatically (from the user’s viewpoint) while logging
in to the repository.

54 GemStone Systems, Inc. April 2008

Configuring Gem Session Processes Overview

GemsStone provides both linked and RPC tools for repository administration.
GemStone also provides both types of libraries for application developers. RPC
applications start the Gem session process as part of connecting a user to the
repository.

NOTE
Whether an application is linked or RPC depends on which GemStone
library was loaded at run time. Either type of application can be used on
asingle node or across a network. Only one session can be linked, but the
application can have multiple RPC sessions. C programmers should use
an RPC version during development and debugging to protect Gem data
structures from possible corruption.

The Session Configuration File

At start-up time, each Gem session process looks for a configuration file, which by
default is the same system-wide configuration file sought by the repository
monitor when it starts. However, there are three important differences:

= The session configuration file is optional. If one is not found, the session
process uses system defaults.

= Allsession processes read those configuration options that begin with “GEM_"
and the few that are used by both Stones and Gems (currently DUMP_OPTIONS
and LOG_WARNINGS). Other settings that the Gem needs are obtained from
the repository monitor by network protocol and are the same for all sessions
logged in to that Stone.

= The first session process on a node remote from the Stone and extents uses the
shared page cache configuration options (SHR_), which determine the
configuration of the cache on that node.

Sometimes it’s useful for certain sessions to use a variant configuration.
Appendix A, “GemStone Configuration Options,” tells how to specify an alternate
configuration file and how to use supplementary files to adjust the system-wide
configuration for a specific session process. That appendix also describes each of
the configuration options.

April 2008 GemStone Systems, Inc. 55

How to Configure Gem Session Processes System Administration Guide for UNIX

2.2 How to Configure Gem Session Processes

Configuring a Gem session process involves the following steps:

1. Gather application specifics about the number of sessions that will be logged
in to the repository simultaneously from this node.

2. Plan the operating system resources that will be needed: memory and swap
(paging) space.

3. Set the Gem configuration options. If this node is remote from the repository
monitor, enable (or disable) a local GemStone shared page cache. Gem session
processes running on a server node always use the Stone’s shared page cache.

4. Set GemStone file permissions to allow session processes access while
providing adequate security.

Gathering Application Information

System resources needed for session processes primarily depend on the number of
sessions that will be logged in to a particular repository from this node. Remember
that in some applications each user can have more than one session logged in.

Planning Operating System Resources

GemStone session processes need adequate memory and swap space to run
efficiently. In addition, kernel parameters can limit the number of sessions that can
connect to the shared page cache.

Estimating Memory Needs
Two factors determine the memory needs for session processes:

= Thesize of the shared page cache on a node remote from the Stone and extents
will depend on the configuration of the Gem that starts the cache. (There is
only one cache on each node for a particular repository; session processes
running on the server node attach to the Stone repository monitor’s cache.)

< The first Gem session process on a hode ordinarily requires about 4 MB of
memory, of which 1.5 MB is for code that can be shared by other session
processes. Each additional session process requires about 2.5 MB. The
requirement is the same for Gems linked with an application. If you tune the
cache size for Gems (page 62), add any increase to the amount given here. This
memory is only for the session processes; for object server processes, see
Chapter 1, “Configuring the GemStone Server.”

56 GemStone Systems, Inc. April 2008

Configuring Gem Session Processes How to Configure Gem Session Processes

There are additional memory needs on the server for Gem session process running
on machines that are remote from the object server. For information, see “Estimat-
ing Memory Needs” on page 11.

Estimating Swap Space Needs

Swap (paging) space on machines remote from the Stones should follow the same
general guidelines given on page 12 for servers. If you want to determine the ad-
ditional swap space needed for GemStone session processes, use the memory re-
quirements derived in the preceding section, including space for the number of
sessions you expect. These figures will approximate the client’s needs and are in
addition to the swap requirement for the object server and non-GemsStone process-
€s.

Estimating File Descriptor Needs

When a Gem session process starts, it attempts to raise the file descriptor limit from
the default (soft) limit to the hard limit set by the operating system. GemBuilder
applications (both linked and RPC) and page servers do the same. Gem session
processes use file descriptors this way:

7 for stdin, stdout, stderr, and internal communication

2 for a connection between the Gem and an RPC application
1 for each local extent within a file system

2 for each local extent that is a raw partition

1 for each extent on a remote node

GemBuilder applications that start a large number of RPC Gems need a
correspondingly large number of file descriptors.

You can override the default behavior of raising the file descriptor limit to the hard
limit by setting the GEMSTONE_MAX_FD environment variable to a positive
integer. A lower limit may be desirable in some cases to reduce the amount of
virtual memory used by the process. A value of 0 disables attempts to raise the
default limit.

The value of GEMSTONE_MAX_FD in the environment of a NetLDI (Network
Long Distance Information) server is passed to its child processes.
Reviewing Kernel Tunable Parameters

The kernel parameter of primary relevance to GemStone session processes is the
maximum number of semaphores per semaphore id (typically semmsl ora
similar name, although it is not tunable under all operating systems). This

April 2008 GemStone Systems, Inc. 57

How to Configure Gem Session Processes System Administration Guide for UNIX

parameter limits the number of sessions than can connect to the shared page cache,
because each session uses one semaphore.

How you determine the existing limits depends on your operating system. If the
information is not readily available, proceed anyway. A later step shows how to
verify that the limits are adequate for the GemStone configuration you set up.

You can use the GemStone shmem utility described on page 18 to determine
whether the kernel configuration on a node remote from the Stone is adequate to
support the cache. Use arguments from the configuration file that will be read by
Gems running on that node.

To Set Ownership and Permissions for Session Processes

The primary consideration in setting file ownership permissions for client access
is to make sure the Gem session process can read and write both the extents and
the shared page cache.

0 The extents may be protected as read-write only by their owner (protection
600) if you use the setuid (S) bit for repository executables as recommended on
page 34. Otherwise, the extents must be writable by a group to which the
GemStone users belong (protection 660).

O The shared memory and semaphore resources used by GemStone are created
and owned by the user account under which the Stone repository monitor is
running and have the same group membership. Access is read-write for the
owner and group (the equivalent of file protection 660). You can inspect the
cache ownership and permissions by using the ipcs command. (These
permissions are not configurable by users.)

For a session to log in using the shared page cache, the UNIX user account of
the linked application or Gem session process must either be the same as that
of the Stone (such as the gsadmin account) or be one that belongs to the same
group as the Stone. The same requirement applies to page server processes,
which are discussed in Chapter 3, “Connecting Distributed Systems.”

If the setuid bit is set on repository executables as recommended in Table 1.3
on page 35, the Stone process and shared page cache will belong to the owner
you specify for those files (such as gsadmin).

What you need to do depends on these factors:
< whether the Gem session process is linked with the application or RPC,

« whether the Gem session process runs on the server or on a node remote from
the Stone, and

58 GemStone Systems, Inc. April 2008

Configuring Gem Session Processes How to Configure Gem Session Processes

< whether the server uses setuid bit and protection mode 600 for the extents (as
recommended on page 34) or uses the alternative of group write permission.

To Set Access for Linked Applications

For linked applications on the server, we recommend you try using the setuid bit on
the application’s executable file. Have the file owned by gsadmin as it is defined on
page 35. This works well for topaz -I. The instal lgs script offers to set the file
ownership and permissions for you. To do it manually, do this while logged in as
root:

cd $GEMSTONE/bin
chmod u+s topaz
chown gsadmin topaz

You may prefer not to use the setuid bit with linked applications that do not
distinguish between real and effective user IDs. GemStone’s Topaz executable
performs repository reads and writes as the effective user (the account that owns
the executable’s file), but performs other reads and writes as the real user (the one
who invoked it). Linked applications that do not make this distinction, such as a
third-party Smalltalk used with GemBuilder, are likely to perform all 170 as the
effective user, or gsadmin. If this result is unsatisfactory, remove the S bit on that
executable and add group write permission to the extents.

To Set Access for All Other Applications

All applications except linked applications on the server always use a GemStone
NetLDI service to start a separate Gem session process or, in some cases, a page
server. For these sessions, we recommend that the Gem session process and page
server always be owned by (run as) the gsadmin account.That arrangement ensures
that the Gem will be able to read and write both the extents and the shared page
cache. The ownership and protection of the application executables themselves is
not a factor.

To Set Access to Other Files

GemsStone creates log files and other special files for session processes in several
locations, which are described below. In a multi-user environment, the protection
of these resources must be such that the appropriate file can be created or updated
in response to actions by several users.

$HOME GemStone ordinarily creates log files for spawned processes
(such as RPC Gem session processes and page servers) in the
home directory of the user or the NetLDI captive account. In
situations where the home directory cannot be writable, the

April 2008

GemStone Systems, Inc. 59

How to Access the Configuration at Run Time System Administration Guide for UNIX

environment variable GEMSTONE_DEFAULT_NRS can be used
to specify an alternative location; see “To Set a Default NRS”
on page 81.

/opt/gemstone All users should have read/write/execute access to the
directories Zopt/gemstone/log and
/opt/gemstone/locks on each host. (For compatibility
with previous releases, these directories can be in
/usr/gemstone.) NetLDIs create their own log files in that
log directory. GemStone processes that have a name for each
instance (currently the Stone repository monitor, the shared
page cache monitor, and the NetLDI) create lock files in the
locks directory.

2.3 How to Access the Configuration at Run Time

GemStone provides methods in class System that let you examine, and in certain
cases modify, the session configuration parameters at run time.

To Access Current Settings at Run Time

Class methods in category Configuration File Access let you examine the
configuration of your current Gem session process. There are three access methods
for session processes:

gemConfigurationReport
returns a SymbolDictionary whose keys are the names of
configuration file parameters, and whose values are the current
settings of those parameters in the current session’s Gem process.

gemConfigurationAt: aName
returns the value of the specified configuration parameter from the
current session, or returns ni I if that parameter is not applicable to a
session process.

configurationAt: aName
returns the value of the specified configuration parameter, giving
preference to the current session process if the parameter applies to a
Gem.

60 GemStone Systems, Inc. April 2008

Configuring Gem Session Processes How to Access the Configuration at Run Time

To Change Settings at Run Time

The class method System class >> configurationAt: aName put: aValue
in category Runtime Configuration Access lets you change the value of the internal
run-time parameters in Table 2.1 if you have the appropriate privileges. Four of
these parameters are internal only; that is, they do not have counterparts in the
configuration file. The parameters that can be changed are those for which
ConfigurationParameterDict: aName returns a negative Smallinteger. All
changeable parameters require that aValue be a Smalllnteger.

CAUTION
Configuration parameters should not be changed unless there is a clear
reason for doing so, because incorrect settings can have serious adverse
effects on GemStone performance.

Table 2.1 Session Configuration Parameters Changeable at Run Time

Configuration File Option Internal Parameter
GEM_FREE_FRAME_LIMIT #GemFreeFrameLimit
GEM_IO_LIMIT #GemlOLimit
GEM_NATIVE_CODE_MAX #GemNativeCodeMax
GEM_NATIVE_CODE_THRESHOLD #GemNativeCodeThreshold
GEM_PGSVR_COMPRESS_PAGE_TRANSFERS | #GemPgsvrCompressPageTransfers
GEM_TEMPOBJ_CACHE_SIZE #GemTempObjCacheSize
(none) #NotConnectedDelta
(none) #NotConnectedThreshold
The following example first obtains the value of the key #GemTempObjCacheSize.
Since that is a negative Smalllnteger, the parameter is one that can be changed at
run time (this one can be raised, but attempts to lower it generate an error):
topaz 1> run
ConfigurationParameterDict at: #GemTempObjCacheSize
%
-28
topaz 1> run
System configurationAt:#GemTempObjCacheSize put: 1000
%
1000
April 2008 GemStone Systems, Inc. 61

How to Tune Session Performance System Administration Guide for UNIX

For more information about the parameters that can be changed at run time, see
Appendix A, “GemStone Configuration Options.”

2.4 How to Tune Session Performance

There are a number of configuration options by which you can tune your Gem
session processes. These options can help make better use of the Gem’s internal
caches, reduce swapping, and control disk activity limiting the 1/0 rate for certain
sessions.

To Tune the Temporary Object Space

Increase GEM_TEMPOBJ_CACHE_SIZE for applications that create a large number
of temporary objects. Examples are applications making heavy use of the reduced
conflict classes or sessions performing a bulk load. It is important to provide
sufficient temporary object space because overflows are written into the session
process’s private page cache, which is discussed just ahead. Such overflows are
costly because they force the use of page-size units for allocating and reclaiming
storage space.

You will probably need to experiment somewhat before you determine the
optimum size of the temporary object space for an application. In general, keep the
size somewhere between 400 KB and 3 MB. Large applications typically require a
temporary object space of 1 to 1.5 MB. You may find it helpful to examine the cache
statistics NotConnectedObjsSetSize and MakeRoomInOldSpaceCount; see “To
Monitor Cache Statistics” on page 226.

As shown in Table 2.1, the temporary object space can be increased at run time by
setting the parameter #GemTempObjCacheSize, although this change should only
be made immediately after logging in.

Any increase in GEM_TEMPOBJ_CACHE_SIZE translates directly into increased
Mmemory usage per user.

To Tune the Private Page Cache

Increase the GEM_PRIVATE_PAGE_CACHE_KB setting for Gems that modify a large
number of objects or perform repository maintenance operations. This
configuration option controls a private page cache that each session process uses to
store objects created by an application. While the temporary object space (above)
reads and writes memory on a per-object basis, the private page cache reads or

62

GemStone Systems, Inc. April 2008

Configuring Gem Session Processes How to Tune Session Performance

writes a page (8 KB) at a time. When you commit objects created by an application,
they move first from temporary object space to the session’s private page cache.

If temporary object space overflows, objects are written into the session’s private
page cache. Although some temporary objects that overflow can be reclaimed in
memory as part of the Gem’s notConnectedSet (next), others may be reclaimed
only after the page is written to the disk. As a result, overflowing temporary object
space can use storage inefficiently, as well as waste the time required to reclaim
that storage.

If you need to increase either temporary object space or the session’s private page
cache, increase the temporary object space first. Because it deals with objects one
at a time instead of in page-size increments, and because the object’s storage can
be reclaimed more efficiently, temporary object space can deal more effectively
with temporary space requirements.

The sum of the temporary object space and the private page cache needs to be
larger than the default values for these caches only if a typical transaction commits
more data than their combined size.

To Limit the Session I/O Rate

It may be desirable in some cases to limit the 1/0 rate of a particular Gem session
process to reduce its interference with other GemsStone activity. Two examples are
administrative sessions doing Repository>>markForCollection or

ful IBackupTo:, which may involve considerable disk I1/0 over an extended
period.

The 1/0 rate can be limited either by changing the configuration file read by a
particular session process when it starts or by changing the corresponding internal
parameter at run time. (You can cause a session process to read a particular
configuration file by setting the GEMSTONE_EXE_ CONF environmental variable;
see “Search for an Executable Configuration File” on page 390.)

The following example sets an 1/0 limit of 10 per second in the configuration file.
GEM_IO_LIMIT = 10;

The default limit of 5000 1/0s per second essentially makes the rate limited only
by performance of the underlying file system and disk partitions.

To change the limit at run time, use the internal parameter #GemlOLimit for the
current session. For general information about such changes, see “To Change
Settings at Run Time” on page 61.

April 2008

GemStone Systems, Inc. 63

How to Tune Session Performance System Administration Guide for UNIX

The UserGlobals for GcUser has an association with the same key, #GemlOLimit.
Its value is monitored and used as the GecGem 170 limit if the value is a
Smalllnteger greater than 1. Any user with privilege to write the GcUser’s segment
can update this parameter to control the GcGem process.

Changing the I/O Limit During a Long Operation
Privileges required: SystemControl.

NOTE
The following procedure is intended for experienced GemStone users and
should not be necessary under ordinary circumstances.

Changes to #Gem10Limit may go unnoticed while the Gem is executing a long-
running operation, such as markForCol lection, ful IBackupTo:, and
objectAudit. To change the I/0 limit during such operations, you must log in
to a different session and communicate with the Gem by way of its shared page
cache slot. Because the sessions must communicate through a single shared page
cache, their Gems must run on the same node.

Step 1. Determine the shared page cache slot being used by the Gem for which
you want to change the limit. You can find the slot number by finding the other
Gem’s operating system processld and then invoking System
class>>cacheStatistics: aSlot for successive slots until you obtain a
match in element 2, which is the processld for that slot.

Step 2. Send the message changeCacheSlotloLimit:aSlot to: aValue to
System. For example, to change the 1/0 limit to 100 per second for the Gem
attached to cache slot 8:

topaz 1> run
System changeCacheSlotloLimit: 8 to: 100
%

For information about the cache statistic itself, see “MilliSecPerloSample
(Stone)” on page 252.

64 GemStone Systems, Inc. April 2008

Configuring Gem Session Processes How to Install a Custom Gem

To Reduce Excessive Swapping of Sleeping Sessions

Excessive swapping can be caused by the need to awaken (and swap in) sleeping
sessions that are outside of a transaction. The Stone takes this action (by sending a
Signaled Abort message) when it runs out of space in the shared page cache to store
the old commit records on which the sleeping sessions are based. Each such ses-
sion must awaken long enough to update its view of the repository.

It may be possible to reduce this type of swapping by changing the server config-
uration. See the discussion and procedure on page 43.

2.5 How to Install a Custom Gem

The GemBuilder for C manual explains how to create a custorn Gem session
executable containing your own C functions to be called from Smalltalk. One way
to make this custom Gem available to all users is to perform the following steps as
system administrator:

Step 1. Copy the shell scripts gemnetobject and gemnetobjcsh from
$GEMSTONE/sys to your working directory. Those shell scripts are used to
start Gem session processes under the Bourne or the Korn shell and the C shell,
respectively. You will modify these scripts to start your custom Gem
executable instead of the standard one.

Step 2. In your copy of gemnetobject, find the section labeled User-
definable symbols. In that section, replace gem in the line

gemname=""gem""
with the name of the new Gem executable. For example:
gemname=""MyGem"

Step 3. Repeat the previous step for gemnetobjcsh.

Step 4. Rename your modified copies of the shell scripts gemnetobject and
gemnetobjcsh so that they have distinct file names. For example:

% mv gemnetobject MyGemnetObject
% mv gemnetobjcsh MyGemnetObjcsh

April 2008 GemStone Systems, Inc. 65

How to Install a Custom Gem System Administration Guide for UNIX

Step 5. Copy the new shell scripts to $SGEMSTONE/sys. Make sure that all
GemsStone users have read and execute (r-x) permission for those scripts. For
example:

-r-xr-xr-x 1 root 912 Feb 24 20:22 MyGemnetObject
-r-xr-xr-x 1 root 863 Feb 24 20:22 MyGemnetObjcsh

If necessary, change the permissions:

% chmod 555 MyGemnetObject
% chmod 555 MyGemnetObjcsh

Step 6. Add entries for the new shell scripts to the services database,
$GEMSTONE/sys/services.dat. A NetLDI checks that file to translate the
name of a service to a command it can execute. For example:

MyGemnetObject $GEMSTONE/sys/MyGemnetObject
MyGemnetObjcsh $GEMSTONE/sys/MyGemnetObjcsh

Step 7. Copy the new Gem executable to the GemStone system directory. For
example:

% cp MyGem $GEMSTONE/sys

Step 8. Make sure that all GemStone users have read and execute (r-x) permission
for the new Gem executable.

The custom Gem executable is now available for shared use.

Because gemnetobject executes the user’s .profile, some users of the Korn
shell may encounter errors if their . profile contains commands that are not
POSIX compliant. Such users should place the non-compliant ksh commands
within a conditional like that shown on page 141.

66 GemStone Systems, Inc. April 2008

Chapter

3 Connecting
Distributed Systems

This chapter tells how to set up GemsStone in a distributed environment:

= Overview (page 68) — An introduction to the GemStone processes and
network objects that facilitate distributed GemStone systems.

= How to Arrange Network Security (page 76) — Three ways to provide access to
GemStone processes on other nodes.

= How to Use Network Resource Strings (page 81) — How to specify where
distributed GemStone resources are located.

= How to Set Up a Remote Session (page 83) — Step-by-step examples for setting
up typical distributed client-server configurations. It also contains
troubleshooting tips.

April 2008 GemStone Systems, Inc. 67

Overview System Administration Guide for UNIX

3.1 Overview

A properly configured network system is nearly transparent to GemStone users,
but it requires additional steps by the system administrator. Users must be given
access to all the workstations that will run their GemStone processes. Pointers to
network services must be set up, and file and process specifications must include
the node name in addition to the file name and path. Because processes are
running on different nodes, the log files are spread throughout the network, and
troubleshooting may become more complicated.

The nodes in your system can be any combination of GemStone-supported
platforms, as long as they are connected by means of TCP/IP. Each remote
GemStone connection consists of two TCP/IP connections to compensate for out-
of-band problems in TCP/IP. Although the Sun Network File System (NFS) can be
used to share executables, libraries, and configuration files, they are not required
and are never used to share repository files. Instead, GemStone extends the
capabilities of TCP/IP by adding special network servers and page servers, which
are described later.

Figure 3.1 shows two typical distributed configurations in which an application on
a remote (client) node is logged in to a repository and Stone repository monitor
running on a server node.

In the configuration shown at the top of Figure 3.1, an application communicates
with a Gem session process on the server node by way of RPC calls. This
configuration lets the Gem execute Smalltalk code in the repository without first
bringing complex objects across the network. The Gem can access the shared page
cache that was started by the Stone repository monitor. For instructions on setting
up this configuration, see “To Run the Gem Session Process on the Stone’s Node”
on page 89.

At the bottom of Figure 3.1, the application and the Gem are linked in a single
process that runs on the client node. This configuration avoids the overhead of
RPC calls, but in some applications it may increase network traffic substantially if
large objects must be brought across the network. Ordinarily, the Stone repository
monitor starts a shared page cache on the client node when the first user from that
node logs in to the repository. The Stone and the Gem session process each use a
GemStone page server to access data pages residing on the other node. For
instructions on setting up this configuration, see “To Run a Linked Application on
a Remote Node” on page 86.

68 GemStone Systems, Inc. April 2008

Connecting Distributed Systems Overview

Figure 3.1 Typical Distributed Configurations

A. Gem Session Process Runs on Server Node

Client Node

Server Node

NetLDI

RPC
Application

B. Gem Session Process Runs on Client Node

Stone

Shared Page

Monitor Repository

IR0

Client Node

NetLDI

Server Node

NetLDI

Linked
Application

Page Server

Shared Page
Monitor

Cache

-q

(e

o)

Shared Page
Monitor Repository
N~

Cache

April 2008

GemStone Systems, Inc.

Overview System Administration Guide for UNIX

GemStone NetLDls

The GemStone network server process is called NetLDI (Network Long Distance
Information). The NetLDIs are the glue holding a distributed GemStone system
together. Each NetLDI reports the location of GemStone services on its node to
remote processes that must connect to those services. It also spawns other
GemsStone processes on request.

In a distributed system, each node where a Stone repository monitor, Gem session
process, or linked application runs must have its own NetLDI. (That is, you do not
need a NetLDI on nodes where only the RPC applications run.)

You start a NetLDI directly by invoking the startnetldi command. The NetLDl, in
turn, starts Gem session processes and page servers on demand. (See the following
section for more about page servers.) These child processes belong by default to
the user account of the process requesting the service—sometimes that account is
a user logging in to GemsStone, other times it is the account that started the
repository monitor.

Because most operating systems only let the root account start processes that will
be owned by other accounts, a NetLDI ordinarily must run as root if it is to serve
more than one user. This ownership can be accomplished by setting the owner and
S bit for $GEMSTONE/sys/netldid or by starting the NetLDI while logged in as
root. For information about the S bit, see “To Set File Permissions for the Server”

on page 34. For the default installation, the file permissions and ownership for the
NetLDI executable should look like this:

-r-sr-xr-x 1 root gsadmin 516096 Jul 29 22:01 netldid

To map a GemsStone service name (such as a Stone name) to a network port
number, GemStone checks for a lock file named serviceName. . LCK, in the
directory Zopt/gemstone/locks. Every Stone, NetLDI, and shared page cache
monitor creates one of these files when it starts. If there is no lock file and the
service is a NetLDI, GemStone then checks for an entry in /etc/services, the
TCP/IP network database. That file must contain an entry giving the port number
for the NetLDI.

Captive Account Mode

GemsStone administrators can force child processes to belong to a single,
designated account by starting a NetLDI in captive account mode (startnetldi
-aname). All processes created by the NetLDI will belong to account name, which
provides additional security. This mode requires that the NetLDI run either as root
or as name. The effect is much like setting the S bits on executables, but it only
affects ownership of processes started by the NetLDlI, not linked applications

70 GemStone Systems, Inc. April 2008

Connecting Distributed Systems Overview

invoked directly by the user. Because this mode by itself does not change the
authentication requirement, on most systems the NetLDI must either run as root
so that it can authenticate other users or run in guest mode, which suspends
authentication. For more information, see “Alternative: Guest Mode With a
Captive Account” on page 80.

The captive account can be an ordinary user account or one created for that
purpose, such as a GemStone administrative account. Child processes will read the
shell initialization file (.cshrc or .profile) from the captive account, and log
files by default will be in the captive account’s home directory. Although captive
accounts provide access to the repository, they do not affect network access—if
authentication is required, it is based on the identity of the real user who requests
the service.

NetLDI Names

The default name of the NetLDI process is netldi63. During installation, this
name is added to the Zetc/services file and assigned a port number. You can
change the name by using startnetldi netLdiName. The name may contain
digits, but it must not be entirely numeric. If you use a different name, also do the
following:

< Add the new name and a port number to Zetc/services. If you have a
distributed GemStone system, make the same entry on each node.

= Set#netldi to netLdiName in the GEMSTONE_NRS_ALL environment variable
for each user. For example,

(C shell)
% setenv GEMSTONE_NRS ALL \#netldi :netLdiName

or (Bourne or Korn shell)
$ GEMSTONE_NRS_ALL=#netldi :netLdiName
$ export GEMSTONE_NRS_ALL

For more information about GEMSTONE_NRS_ALL, see “To Set a Default NRS”
on page 81.

GemStone Page Servers

Remote GemStone repository 170 is carried out by page server processes. The
name of the executable file is pgsvrmain. For each process that connects to a
repository extent across the network (that is, for the repository monitor and each
session process), the NetLDI service spawns a pgsvrmain on the node where the

April 2008

GemStone Systems, Inc. 71

Overview

System Administration Guide for UNIX

extent resides. GemsStone never uses NFS (network file system) for repository
access.

The Stone repository monitor uses a page server to perform asynchronous 170 to
the repository. This page server is created at start up and is present even if all
GemStone sessions are local.

You can also start additional AlIO page servers as well as page servers dedicated
to a single task—adding free frames to the free frame list. For details and
instructions, see “Adding Page Servers” on page 45.

If you have many different extents on different spindles, starting more page
servers can improve performance.

GemStone Network Objects

GemsStone uses the concept of network object to encompass the services that a
NetLDI can provide to a client. In addition to the page server, other network
objects include the following services requested by the Stone at startup: the shared
page cache monitor, page manager, and the garbage collection (GcGem) session.

The network object most visible to users is the Gem session process requested by
an RPC application. This object can be gemnetobject, gemnetobjcsh, or the
name of a custom Gem. The request can be sent to the NetLDI on the same node to
start a local session process, or (by using a network resource string) the request can
be sent to a NetLDI on another node to start a process there.

The NetLDI first tries to map the requested object to the path of an executable by
looking for an entry in $SGEMSTONE/sys/services.dat. Thereare two entries
for the standard Gem session process:

gemnetobject $GEMSTONE/sys/gemnetobject
gemnetobjcsh $GEMSTONE/sys/gemnetobjcsh

For example, when you enter “gemnetobject” as a session login parameter (such as
for GemNetld in Topaz), the NetLDI maps the request to the script
$GEMSTONE/bin/gemnetobject. Similarly, an object name can be entered
while setting up a GemBuilder session (as Name of Gem Service) or other
application. Application programmers provide the name as a parameter to
GeciSetNet().

Notice that GemStone provides two services with similar names, gemnetobject
and gemnetobjcsh. The former is a Bourne shell script, and the latter is a C shell
script. Each script tries to read the user’s shell initialization file (.profile or

-cshrc). The initialization file makes a difference principally with methods such

72

GemStone Systems, Inc. April 2008

Connecting Distributed Systems Overview

as System class>>performOnServer :, which can take environment
variables as arguments.

If your application uses a custorn Gem executable, you can edit services.dat to
include the appropriate mapping. For the procedure, see “How to Install a Custom
Gem” on page 65.

If the NetLDI does not find the requested object in services.dat, it searches for
an executable with that name in the user’s $HOME directory. If you have a private
Gem executable, place the executable in SHOME and then enter its name in place
of gemnetobject during a GemStone login. Because of the search order, the private
name must not be the same as that of an object in services.dat. The name must
be the name of a file in $HOME, not a path name.

April 2008

GemStone Systems, Inc. 73

Overview System Administration Guide for UNIX

Shared Page Cache in Distributed Systems

Gem session processes on a client node create a remote shared page cache, as
shown in Figure 3.2. When the remote session logs in to the repository, the Stone
repository monitor uses a NetLDI and page server (pgsvrmain) on the client node
to start a monitor process, and that monitor uses the NetL DI to create a local shared
page cache. When the remote Gem wants to access a page in the repository, it first
checks the shared page cache on the client node. If the page is not found, the Gem
uses a pgsvrmain on the server node, checking in the shared cache on that node
and then, if necessary, reading the page from the disk.

Figure 3.2 Shared Page Cache with Remote Gem

Server Node Client Node
NetLDI NetLDI

pgsvr

e e e e e e e e e = =

“{ monitor)

Shared Page

Cache
Shared Page
Cache
—— Shared Memory R/W
Data- — Disk I/O
base

74 GemStone Systems, Inc. April 2008

Connecting Distributed Systems Overview

Distributed Systems over a WAN

When Gem processes are distributed over a Wide Area Network (WAN), the
distance between the Gem and Stone can slow down communication and
negatively impact performance.

If a distributed system includes Gems that are running on more than one machine
far from the stone, all the Gems that are physically close to each other relative to
the WAN topology should use a mid-level cache close to those gems. To set up
mid-level caches, see “Using Mid-Level Caches” on page 19.

The Gem configuration parameter

GEM_PGSVR_COMPRESS PAGE_TRANSFERS configures compression of page
transfers between a Gem and its pgsvr process on the Stone's machine, and
between the Gem's pgsvr on a mid-level cache and the Gem's pgsvr on the Stone's
machine. Page transfers between a gem and a pgsvr on a mid-level cache are not
compressed, since it is assumed that mid-level cache is on a node close to the gem
process.

To further reduce the number of round trips to the stone, a Gem can be
configured to get more free pages from Stone each time it needs free pages, using
the configuration parameter GEM_FREE_PAGEIDS _CACHE.

Disrupted Communications

Several incidents can disrupt communications between the GemStone server and
its clients in a distributed configuration. Examples include node crashes and loss
of the communications channel itself.

GemStone ordinarily depends on the network protocol keepalive option to detect
that a remote process no longer exists because of an unexpected event. The
keepalive interval is set globally by the operating system, typically at two hours.
When that interval expires, the GemStone process tries to obtain a response from
its partner. The parameters governing these attempts also are set by the operating
system, with up to 10 attempts in 15 minutes being typical. If no response is
received, the local GemStone process acts as if its partner was terminated
abnormally.

Your operating system documentation contains information about the TCP
keepalive option.

NOTE
Changes to this option on a given node affect all network
communications on that node.

April 2008

GemStone Systems, Inc. 75

How to Arrange Network Security

System Administration Guide for UNIX

The commands are:

Solaris (Sun):

/usr/sbin/ndd -set /dev/tcp tcp_keepalive_interval value

AlX:

/etc/no -o tcp_keepidle=value

Linux:

/sbin/sysctl -w net.ipv4.tcp_keepalive_time = <value> (oradd
this entry to the Zetc/sysctl .conf file)

3.2 How to Arrange Network Security

The system administrator can set the GemStone authentication requirement to one
of three levels:

In the default NetLDI mode, authentication is required each time a NetLDI
attempts to start certain processes for a client, even if that process is to run on
the node where the user is logged in. These situations always require
authentication:

= starting an RPC Gem session process, even on the same node,

= starting a Stone repository monitor when an extent or transaction log
resides on a node remote from the Stone,

= creating or restoring a GemStone backup using a device on a node remote
from the Gem performing the operation, and

= using copydbf between nodes.

Once a Stone or Gem is running, the NetLDI treats it as a trusted client and
starts the page servers needed by a remote login without authentication.
Simple network information requests, such as a request to look up a port
number, also do not require authentication.

startnetldi -s starts the NetLDI in secure mode. All accesses are authenticated,
including simple requests to look up a server name. This mode affects the
waitstone command and such user actions as connecting a session process to
a remote Stone (a NetLDI is asked to look up the Stone’s address).

NOTE
Secure mode requires authentication before a Gem or Stone can start a
page server to access an extent or shared page cache on another node.

76

GemStone Systems, Inc. April 2008

Connecting Distributed Systems

How to Arrange Network Security

Under this mode, the account that starts the Stone process may need an
entry in the account’s .netrc file for each node in the GemStone system,
and GemsStone user accounts may need a .netrc entry for each node on

which the extents are located.

= startnetldi -g starts the NetLDI in guest mode. No accesses are authenticated.
When it is used by itself, guest mode lets the user who started the NetLDI also
start other GemStone processes without typing passwords or creating . netrc
files. Because guest mode is not permitted if the NetLDI will run as root, guest
mode usually is combined with captive account mode (page 70). Table 3.1
shows how guest mode and captive account mode affect NetLDI operation.

Table 3.1 Effect of NetLDI Guest Mode and Captive Account Options
Owner of
NetLDI Passwords | Spawned Owner of Which Accounts Can
Options Required Processes NetLDI Process Start Processes
Yes, for Ordinary user Owner of NetLDI
RPC Gem) Root Any user
(none) or copydbf | Client’s account
between
nodes
Yes, for Ordinary user Owner of NetLDI
RPC Gem Account name (name)
-aname or copydbf | (must start the Root Any user
between NetLDI)
nodes
. Ordinary user Owner of NetLDI
-g No Client’s account
Root—not allowed
Account name Ordinary user Any user
-aname -g | No (must start the (name)
NetLDI) Root—not allowed

For a complete list of the options to startnetldi, see the command description on

page 432.

The following topics describe three ways of setting up authentication to serve
multiple users:

= password authentication (the default) with the NetLDI running as root, and

= guest mode combined with a captive account.

April 2008

GemStone Systems, Inc.

77

How to Arrange Network Security System Administration Guide for UNIX

Default:

Examples later in this chapter include procedures for specific configurations (see
“Configuration Examples” on page 85).

Password Authentication

The GemStone default is to use a system login name and password to authenticate
network access. There are several ways for the user to provide this information:

= create a .netrc file containing the name of the other node, the login name,
and the password,

= enter the login name and password through the application’s user interface,
such as the HostUserName and HostPassword parameters in Topaz, or

= use the NRS authorization modifier #auth:loginName@password as part of a
process name or file name.

If the user does not provide the login name and password explicitly, the
application or GemStone executable tries to read them from a .netrc file in the
user’s home directory.

NOTE
Authentication is always done using the “real” user id, not the effective
user id as set by the S bit on GemStone executables.

The NetLDI providing the service verifies the password against the entry in the
password file (or Network Information Service). Under operating systems that
support shadow password files, the NetLDI first checks the shadow file; if it finds
an entry, it uses that entry in preference to the entry in /etc/passwd.

For the default installation, the file permissions and ownership for the NetLDI
executable should look like this:

-r-sr-xr-x 1 root gsadmin 516096 Jul 29 22:01 netldi

Using a .netrc File

Create a .netrc file in the home directory of each user who will be doing any of
the following:

« running an RPC Gem session process,

« starting a Stone repository monitor for which an extent resides on a node
remote from Stone,

« creating or restoring a GemsStone backup using a device on a node remote
from the Gem performing the operation, or

78

GemStone Systems, Inc. April 2008

Connecting Distributed Systems How to Arrange Network Security

< running copydbf between nodes.

If the user has a home directory on more than one node, the easiest way is to make
a file containing an entry for each node and install a copy in all of the home
directories. The file must contain the login information for each node where that
user will need an RPC Gem or a page server.

GemsStone supports the basic . netrc optionsof node, login, andpassword
(which must appear in that order). The .netrc file should contain one line like
the following for each node:

machine nodeName login systemLogin password userPassword

NOTE
The node name in the .netrc file must exactly match the name as it is
listed in DBF_EXTENT_NAMES or as provided to an application as a
login parameter. In particular, any domain qualification must be the
same.

Because the . netrc contains hard-coded passwords, it should be protected in
such a way as to be readable only by its owner.

Using the Application Interface

Your application’s login interface may let you specify a node login name and
password for the node on which you will be running an RPC Gem session process.
For example, Topaz lets you set these as variables:

topaz> set hostusername yourlLogin
topaz> set hostpassword yourPassword

GemBuilder provides similar fields in its login dialog: Host username and Host
password.

Using an NRS #auth Modifier

A final way is to provide the name and password in NRS syntax as part of the
name of a process that NetLDI is to start. Ordinarily, an application program
provides the name and password using information obtained from the user. For
example, if you set the Topaz login parameters HostUserName and HostPassword,
the application puts them in an NRS like the following:

" I'tcp@Server#auth - HostUserName@HostPassword 'gemnetobject”

The GemStone C interface provides similar capability to application programmers.
For further information, refer to calls described in the GemBuilder for C manual.

April 2008

GemStone Systems, Inc. 79

How to Arrange Network Security System Administration Guide for UNIX

Although it is less convenient for ordinary use, administrators and programmers
may find it helpful in testing to enter the authorization modifier directly using the
Topaz GemNetld parameter. For example:

topaz> set gemnetid !@Server#auth:name@password!gemnetobject

Alternative: Guest Mode With a Captive Account

The NetLDI guest mode can best be combined with captive account mode

(page 70) in which asingle, designated account owns all processes spawned by the
NetLDI. The result serves multiple users with the convenience of guest mode and
with improved security because the child processes no longer belong to accounts
of individual users who request services.

The principal advantage of this combination is that the NetLDI can spawn
processes on behalf of multiple users without being run as root. To make this
capability possible, the captive account must own the netldi process. Change
the file permissions and ownership for the NetLDI executable to remove the S bit:

-r-xr-xr-x 1 gsadmin gsadmin 516096 Jul 29 22:01 netldi

A disadvantage of the captive account for some applications is that the Gem
session process will perform all 1/0 as that account, not as the account running the
application — all file-ins, file-outs, and System class>>performOnServer:.

The captive account mode differs from the setuid method described on page 34 in
that captive account mode affects all services started by the NetLDl, including any
ad hoc processes, which are processes started from the user’s home directory. (The
NetLDI looks in the user’s home directory if it cannot find a service listed in
$GEMSTONE/sys/services.dat.) If you prefer, such ad hoc services can be
prohibited by specifying the -n option when starting the NetLDI.

If the combination of guest and captive account modes fits your needs, follow this
configuration procedure:

Step 1. Create a UNIX account to own the GemStone distribution tree and serve
as the captive account. We will refer to this account as gsadmin.

Step 2. Make gsadmin the owner of the tree, and set the setuid bit for any linked
GemStone executables that run on the server node. Make the repository
extents accessible only by gsadmin (mode 600). Instructions are given under
“To Set File Permissions for the Server” on page 34.

80

GemStone Systems, Inc. April 2008

Connecting Distributed Systems How to Use Network Resource Strings

Step 3. Make sure gsadmin has execute permission for
$GEMSTONE/sys/netldid. The setgid bit should NOT be set on the
netldid executable. For instance:

-r-xr-xr-x 1 gsadmin 516096 Jul 29 22:01 netldid

Step 4. Log in as the captive account (such as gsadmin), then start the NetLDI in
guest mode and captive account mode, and perhaps disallow ad hoc processes
(the -n switch). For instance:

% startnetldi -g -a gsadmin -n

3.3 How to Use Network Resource Strings

Once you have chosen the client and server nodes, network resource strings (NRS)
allow you to specify the location of each part of the GemStone system. Use an NRS
on a network system where you would use a process or file name on a single-node
system. For example, suppose you want to know whether a Stone is running. If the
Stone is on the local node, use this command:

% waitstone gemStoneName -1
If the Stone is on a remote node, use a command like this instead:

(C shell)
% waitstone \!@oboe\!gemStoneName -1

or (Bourne or Korn shell)
$ waitstone !@oboe!gemStoneName -1

where oboe is the Stone’s node. You can also use an Internet address in “dot” form,
such as 120.0.0.4, to identify the remote node. Note that each “!” must be
preceded by a backslash (\) when your command will be processed by the C shell.

The list of command line GemStone commands in Appendix B, “GemStone Utility
Commands,” tells which options of each command can be specified as an NRS.
Besides location, an NRS can describe the network resource type so GemStone can
more accurately interpret the command line. Sometimes an NRS can also include
your authorization to use that resource. See Appendix C, “Network Resource
String Syntax,” for more information.

To Set a Default NRS

You can set a default NRS header (the part between “! ... I””) by setting the
environment variable GEMSTONE_NRS_ALL. This variable determines which

April 2008 GemStone Systems, Inc. 81

How to Use Network Resource Strings System Administration Guide for UNIX

modifiers GemStone will use by default in each NRS it processes on your behalf.
For instance, you can cause all Gem session process logs to be created with a
specific name in a specific directory.

« |f you set GEMSTONE_NRS_ALL before starting a NetLDI, which is a system-
wide service, that setting is passed to all its children and becomes the default
for all users of that service.

« |Ifyou set GEMSTONE_NRS_ALL before starting a Stone, an application, or a
utility (such as copydbf), that setting applies only to your own processes and
does not affect other users.

Because these settings are defaults, they take effect only if an explicit setting is not
provided for the same modifier in a specific request.

Use the #dir modifier to set the current (working) directory for NetLDI child
processes, such as gemnetobject. Without this setting, the default is the user’s
home directory. If the directory specified does not exist or is not writable at run
time, an error is generated. For example:

(C shell)
% setenv GEMSTONE_NRS ALL #dir:/user2/apps/logs

or (Bourne or Korn shell)
$ GEMSTONE_NRS_ALL=#dir:/user2/apps/logs
$ export GEMSTONE_NRS_ALL

For further information about the modifiers and templates available, see
Appendix C, “Network Resource String Syntax.”

To Use copydbf Between Nodes

Figure 3.3 shows an application of copydbf in which the source and destination
are on remote nodes (Nodel and Node3, respectively). NetLDIs and network
access are required to spawn page servers on the two remote nodes.

NOTE
If you want to start a Gem on a remote machine, you need to have a
NetLDI on both machines.

82

GemStone Systems, Inc. April 2008

Connecting Distributed Systems How to Set Up a Remote Session

Figure 3.3 Connections for copydbf

Nodel Node2 Node3

NetLDI

Page Server* | copydbf - Page Server*

NetLDI

TRIG
i

* Started by NetLDI

I@Nodel!pathname !@Node3!pathname

Step 1. Unless the NetLDlIs are running in guest mode, you will need to provide
authorization for NetLDI services. Create a .netrc file in your home
directory on Node2 containing a line like the following for each of the other
nodes:

machine Nodel login userName password secretl
machine Node3 login userName password secret3

Step 2. If they are not already present, start NetLDIs on Nodel and Node3.

Step 3. When you issue the copydbf command, include the node names in NRS
syntax and specify the full path. For example (C shell):

Node2% copydbf \!@Nodel\!filePath \!@Node3\!filePath

If you use the Bourne shell, the backslashes (\) are not necessary.

3.4 How to Set Up a Remote Session

Configuring a Gem session process on a remote node is much the same as
configuring a session process on the server, which is described in Chapter 2,
“Configuring Gem Session Processes.” Keep the following points in mind:

April 2008 GemStone Systems, Inc. 83

How to Set Up a Remote Session System Administration Guide for UNIX

« Aclient node must have its kernel configured for shared memory similarly to
how it is configured on the server node.

< Only server nodes need a GemsStone key file, not client nodes.

< |f your site doesn’t run NIS, add each node in the GemStone network to
/etc/hosts.

< |f your site doesn’t run NIS, add the NetLDI entry to Zetc/services on
each node. Be sure to specify the same name and network port number each
time.

< |t’s best if each node has its own Zopt/gemstone/log and
/opt/gemstone/locks directories. If these directories are on an NFS-
mounted partition, make sure that two nodes are not using the same
directories. Each Stone and NetLDI needs a unique lock file. Shared log files
may make it impossible to diagnose problems.

« Unless you run the NetLDIs in guest mode with a captive account, all users
ordinarily must have an account on the server node and any other node on
which the repository extents reside. It’s easier if the account name is the same
on each node.

= Unless you run the NetLDIs in guest mode with a captive account, the user who
starts the Stone repository monitor ordinarily needs an account on all nodes
where a Gem session process will run or where an extent will reside.

You can either repeat the installation from the GemStone distribution tape or
mount the directory on the server node that contains $GEMSTONE . Each
approach is described below. Although GemStone never uses NFS to access the
repository files, it can use NFS to access other files.

To Duplicate the GemStone Installation

If you repeat the installation on the client node, we recommend that you also run
$GEMSTONE/install/installgs. In particular, you should make the same
selections regarding the ownership and group for the GemStone files as you did
on the server node. You can save disk space later by deleting the two copies of the
initial repository ($GEMSTONE/data/extent0.dbf and
$GEMSTONE/bin/extent0.dbf) and the complete upgrade directory
($GEMSTONE/upgrade).

84

GemStone Systems, Inc. April 2008

Connecting Distributed Systems How to Set Up a Remote Session

To Share a GemStone Directory

The following example prepares to run an application and Gem session process on
a client node using a shared software directory on the server. The GEMSTONE
environment variable points to the shared installation directory, which is on the
node Server and is NFS-mounted as /Server/users/GemStone6.3.

Step 1. Set the GEMSTONE environment variable to point to the NFS-mounted
installation directory, and then invoke gemsetup:

(C shell)
Client% setenv GEMSTONE /Server/users/GemStone6.3
Client% source $GEMSTONE/bin/gemsetup.csh

or (Bourne or Korn shell)

$ GEMSTONE=/Server/users/GemStone6.3
$ export GEMSTONE

$. $GEMSTONE/bin/gemsetup.sh

Step 2. If they do not exist, create the GemStone log and locks directories on
the local node. (NetLDls use this log directory.) You may need to have a
system administrator do this for you as root.

cd /opt
mkdir gemstone gemstone/log gemstone/locks
chmod 777 gemstone gemstone/log gemstone/locks

Configuration Examples

The following examples expand on Chapter 2 by showing the additional processes
that are necessary in a distributed configuration. Because the AlO page server and
GcGem on the Stone’s node are not important to the networking discussion, they
are omitted from the illustrations in this chapter.

GemsStone supports several configurations in which the application communicates
with the Gem session process by using remote procedure calls (RPCs). Although
the calls to network routines inevitably are time-consuming, they are essential
when the application runs on a different node from the Gem, and they are
desirable during code development because they isolate the application and Gem
address spaces.

Use of RPC configurations for production repositories should be based on careful
analysis of system loads and network traffic to select the most efficient
configuration for a particular application. The RPC configuration may be desirable

April 2008

GemStone Systems, Inc. 85

How to Set Up a Remote Session System Administration Guide for UNIX

when the application accesses large or complex objects that would saturate the
network if they were brought across it on a frequent basis.

Examples below illustrate the following distributed applications:
< alinked application connected to a Stone on another node,

< an RPC application with both the session process and the Stone on the server
node,

< an RPC application with the session process on the application’s node, and
< an RPC application in which all three are on different nodes.
Two other examples show how to set up an extent on a node that is remote from
the Stone, and how to use copydbf between nodes.

To Run a Linked Application on a Remote Node

Figure 3.4 shows how a linked application on a client node communicates with a
Stone and repository on the server node. This configuration typically is the best
choice when you must offload some processes from a server node, especially when
the application accesses relatively small objects or small groups of large objects.

86 GemStone Systems, Inc. April 2008

Connecting Distributed Systems How to Set Up a Remote Session

Figure 3.4 Connecting a Linked Application to a Remote Server

Client Node Server Node

NetLDlI NetLDlI

©)

Linked

Owned by
user who started

@ linked application

(o) (o

1@Serverlgemserver63

@ Owned by
h / utse;v(\;hgt Shared Page
S al\r/led Page started stone Monitor Repository
onitor
Cache
Ne—o

Two NetLDlIs and two page servers ordinarily are required. NetLDlIs start the page
servers on request of the Stone and the application. Numbers show the order in
which these processes are started:

= One page server (1) lets the Stone start a shared page cache and monitor (2) on
the client node. The page server and monitor processes will be owned by the
user who started the Stone (or by the captive account), so the owner must have
an account on the client node. The cache itself will have the same owner and
group as the Stone. The linked application must have permission to access the
cache, either through group membership or through an S bit on the application
executable.

= The other page server (3) lets the Gem session process (the linked application)
access the repository on the server. There will be one such page server process
on the server node for each session logged in from a remote node; its owner

April 2008 GemStone Systems, Inc. 87

How to Set Up a Remote Session System Administration Guide for UNIX

(which may be a captive account) must have an account on the server. The
page server process must have read-write permission for the repository, either
through group membership or through an S bit on the pgsvrmain executable.

Because the shared page cache is readable and writable only by its owner and
members of the same group (protection 660), the user running the application may
need to belong to that group. See “To Set Ownership and Permissions for Session
Processes” on page 58.

The following steps set up a linked application on the client node. They use
software in an NFS-mounted installation on the server node; that directory is
already mounted on the client node as /Server/GemStone6.3.

Step 1. Set the GEMSTONE environment variable to point to the installation
directory, and then invoke gemsetup:

(C shell)
Client% setenv GEMSTONE /Server/GemStone6.3
Client% source $GEMSTONE/bin/gemsetup.csh

or (Bourne or Korn shell)

$ GEMSTONE=/Server/GemStone6.3
$ export GEMSTONE

$. $GEMSTONE/bin/gemsetup.sh

Step 2. Verify that a Stone and NetLDI are running on the server node. One way
to do this verification is to use the gslist utility. For example:

Client% gslist -m serverName
Step 3. Start a NetLDI on the client node.

O To start the NetLDI for password authentication, make sure
$GEMSTONE/sys/netldid isowned by root and has the S bit set. Issue this
command (on some operating systems, you may have to issue it as root):

Client% startnetldi

O Tostart the NetLDI in guest mode (authentication is not required), make sure
$GEMSTONE/sys/netldid does NOT have the S bitset. Log in as the captive
account name, then issue this command:

Client% startnetldi -g -aname

88

GemStone Systems, Inc. April 2008

Connecting Distributed Systems How to Set Up a Remote Session

Step 4. Start the linked application (for instance, Topaz) on the client node, then

set the GemStone login parameter to include the name of the server node in
network resource syntax. For instance, to log in to Topaz as DataCurator:

Client% topaz -1

topaz> set gemstone !@Server!gemserver63
topaz> set username DataCurator

topaz> login

GemStone Password?

successful login

topaz 1>

To Run the Gem Session Process on the Stone’s Node

If the Gem session process is going to run on the server node (as in Figure 3.5), an
RPC application uses a NetLDI on that node to start a Gem session process. Unless
the NetLDI is running in guest mode with a captive account, the application user
must provide authentication to the NetLDI. You should also specify a Gem
network object (gemnetobject or gemnetobjcsh) that matches your UNIX
shell on the server. For more information about network objects and how to invoke
them, see “GemStone Network Objects” on page 72.

Step 1. The following procedure assumes that you are already set up to run

GemStone applications as described in Chapter 2. In particular, you must have
defined the GEMSTONE environment variable and invoked
$GEMSTONE/bin/gemsetup or its equivalent.Make sure that the NetLDI
and Stone are running on the server. One way to do this is to use the gslist
command. For example:

Client% gslist -m serverName

Step 2. Unless the NetLDI is running in guest mode, decide how you will provide

a

authentication. There are three choices:

You can create a .netrc file in your home directory on the client node
containing a line like the following, where the password is your password on
the server:

machine Server login yourLogin password yourPassword

You can set the application login parameters, such as HostUserName and
HostPassword, after you start the application. For example:

topaz> set hostusername yourlLogin
topaz> set hostpassword yourPassword

April 2008

GemStone Systems, Inc. 89

How to Set Up a Remote Session

System Administration Guide for UNIX

Step 3. Log in to the application node and start the RPC version of your
application (for instance, Topaz), then set UserName. For example:

Client% topaz

topaz> set username DataCurator

Step 4. Set GemNetld to gemnetobject (the default) if you are using the
Bourne shell, or to gemnetobjcsh if you are using the C shell. Because the
session process is to run on the server, be sure to include the node name in the
GemNetld NRS. (It’s not necessary to set the GemStone login parameter when
the Stone repository monitor runs on the same node as the Gem.) For example:

(C shell)

topaz> set gemnetid !@Server!'gemnetobjcsh

or (Bourne or Korn shell)
topaz> set gemnetid !@Server!gemnetobject

Figure 3.5 Starting a Session Process on the Server Node

Client Node

RPC

Server Node

Application

* Started by NetLDI

Gem*
P> Session Process

|@Server!lgemnetobject

or
|@Server!gemnetobjcsh

Shared Cache
Monitor

Cache

NetLDI

Stone

I@Server!gemserver63

Repository

il

90

GemStone Systems, Inc.

April 2008

Connecting Distributed Systems How to Set Up a Remote Session

Step 5. Log in to the repository:

topaz> login
GemStone Password?
successful login
topaz 1>

At this point, you are logged in to a Gem session process on the server node. That
session process acts as a server to Topaz RPC and as a client to the Stone.

To Run the Gem and Stone on Different Nodes

The configuration shown in Figure 3.6 is unusual in that the RPC application and
its session process are running on the same node. (While this configuration might
be desirable during application development, a linked application, if it is available,
probably would give better performance.)

The NetLDlIs and page servers function similarly to those described for the linked
application (see “To Run a Linked Application on a Remote Node” on page 86). In
Figure 3.5, however, the NetLDI also starts the RPC Gem session process at the
request of the application.

Step 1. Unless the NetLDIs are running in guest mode, decide how you will
provide access so that application can start a Gem session process on the client
node. There are three choices:

O Youcan create a .netrc file in the your home directory on the client node
containing a line like the following, where the password is your operating
system password on the server:

machine Client login userName password userPasswd

O You can set the application login parameters, such as HostUserName and
HostPassword, after you start the application. For example:

topaz> set hostusername yourlLogin
topaz> set hostpassword yourPassword

Step 2. Log in to the client node and start a NetLDI.

O To start the NetLDI for password authentication, make sure
$GEMSTONE/sys/netldid isowned by root and has the S bit set. Issue this
command (on some operating systems, you may have to issue it as root):

Client% startnetldi

April 2008

GemStone Systems, Inc. 91

How to Set Up a Remote Session System Administration Guide for UNIX

O Tostart the NetLDI in guest mode (authentication is not required), make sure
$GEMSTONE/sys/netldid does NOT have the Sbitset. Log in as the captive
account name, then issue this command:

Client% startnetldi -g -aname

Figure 3.6 Starting the Session Process on a Client Node

Client Node Server Node

NetLDI NetLDI

* Started by NetLDI

RPC
Application

Gem*
. Page Server*
Session Process ~ >
Page Server * | Stone

I@Server!gemserver63
Shared Page Shared Page
Monitor Monitor Repository
Cache _

Cache
Step 3. Start the RPC version of your application (for instance, Topaz):

Client% topaz

Step 4. Set GemNetld to gemnetobject (the default) if you are using the
Bourne shell, or to gemnetobjcsh if you are using the C shell. These network
objects identify scripts that start a session process using your preferred shell.
For example:

(C shell)
topaz> set gemnetid gemnetobjcsh

92 GemStone Systems, Inc. April 2008

Connecting Distributed Systems How to Set Up a Remote Session

Step 5. Set the GemStone name, using NRS syntax to specify its location on the
server node. Then set the UserName and log in. For example:

topaz> set gemstone !@Server!gemserver63
topaz> set username DataCurator

topaz> login

GemStone Password?

successful login

topaz 1>

To Run the Application, Gem, and Stone on Three Nodes

The RPC application, session process, and Stone can run on three separate nodes,
as shown in Figure 3.7. The application runs on its node and connects to a Gem
session process on the Gem’s node. That session process communicates with the
repository on the server node by way of a page server.

Again we see that a NetLDI must be running on each node where part of
GemStone executes (but not necessarily on the application node, which runs only
the RPC application).

The network access problem is similar to that in other RPC configurations: unless
the NetLDI on the Gem node is running in guest mode, you must provide
authentication to start the Gem session process.

Step 1. Unless the NetLDI on the Gem node is running in guest mode, decide how
you will provide authorization for network services on that node.

O Youcan create a .netrc file in the your home directory on the application
node containing a line like the following, where the password is your
password on the Gem’s node.

machine Gem Blogin userLogin password secret2

O You can set the application login parameters, such as HostUserName and
HostPassword, after you start the application. For example:

topaz> set hostusername yourlLogin
topaz> set hostpassword yourPassword

April 2008 GemStone Systems, Inc. 93

How to Set Up a Remote Session System Administration Guide for UNIX

Figure 3.7 Connecting an RPC Application, Three Nodes

Application Node Gem Node Server Node

NetLDI NetLDI

RPC Gem* A
Application Session Process) 4

|@Serverlgemserver63

Shared Page
Monitor Repository
N—e

Cache
* Started by NetLDI

Shared Page
Monitor

Step 2. Log in to the Gem’s node and start the NetLDI.

0 To start the NetLDI for password authentication, make sure
$GEMSTONE/sys/netldid isowned by root and has the S bit set. Issue this
command (on some operating systems, you may have to issue it as root):

Client% startnetldi

0 To start the NetLDI in guest mode (authentication is not required), make sure
$GEMSTONE/sys/netldid does NOT have the Sbit set. Log in as the captive
account name, then issue this command:

Client% startnetldi -g -aname

Step 3. Log in to the application node. Start the RPC version of your application
(for instance, Topaz):

Application% topaz

94 GemStone Systems, Inc. April 2008

Connecting Distributed Systems How to Set Up a Remote Session

Step 4. Set GemNetld to match the shell you are using on the Gem’s node, and
include the location, gemNode, in the NRS. For example:

(C shell)
topaz> set gemnetid !@gemNode!gemnetobjcsh

or (Bourne or Korn shell)
topaz> set gemnetid !'@gemNode!gemnetobject

Step 5. Use NRS syntax to specify the location and name of the repository. Then
set the user name and log in. In Topaz, for example, set GemStone and
UserName:

topaz> set gemstone !@Server!gemserver63
topaz> set username DataCurator

topaz> login

GemStone Password?

successful login

topaz 1>

At this point, your Topaz application on the application node has logged you in to
a Gem session process on the Gem’s node, and the session process has logged in to
the repository on the server.

Troubleshooting Remote Logins

Logging in to GemStone from a client node requires proper system configuration
of the client node and frequently requires permission for network access from
server to client as well as from client to server.

@ The UNIX kernel on the client node should meet shared memory and
semaphore requirements similar to those for the server, although smaller sizes
may be sufficient.

O Make sure that NetLDIs are running on all nodes that require them (see the
figure for your configuration). Also make sure that the NetLDIs have the same
port number in Zetc/services. All nodes must be listed in Zetc/hosts.

O Ifan RPC application is being started (that is, one with a separate Gem session
process), make sure the user who starts the application has an entry for the
Gem’s node in a .netrc file in $HOME. or that other authentication
provisions have been taken, such as running the NetLDI in guest mode with a
captive account. The owner of the Gem process needs an account on the node
where the Gem will run and needs write access to the Gem log, typically in
$HOME. Ownership and permissions for §GEMSTONE/sys/netldid must be

April 2008

GemStone Systems, Inc. 95

How to Set Up a Remote Session

System Administration Guide for UNIX

a

appropriate for the authentication system in use (see pages 3-78 and 3-80), and
the directories in Zopt/gemstone must be writable.

Make sure the user who started the Stone has an account on the client node.
This user also must have write permission for SHOME so that log files for the
client node can be created, unless steps are taken to create the log files in
another directory.

Check any GEMSTONE environment variables for definitions that point to a
previous version: env | grep GEM.

If You Still Have Trouble

If you still can’t log in to GemStone from an application on a client node, try
logging in on the server node as the same UNIX user account. We suggest you first
try a linked application, such as topaz -1, and when that works, move on to an RPC
application (such as topaz or the equivalent topaz -r), still on the server.

Try Linked Topaz on the Server

A linked application on the server offers the least complicated kind of login
because the server’s shared page cache is already running and no network facilities
are used. Any problems are likely to involve access permission for the shared page
cache or the repository extents, which can also block attempts to log in from a client
node.

@ Make sure the owner of the topaz process (BGEMSTONE/bin/topaz) can

access the shared page cache. Use the UNIX command ipcs -m to display
permissions, owner, and group for shared memory; for example:

Server% Ipcs -m
IPC status from servio as of Tue Oct 16 14:44:45 2007

T ID KEY MODE OWNER GROUP
Shared Memory:
m 768 0x4cl77155 --rw-rw---- gsadmin pubs

Compare the owner and group returned by ipcs with the owner of the Topaz
process. You can use the ps command to determine the owner; for example
(the switches may be different on your system), ps -ef | grep topaz.

A typical problem arises when root owns the Stone process and the shared
page cache because their group ordinarily will be a special one to which Topaz
users do not belong. Related problems may occur with a linked GemBuilder
session. The third-party Smalltalk may be installed without the S bits and
therefore may rely on group access to the shared page cache and repository.

96

GemStone Systems, Inc. April 2008

Connecting Distributed Systems How to Set Up a Remote Session

For background information, see “To Set Ownership and Permissions for
Session Processes” on page 58.

To correct a shared page cache access failure, either change the owner and
group of the setuid files or have the Stone started by a user whose primary
group is one to which other GemStone users belong. Unlike file permissions,
the shared page cache permissions cannot be set directly.

O Make sure the owner of the Topaz process has read-write access to
$GEMSTONE/data/extent0.dbf.

Try Topaz RPC on the Server

The next step should be to try running Topaz on the server with a separate Gem
session process. This configuration relies on the NetLDI to start a Gem session
process, and that process, not the application itself, must be able to access the
shared page cache and repository extent.

O Make sure a NetLDI is running on the server by invoking gslist; the default
name is netldi63. If you need to start one, the command is startnetldi.

GemsStone uses the NetLDI to start a Gem session process that does repository
170 in this configuration. For the NetLDI to start processes for anyone other
than its owner, it must be owned by root or it must be started in guest mode
and captive account mode by someone logged in as the captive account.

The NetLDI writes a log file with the default name
/opt/gemstone/log/netldi63. 10og. Its contents may help you diagnose
problems.

O Make sure the owner of the resulting Gem session process
($GEMSTONE/sys/gem) can access the shared page cache and extentO.dbf
through group membership or S bits. The troubleshooting is the same as that
given on page 97 for the topaz executable.

The user who starts topaz (or the NetLDI captive account when it is in use) must
have write permission for SHOME so that the session process can create a log file
there. (For a workaround for situations where write permission is not allowed, see
“To Set a Default NRS” on page 81.)

Check NetLDI Log Files

Troubleshooting on a distributed GemStone system can be complicated. What
looks like a hung process may actually be caused by incorrect NRS syntax or by
another node on the network going down. The information for analyzing
problems may be found in log files on all the nodes used by GemStone.

April 2008

GemStone Systems, Inc. 97

How to Set Up a Remote Session

System Administration Guide for UNIX

Where the log file messages include NRS strings, be sure to check their syntax. The

problem may be as simple as an incorrect NRS or one that was not expanded by
the shell as you intended.

If you can’t identify the problem from the standard log messages, try running the
NetLDI in debug mode, which puts additional information in the log. The
command line is startnetldi [netLdiName] -d.

98

GemStone Systems, Inc. April 2008

Chapter

A

Running Gem3one

This chapter shows you how to perform some common GemsStone system
operations:

Starting the GemStone Object Server (page 100)

Starting Network Long Distance Information (NetLDI) servers (page 107)
Identifying running servers (page 108)

Logging in to a GemStone session (page 108)

Identifying the current sessions (page 114)

Shutting down the object server (page 116)

Troubleshooting hints are provided in each startup and login topic.

Additional topics at the end of the chapter explain how to:

Recover from an unexpected shutdown (page 117)
Load objects in bulk (page 121)

Enter and use manual transaction mode, which we recommend that you use
whenever possible (page 122)

April 2008

GemStone Systems, Inc. 99

How to Start the GemStone Server System Administration Guide for UNIX

4.1 How to Start the GemStone Server

In order to start a Stone repository monitor, the following must be identified
through your UNIX environment:

= Where GemStone is installed — The GEMSTONE environment variable must
point to the directory where GemStone is installed, such as
/users/GemStone6.3. The directory $GEMSTONE/bin should be in your
search path for commands.

= Which configuration parameters to use — The repository monitor must find a
configuration file. The default is $SGEMSTONE/data/system.conf. Other
files can supplement or replace the default file; for information, see “How
GemStone Uses Configuration Files” on page 388.

= Which repository to use — The configuration file must give the path to one or
more repository files (extents) and to space for transaction logs. The default
configuration file specifies $GEMSTONE/data/extent0.dbf asthe
repository file and places the transaction logs in the same directory. You may
want to move these files to other locations. For further information, see
“Choosing the Extent Location” on page 21.

To Start GemStone

Follow these steps to start GemStone following installation or an orderly
shutdown (to recover from an abnormal shutdown, refer to “How to Recover from
an Unexpected Shutdown’ on page 117).

Step 1. Set the GEMSTONE environment variable to the full pathname (starting
with a slash) of the directory where GemStone is installed. Ordinarily this
directory has a name like GemStone6.3-sparc.Solaris. For example:

(C shell)
% setenv GEMSTONE /users/GemStone6.3-sparc.Solaris

or (Bourne or Korn shell)
$ GEMSTONE=/users/GemStone6.3-sparc.Solaris
$ export GEMSTONE

If you have been using another version on GemsStone, be sure you update or
unset previous settings of these environment variables:

GEMSTONE
GEMSTONE_SYS_CONF

100

GemStone Systems, Inc. April 2008

Running GemStone How to Start the GemStone Server

GEMSTONE_EXE_CONF
GEMSTONE_LANG

Step 2. Set your UNIX path. One way to do this is to use one of the gemsetup
scripts. There is one version for users of the C shell and another for the Bourne
and Korn shells. These scripts also set your man page path to include the
GemStone man pages.

C shell)
% source $GEMSTONE/bin/gemsetup.csh

or (Bourne or Korn shell)
$. $GEMSTONE/bin/gemsetup.sh

Step 3. Start GemStone by using the startstone command:

% startstone [gemStoneName]

where gemStoneName is optional and is the name you want the repository
monitor to have. The default name is gemserver63. For additional
information about startstone, see the command description in Appendix B.

Starting up after unexpected shutdown

If the Stone repository monitor was not cleanly shutdown, on restart it will attempt
to recover automatically. If the repository extents are not corrupted, and all extent
and transaction log files are available, the stone may be able to recover all
committed transaction up to the point of the shutdown.

For automatic recovery to succeed, it is important that all transaction logs required
for recovery are online at all times. Since long-running transaction may span
multiple transaction logs, you may need to keep a humber of transaction logs
online before archiving.

To Troubleshoot Stone Startup Failures

If the Stone repository monitor fails to start in response to a startstone command,
it’s likely that the cause is one of the following. Inspect the Stone log for clues (the
default location is $SGEMSTONE/data/gemserver63. 10g), then refer to the
discussions that follow this summary.

= The GemStone key file is missing or invalid (see page 102).
= The shared page cache cannot be attached (see page 102).

= Anextent file is missing or cannot be opened for exclusive use because another
GemStone process is using it (see page 103).

April 2008

GemStone Systems, Inc. 101

How to Start the GemStone Server System Administration Guide for UNIX

« Because of the timing of a system crash, the repository monitor is trying to
create an extent that already exists (see page 103).

< An extent is supposed to have a replicate, but the replicate is missing (see
page 104).

= Atransaction log needed for recovery is missing, or the log directory or device
does not exist (see page 105).

< The repository has become corrupted (see page 105).

The error numbers printed as part of a log message are defined in the file
$GEMSTONE/ include/gcierr.ht and in the GemStone Programming Guide.

Key File Missing or Invalid

The Stone repository monitor must be able to read a key file,
$GEMSTONE/sys/gemstone . key. Ordinarily, you create this file during
installation from information provided by GemStone. Be careful to enter the
information correctly, following the instructions on the sheet. If the information is
missing, contact GemStone Technical Support as described in the Preface.

Shared Page Cache Cannot Be Attached

The shared page cache monitor must be able to create and attach to the shared
memory segment that will serve as the shared page cache. Several factors may
prevent this from happening:

< Onsome platforms, shared memory is not enabled in the kernel by default, or
its default maximum size is too small to accommodate the GemStone
configuration. GemsStone’s default configuration requires a shared memory
segment slightly larger than 10 MB.

= |f the size of the shared page cache has been increased, the operating system’s
limit on shared memory regions may need to be increased accordingly.
Page 17 describes a utility (BGEMSTONE/ instal 1/shmem) that will help you
check the configuration.

< The repository executables (the Stone, Gems, and page servers) must have
permission to read and write the shared page cache. Ways to set up access are
described in “To Set File Permissions for the Server” on page 34. In general,
users must belong to the same group as the Stone repository monitor. If the
Stone is running as root, it is unlikely that other users will be able to access the
shared page cache.

102 GemStone Systems, Inc. April 2008

Running GemStone How to Start the GemStone Server

Extent Missing or Access Denied

If the monitor cannot access a repository extent file, it logs a message like the

following:
startstone[Error]: Stone process (id=6473) has died.
reason = File = /users/GemStone6.3/data/extent0.dbf

Error = open() failure; DBF Op = Open; DBF Record = -1;
UNIX Codes = errno=2, ENOENT, No such file or directory

Examine the message for further clues. The extent file could be missing, the
permissions on the file or directory could be set incorrectly, or there may be an
error in the configuration file that points to the extents. Correct the problem, then
try starting GemStone again.

Extent Open by Another Process

If another process has an extent file open when you attempt to restart GemStone,
a message like the following appears in the monitor log:

Error = exclusive open: file is open by another process
UNIX Codes = errno=13, EACCES, Authorization failure”
Error in opening repository for exclusive access.

Close any other Gem sessions (including Topaz sessions) that are accessing the
repository you are trying to restart, or wait for a copydbf to complete. Use ps -ef
(the options on your system may differ) to identify any pgsvrmain processes that
are still running, and then use ki Il processid to terminate them. Try again to start
GemStone.

Extent Already Exists

If GemStone attempts to recover from a system crash that occurred just after an
extent was created but before the next checkpoint, you will find an error message
like the following in the log:

An error in recovery for extentld 1:
fileName= /users/GemStone6.3/data/extentl.dbf

Extent already exists, you must delete it before recovery can
succeed.

Verify that an extent was being added to the repository at or shortly before the
crash. If necessary, look for a message near the end of the Stone’s log file, which by
default is $GEMSTONE/data/gemStoneName. 1og.

April 2008 GemStone Systems, Inc. 103

How to Start the GemStone Server System Administration Guide for UNIX

< |f an extent was being added, there is no committed data in the extent file yet.
Delete the specified file and do not replace it with anything. Try to start
GemsStone again. The recovery procedure will recreate the extent file.

< |fan extent was NOT being added, it is possible that an existing extent has
been corrupted. For instance, extentO.dbf of a multiple-extent repository
may have been overwritten. Try to determine the cause and whether the action
can be rectified. You may have to restore the repository from a backup.

Other Extent Failures

At startup, the GemsStone system performs consistency checks on each extent listed
in DBF_EXTENT_NAMES.

All extents must have been shut down cleanly with a repository checkpoint the last
time the system was run. This consistency check is the only one for which
GemsStone attempts automatic recovery.

The following consistency checks, if failed, cause the startup sequence to
terminate. These failures imply corruption of the disk or file system, or that the
extents were modified at the operating system level (such as by cp or copydbf)
outside of GemStone’s control and in a manner that has corrupted the repository.

< Extents must be in proper sequence within DBF_EXTENT_NAMES.
« Extents must be properly sequenced in time.

< The last checkpoint must have occurred earlier than or at the same time as the
current system time (in GMT).

« Extents must belong to the correct repository.

Replicates are subject to the same consistency checks as extents.

Extent Replicate Missing

If you run your system with extent replicates and one is missing, GemsStone puts
an error message like this in the GemStone log:

Replicate is not mounted, filename =
ITCP@servio#dbf!/users/replicates/replical.dbf

Error: File = /users/replicates/replical.dbf open() failure

DBF Operation Open; (no DBF record), UNIX codes: errno=2, ENOENT,
No such file or directory

104 GemStone Systems, Inc. April 2008

Running GemStone How to Start the GemStone Server

If this message appears when you try to start GemsStone, replace the missing
replicate. For example:

% copydbf extentl.dbf Zusers/replicates/replical.dbf

where extentl.dbf is an extent of the repository and replical.dbf is the
missing replicate of the extent named in the error message. Then try to start
GemStone again.

Transaction Log Missing

If GemStone cannot find the transaction log file or its replicate for the period
between the last checkpoint and an unexpected shutdown, it puts a message like
this in the monitor log:

Extent 0 not cleanly shutdown, recovery needed

Repository startup from checkpoint = (fileld 0, blockld 14)

Searching for most recent transaction log

no log files found

Searching for transaction log file, fileld 0, directoryld O,

filename = /users/GemStone6.3/data/tranlog0.dbf

Error during repository recovery

If the log file was archived and removed from the log directory, restore the file.

CAUTION
The startstone -N option (below) should be used only to recover from a
disaster that corrupts or destroys transaction logs since the last
checkpoint.

If the log file is no longer available, you can use startstone -N to restart from the
most recent checkpoint in the repository. However, any transactions that occurred
during the intervening period cannot be recovered. If the Stone detects that the
logs actually are present, it performs a normal startup. If the log file is present but
corrupted, you may have to remove the file before restarting GemStone.

Repository Failure

If a log message shows problems in an extent file, you need to consider strategies
for recovery. This manual describes three ways to control the effects of repository
failure: replicated extents, periodic backups, and full transaction logging.
Depending on how you administer your site and on the nature of the failure, you
may have the following options (which are listed in order of preference):

April 2008

GemStone Systems, Inc. 105

How to Start the GemStone Server System Administration Guide for UNIX

If you have replicated the extents in your repository, you may be able to
restore the extent by using the replicate. See “How to Recover by Using an
Extent Replicate” on page 190.

If you have GemStone backups (that is, backups made using the method
FfullBackupTo:), you can restore the repository to the state of the most
recent backup. If full logging was in effect (STN_TRAN_FULL_LOGGING was
set to True), objects committed by subsequent transactions can then be
recovered from the transaction logs. See “How to Restore a GemStone
Repository” on page 277.

You may be able to restore the repository from operating system backups, but
the results may not be satisfactory. See “Why Operating System Backups May
Not Be Usable” on page 271 and “How to Restore from an Operating System
Backup” on page 294.

If you have neither replicates nor a recent backup and transaction logs for
valuable data, you still may be able to recover your committed repository.
However, this procedure is not nearly as reliable and may be quite time
consuming. See “How to Audit the Repository” on page 217.

Other Startup Failures

Check Zopt/gemstone/locks and remove old files (. .LCK or . _.FIFO)
having the same Stone name. (On systems that have been running a previous
release, these file may be in Zusr.) On Solaris systems, also check
/tmp/gemstone for stoneName. .FI1FO.

Certain unexpected shutdowns may leave UNIX interprocess communication
facilities allocated, which can block attempts to restart the repository monitor.
Use the command ipcs to identify the shared memory segments and
semaphores allocated, then use ipcrm to free those resources allocated to a
repository monitor that is no longer running. For information about ipcs and
ipcrm, consult your operating system’s documentation.

If you can’t start GemStone under any circumstances, try pageaudit on the
repository. (See “How to Audit the Repository” on page 217.) If the page audit
is good but GemStone still doesn’t start, check your installation configuration.
For more help, call your local GemStone administrator or GemStone Technical
Support.

106

GemStone Systems, Inc. April 2008

Running GemStone How to Start a NetLDI

4.2 How to Start a NetLDI

It’s common practice to start a GemStone Network Long Distance Information
(NetLDI) server when starting a Stone repository monitor. There are several
situations in which a NetLDI is necessary (each is described in Chapter 3):

A user will be running an RPC application with a separate Gem session
process on the Stone’s node.

A user will be running a linked application or a separate Gem on another node
and logging in to the repository on the Stone’s node.

Perform the following steps on the node where the NetLDI is to run:

Step 1. Set the GEMSTONE environment variable to the full pathname (starting

with a slash) of the directory where GemStone is installed. Ordinarily this
directory has a name like GemStone6.3-sparc.Solaris.For example:

(C shell)
% setenv GEMSTONE /users/GemStone6.3-sparc.Solaris

or (Bourne or Korn shell)
$ GEMSTONE=/users/GemStone6.3-sparc.Solaris
$ export GEMSTONE

Step 2. Use one of the gemsetup scripts to set your UNIX path. There is one

version for users of the C shell and another for the Bourne and Korn shells.
These scripts also set your man page path to include the GemStone man pages.

(C shell)
% source $GEMSTONE/bin/gemsetup.csh

or (Bourne or Korn shell)
$. $GEMSTONE/bin/gemsetup.sh

Step 3. Start the NetLDI by using the startnetldi command.

a

To start the NetLDI for password authentication, make sure
$GEMSTONE/sys/netldid is owned by root and has the S bit set. Issue this
command (on some operating systems, you may have to issue it as root):

Client% startnetldi

To start the NetLDI in guest mode (authentication is not required), make sure
$GEMSTONE/sys/netldid does NOT have the Sbit set. Log in as the captive
account name, then issue this command:

Client% startnetldi -g -aname

April 2008

GemStone Systems, Inc. 107

To List Running Servers System Administration Guide for UNIX

For additional information about startnetldi, see the command description in
Appendix B. For information about the authentication modes, see “How to
Arrange Network Security” on page 76.

To Troubleshoot NetLDI Startup Failures

If the NetLDI service fails to start in response to a startnetldi command, it’s likely
that the cause is one of the following. Inspect the NetLDI log (the default is
/opt/gemstone/log/netLdiName. 1og) for clues.

= The NetLDI is to run as root but the guest mode option is specified. This
combination is not allowed.

= Theaccount starting the NetLDI does not have permission to create or append
to its log file.

= The account starting the NetLDI does not have read and execute permission
for $GEMSTONE/sys/netldid.

The error numbers printed as part of a log message are defined in the file
$GEMSTONE/ include/gcierr.ht and in the GemStone Programming Guide.

4.3 To List Running Servers

The gslist utility lists all Stone repository monitors, shared page cache monitors,
and NetLDIs that are running. The gslist command by itself checks the locks
directory (/opt/gemstone/locks) for entries. The -v option causes it to verify
that each process is alive and responding. For example:

% gslist -v
Status Version Owner Started Type Name

6.3.0 gsadmin Dec 13 11:49 cache gemserver63@mozart
OK 6.3.0 gsadmin Dec 13 11:49 Stone gemservere63

6.3.0 gsadmin Dec 13 11:54 Netldi netldi63

By default, gslist lists servers on the local node. The -m host option performs the
operation on node host, which must have a NetLDI running.

4.4 How to Start a GemStone Session

This section tells how to start a GemStone session and log in to the repository
monitor. The instructions apply to all logins from the node on which the Stone

108 GemStone Systems, Inc. April 2008

Running GemStone How to Start a GemStone Session

repository monitor is running. Additional information about the GemStone
administrative logins is given in Chapter 5, “User Accounts and Security.”
Additional information about logging in from a remote node is given in Chapter 3,
“Connecting Distributed Systems.”

Two examples follow a brief discussion of environmental variables. The first
example starts a linked application and logs in to GemStone. The second example
starts an RPC application, which in turn spawns a separate Gem session process
that communicates with the GemStone server.

The examples use Topaz as the application because it is part of the standard
GemsStone Obiject Server distribution. Other applications may use different steps
to accomplish the same purpose. Some users may prefer to make these steps part
of an initialization file.

For an explanation of the difference between linked and RPC sessions, see “Linked
and RPC Applications” on page 54.

To Define a GemStone Session Environment

In order to start a GemStone session, the following must be defined through your
UNIX environment:

= Where GemStone is installed—All GemStone users must have a GEMSTONE
environment variable that points to the GemStone installation directory, such
as /users/GemStone6.3-sparc.Solaris. The directory
$GEMSTONE/bin should be in your search path for commands. The next topic
contains an example.

= Which configuration parameters to use—Because each GemsStone session can
have its own configuration file, some users may need a second environmental
variable, such as GEMSTONE_EXE_CONF. If no other file is found, the
session uses system defaults. For further information, see “To Set Up the
User’s Environment” on page 140 and “How GemStone Uses Configuration
Files” on page 388.

To Start a Linked Session

The following steps show how to start a linked application (here, the linked
version of Topaz). The steps for setting the GEMSTONE environment variable and
the UNIX path for a session are the same as those given on page 100 for starting a
repository monitor. They are repeated here for convenience.

April 2008

GemStone Systems, Inc. 109

How to Start a GemStone Session System Administration Guide for UNIX

The procedure assumes that the Stone repository monitor has already been started
and has the default name gemserver63.

Step 1. Set the GEMSTONE environment variable to the full pathname (starting

with a slash) of the directory where GemStone is installed. Ordinarily this
directory has a name like GemStone6.3-sparc.Solaris. For example:

(C shell)
% setenv GEMSTONE /users/GemStone6.3-sparc.Solaris

or (Bourne shell)
$ GEMSTONE=/users/GemStone6.3-sparc.Solaris
$ export GEMSTONE

If you have been using another version on GemsStone, be sure you update or
delete previous settings of these environment variables:

GEMSTONE,
GEMSTONE_SYS_CONF,
GEMSTONE_EXE_CONF, and
GEMSTONE_LANG.

Step 2. Set your UNIX path. One way is to use one of the gemsetup scripts. There

is one version for users of the C shell and another for users of the Bourne and
Korn shells. These scripts also set your man page path to include the
GemStone man pages.

(C shell)
% source $GEMSTONE/bin/gemsetup.csh

or (Bourne or Korn shell)
$. $GEMSTONE/bin/gemsetup.sh

Step 3. Start linked Topaz:

% topaz -1

Step 4. Set the UserName login parameter:

topaz> set username DataCurator

Step 5. Log in to the Gem session.

topaz> login
GemStone Password?
successful login
topaz 1>

110

GemStone Systems, Inc. April 2008

Running GemStone How to Start a GemStone Session

At this point, you are logged in to a Gem session process, which is linked with the
application. The session process acts as a server to Topaz and as a client to the
Stone. Information about Topaz is in the manual GemStone Topaz Programming
Environment.

When you are ready to end the GemStone session, you can log out of GemStone
and exit Topaz in one step by invoking the Topaz exit command:

topaz 1> exit

To Start an RPC Session

The following steps show how to start an RPC application (here, the RPC version
of Topaz) on the server node. The procedure assumes that the Stone is running
under the default name gemserver63 and that you are already set up to run a
GemStone session as described in Steps 1 and 2 of the previous example.

Step 1. Use gslistto find out if a NetL DI is already running. The default name for
the NetLDI isnetldi63. (This list also shows the Stone and shared page cache

monitor.)
% gslist
Status Version Owner Started Type Name
exists 6.3.0 gsadmin Dec 14 08:42 cache dgemserver63@node3
exists 6.3.0 gsadmin Dec 14 08:42 Stone gemserver63
exists 6.3.0 gsadmin Dec 14 08:42 Netldi netldi63

If necessary, start a NetLDI:

0 To start the NetLDI for password authentication, make sure
$GEMSTONE/sys/netldid is owned by root and has the S bit set. Issue this
command (on some operating systems, you may have to issue it as root):

Client% startnetldi

0 To start the NetLDI in guest mode (authentication is not required), make sure
$GEMSTONE/sys/netldid does NOT have the S bit set. Log in as the captive
account name, then issue this command:

Client% startnetldi -g -aname
% startnetldi

Step 2. Unless the NetLDI is running in guest mode with a captive account,
decide how you will provide authentication so that the NetLDI can start the
Gem session process. There are three choices:

April 2008

GemStone Systems, Inc. 111

How to Start a GemStone Session System Administration Guide for UNIX

@O Youcancreatea .netrc fileinthe your home directory containing a line like
the following, where hostName is the name of this node (which is also the
server node):

machine hostName login yourUnixld password yourPassword

O You can set the application login parameters, such as HostUserName and
HostPassword, after you start the application. For example:

topaz> set hostusername yourUnixld
topaz> set hostpassword yourPassword

Step 3. Start the RPC application (such as Topaz), then set the UserName.

% topaz
topaz> set username DataCurator

Step 4. If you are using the C shell, set GemNetld (the name of the Gem service
to be started) to gemnetobjcsh. (The default, gemnetobject, is for the
Bourne shell.) These scripts start the separate Gem session process for you, and
they read your shell initialization file (.cshrc or .profile) ifitexists. For
example:

topaz> set gemnetid gemnetobjcsh
Step 5. Log in to the GemStone session.

topaz> login
GemStone Password?
successful login
topaz 1>

At this point, you are logged in through a separate Gem session process that acts
as a server to Topaz RPC and as a client to the Stone repository monitor.

When you are ready to end the GemStone session, you can log out of GemStone
and exit Topaz by in one step by invoking the Topaz exit command:

topaz 1> exit

To Troubleshoot Session Login Failures

Several factors may prevent successful login to the repository:

< Your GemStone key file may establish a maximum number of user sessions
that can simultaneously be logged in to GemStone. (Note that a single user
may have multiple GemStone sessions running simultaneously.) The limit

112 GemStone Systems, Inc. April 2008

Running GemStone How to Start a GemStone Session

itself is encoded in $GEMSTONE/sys/gemstone . key, but you can examine
the comment in that file. For example:

Stone Session limit: 10

The GemStone configuration option STN_MAX_SESSIONS (page 414) can
restrict the number of logins to fewer than a particular key file allows. An entry
in the Stone’s log file shows the maximum at the time the Stone started. By
default, the Stone’s log file is $GEMSTONE/data/gemStoneName. 10g. Look
for a line like this in a box:

SESSION LIMIT: Maximum number of concurrent sessions: 64

The GemStone configuration option SHR_PAGE_CACHE_NUM_PROCS

(page 406) restricts the number of sessions that can attach to a particular
shared page cache. This number can be different on each node, depending on
the configuration file that is read by the process that starts the cache. On the
node where the Stone runs, one of this number is used by the Stone, the shared
page cache monitor, each GcGem (garbage collection) session, each Stone AIO
page server, the page manager, and each free frame page server. On other
nodes, the Stone’s page server and the shared page cache monitor each use
one. For details, see “To Set the Page Cache Options and the Number of
Sessions” on page 14. Check the Stone’s log for warnings that the value
requested for SHR_PAGE_CACHE_NUM_PROCS has been adjusted to match
your system’s configuration.

The UNIX kernel must provide one semaphore for each session that wants to
attach to the shared page cache. See “Reviewing Kernel Tunable Parameters”
on page 13.

The UNIX kernel file descriptor limit can restrict the number of sessions, and
GemsStone executables attempt to raise that limit. For information, see
“Estimating File Descriptor Needs” on page 12 for the Stone and page 57 for
Gems. You can examine the kernel limit on some operating systems by
invoking limit.

The owner of the Gem or a linked application process must have write access
to the extent file and to the shared page cache. Use the UNIX command ipcs -
m to display permissions, owner, and group for shared memory; for example:

Server% Ipcs -m
IPC status from <running system> as of Mon Dec 12
17:18:23 PST 2007

T ID KEY MODE OWNER GROUP
Shared Memory:
m 768 0x4cl77155 --rw-rw---- gsadmin pubs
April 2008 GemStone Systems, Inc. 113

How to Identify Sessions Logged In System Administration Guide for UNIX

Typical problems occur with gsilnk or similar linked applications, which may
be installed without the S bit and therefore rely on group access to the shared
page cache and the repository.

< |f the session is using a separate (RPC) gem process, even on the same node, see
“Troubleshooting Remote Logins” on page 95.

The error numbers printed as part on a log message are defined in the file
$GEMSTONE/ include/gcierr.ht and in the GemStone Programming Guide.

4.5 How to Identify Sessions Logged In

Privileges required: SessionAccess.

To identify the sessions currently logged in to GemStone, send the message
System class>>currentSessionNames. This message returns an array of
internal session numbers and the corresponding Userld. For example:

topaz 1> printit

System currentSessionNames

%

session number: 2 Userld: GcUser
session number: 3 Userld: DataCurator

The session number can be used with other System class methods to stop a
particular session or to obtain its UserProfile. See stopSession:aSessionld and
userProfileForSession:aSessionld.

NOTE
Be aware that it may take as long as a minute for a session to terminate
after you send stopSession:.If the Gem is responsive, it usually
terminates within milliseconds. However, if a Gem is not active (for
example, sleeping or waiting on 1/O), the Stone waits one minute for it
to respond before terminating it directly.

The method System class>>descriptionOfSession:aSessionld returns an
array of descriptive information by which you can trace the session name to a
particular person: the second element shows the operating system process id (pid),

114

GemStone Systems, Inc. April 2008

Running GemStone How to Identify Sessions Logged In

and the third element shows the name of the node on which it is running. In this
example, the DataCurator session is running on “nodel” as pid 3010:

topaz 1> printit
System descriptionOfSession: 2
%
an Array
#1 an UserProfile
#2 3010
#3 nodel

For details about these methods and the information returned, see the class and
method comments in the image.

April 2008

GemStone Systems, Inc. 115

How to Shut Down the Object Server and NetLDI System Administration Guide for UNIX

4.6 How to Shut Down the Object Server and NetLDI

Privileges required: SystemAccess and SystemControl.

To shut down GemStone from UNIX, first make sure that all users (except GeUser)
have logged out. One way to find out about other users is to send the message
currentSessionNames to System. For example, using Topaz:

topaz 1> printit

System currentSessionNames

%

session number: 2 Userld: GcUser
session number: 3 Userld: DataCurator

Then use the stopstone command, which performs an orderly shutdown in which
all committed transactions are written to the extent files and to any replicates.
There is a similar command to shut down the NetLDI network service.

% stopstone [gemStoneName] [-i]
% stopnetldi [netLdiName]

If you do not supply the name of the repository monitor, the utility will prompt
you for one. The default name during startup was gemserver63. If necessary,
use gslist to find the name.

You will be asked for the name and password of a user, who must have
SystemControl privileges (initially, these users are SystemUser and DataCurator).
User accounts and privileges are described later in this chapter.

The -i option aborts all current (uncommitted) transactions and terminates all
active user sessions. If you do not specify this option and other sessions are logged
in, GemStone will not shut down and you will receive a message to that effect.

For more information about the stopstone and stopnetldi commands, refer to their
descriptions in Appendix B, “GemStone Utility Commands.”

If you are logged in to a GemStone session, you can invoke
System class>>shutDown, which also requires SystemControl privileges.

CAUTION
If you must kill a specific Gem session process or GemStone server
processes, use Kill, NOT kill -9 or another uncatchable signal, because
the latter may not result in a clean shut down or may cause the Stone
repository monitor to shut down when you intended to kill only a Gem
process. After sending kill -9 to a shared page cache monitor, use ipcs
and ipcrm to identify and free the shared memory and semaphore

116

GemStone Systems, Inc. April 2008

Running GemStone How to Recover from an Unexpected Shutdown

resources for that cache. After sending kill -9 to a Stone, use ipcs to
determine whether ipcrm should be invoked.

4.7 How to Recover from an Unexpected Shutdown

The system is designed to shut down in response to certain error conditions as a
way of minimizing damage to the repository. If GemStone stops unexpectedly, it
probably means one of these situations has occurred:

= Disk failure

= Shared page cache monitor failure
= Fatal error detected by a Gem

= File system corruption

= Power failure

= Operating system crash

When the system shuts down unexpectedly, check the message at the end of the
GemsStone log file to begin diagnosing the problem. Unless you specified another
file on the startstone command line, the GemStone log is
$GEMSTONE/data/gemStoneName.log. This directory also contains log files for
the Stone child processes: the shared page cache monitor, the AlO page server, the
free frame page server, and the garbage collection session. The child processes
have log hames formed from gemStoneName, the process id, and a descriptive
abbreviation. For instance:

gemserver63.1og Stone repository monitor
gemserver6316937pcmon. log Shared page cache monitor
gemserver6316921pgsvraio. log AIlO page server
gemserver6316922pgsvrff.log Free Frame page server
gemserver6316923pagemanager . log Page Manager
gemserver6316924gcgem. log GcGem

Once the problem is identified, your recovery strategy should take into account the
interdependence of GemStone system components. For instance, if an extent
becomes unavailable, to restart the system and recover you may have to kill the
Stone repository monitor if it is still running. The stopstone command won’t work
in this situation, since the orderly shutdown process requires the Stone to clean up
the repository before it stops.

April 2008

GemStone Systems, Inc. 117

How to Recover from an Unexpected Shutdown System Administration Guide for UNIX

Normal Shutdown Message

If you see a shutdown message in the system log file, GemStone has stopped in
response to a stopstone command or a Smalltalk System shutdown method:

[12:54:02.818]
SHUTDOWN command was received from:
User: DataCurator
Gem Host: 10.80.10.59
Gem PID: 14431
GCI Client:
Session: 6

[12:54:02.969]
Now stopping GemStone.

After a normal shutdown, restart GemStone in the usual manner. For instructions,
see “How to Start the GemStone Server” on page 100 of this chapter.

Disk Failure or File System Corruption

GemStone prints several different disk read error messages to the GemStone log
file. For example:

Repository Read failure,

fileName = '#dbf!/users/GemStone6.3/data/extent0.dbf
Pageld = 94

File = /users/GemStone6.3/data/extent0.dbf

too few bytes returned from read()

DBF Operation Read; DBF record 94, UNIX codes: errno=
34,...

"A read error occurred when accessing the repository.'

If you see a message similar to the above, or if your system administrator identifies
a disk failure or a corrupted file system, try to copy your extents to another node
or back them up to tape immediately. The copies may be bad, but it is worth doing,
justin case. If you're lucky, you may be able to copy them back after the underlying
problem is solved and start again with the current committed state of your
repository.

Otherwise, the procedure you need to follow depends on what was done at the
operating system level. For a discussion of the options, see the section “How to
Recover After Repair of the File System” on page 296.

118 GemStone Systems, Inc. April 2008

Running GemStone How to Recover from an Unexpected Shutdown

Shared Page Cache Error

If you find a message similar to the following in the GemStone log, the shared page
cache monitor process (shrpcmonitor) died.

The stone"s connection to the local shared cache monitor
was lost.
Error Text: "Network partner has disconnected.”

The monitor log, $GEMSTONE/ data/gemStoneName_pcmonnnnn. log, may
indicate the reason.

Check Zusr/gemstone/ locks and remove any entries left by the monitor that
died. These files have names that include the Stone name and a network address,
such as gemserver63@127.0.0.1 and gemserver63@127.0.0.1..LCK for
the default Stone name gemserver63.

The unexpected shut down of a Gem process may result in a “stuck spin lock”
error that brings down the shared page cache monitor and the Stone. GemStone
uses spin locks to coordinate access to critical structures within the cache, and each
Gem must release any locks it holds in the process of shutting down. This error
may result from a system crash, but a typical cause is the use of Kkill -9 to kill an
unwanted Gem process. If you must halt a Gem process, be sure to use only kill or
Kill -TERM so that the Gem can perform an orderly shutdown.

Use startstone to restart GemStone. For instructions, see “How to Start the
GemsStone Server” on page 100.

Fatal Error Detected by a Gem

If a Gem session process detects a fatal error that would cause it to halt and dump
a core image, the Stone repository monitor may do the same when it is notified of
the event. This response on the part of the Stone is configurable through the
STN_HALT_ON_FATAL_ERROR option. When that option is set to True (the default)
and a Gem encounters a fatal error, the Stone prints a message like this in its log
file:

Fatal Internal Error condition in Gem
when halt on fatal error was specified in the config file

You can change this response by setting the STN_HALT_ON_FATAL_ERROR
configuration option to False. That setting causes the Stone to attempt to keep
running if a Gem encounters a fatal error; it is the recommended setting for
GemsStone in a production system.

April 2008

GemStone Systems, Inc. 119

Diagnosing Problems with Running Sessions System Administration Guide for UNIX

Some Other Shutdown Message

In the event of other shutdown messages in the GemStone log:

1. Consider whether the shutdown might have been caused by a disk failure or
a corrupt file system, especially if you see an unexpected message such as
Object not found. If you suspect one of these conditions, start with a page
audit of the repository file (see “How to Audit the Repository” on page 217).

If the page audit fails, read the advice under “Disk Failure or File System
Corruption” on page 118 of this chapter, and consult your operating system
administrator.

If the audit succeeds, continue to the next step.

2. If you don’t suspect disk failure or a corrupt file system, try using startstone
to restart GemsStone. For instructions, see “How to Start the GemStone Server”
on page 100.

3. Iftherestart fails, you may have to restore the repository (see “How to Restore
a GemsStone Repository” on page 277).

No Shutdown Message

If the GemStone log doesn’t contain a shutdown message, there has probably been
a power failure or an operating system crash, or the Stone was stopped with a
kill -9. In that event, the Stone repository monitor automatically recovers
committed transactions the next time it starts. Use startstone to restart GemStone.
For instructions, see “How to Start the GemStone Server” on page 100.” See
Appendix B for more information about the startstone command; or, for on-line
documentation, type startstone -h or man startstone.

4.8 Diagnosing Problems with Running Sessions

Sessions may appear to be unresponsive while executing long-running server
operations. If GemStone processes appear to be unresponsive for no known
reason, you should work with GemStone Technical Support to diagnose any
potential problems.

Sending the signal SIGUSR1 to a GemStone process;
% kill -USR1 <pid>

120

GemStone Systems, Inc. April 2008

Running GemStone How to Bulk-Load Objects

will cause both the GemStone Smalltalk code stack and the internal C stack to be
printed to stdout. For the stone or an RPC gem, this is the processes’ log file. For
linked topaz, this is the topaz output.

4.9 How to Bulk-Load Objects

During bulk loading of objects into the repository, it may be desirable to make the
following changes:

Decrease the GEM_TEMPOBJ_CACHE_SIZE and increase
GEM_PRIVATE_PAGE_CACHE_KB configuration options. Then divide the
loading operation into several transactions. Try to keep the size of each
transaction (the number of 8 KB pages written) somewhat smaller than the
combined size of the Gem’s private page cache and the shared page
cache—perhaps 1/2 to 2/3 of their combined size. Limiting the transaction size
reduces the time required for each commit operation.

If you are loading through GemBuilder, you can reduce growth of your
Smalltalk image by using forwarders or explicit stubbing. For instance, when
adding objects to a large collection, make the Collection object a forwarder or,
after adding each element, send it the message #stubYourself.

Disable epoch garbage collection and garbage collection of your Gem’s not-
connected object set. These steps save the CPU time ordinarily devoted to
scanning for dereferenced objects. To do this, log in as GcUser and set
#epochGcEnabled to False. From the session performing the bulk load, set
the runtime parameter #NotConnectedThreshold toalarge value, such as
the maximum Smallinteger; the procedure is described on page 60.

If the bulk load consists of large transactions, put the repository in partial
logging mode during loading (STN_TRAN_FULL_LOGGING = False) and lower
the STN_TRANLOG_LIMIT configuration option. This change reduces size of
the resulting transaction logs by causing each transaction larger than the
specified limit to be written as a checkpoint. (The STN_TRANLOG_LIMIT
configuration option has no effect if the repository has been run in full logging
mode.)

Alternatively, you can increase performance during bulk loads by adding the
following entries to your configuration file:

STN_TRAN_LOG DIRECTORIES = /dev/null, /dev/null;
STN_TRAN_FULL_LOGGING = TRUE;

April 2008

GemStone Systems, Inc. 121

Considerations for Large Repositories System Administration Guide for UNIX

For information about these configuration file options, see pages 418 and 418,
respectively.

NOTE
Be aware that using /dev/nul I for the tranlog directories will prevent
you from being able to restore in the event of a system failure.

4.10 Considerations for Large Repositories

This section presents special considerations that apply to large repositories and
repositories with a large number of sessions.

Loading the object table at startup

When starting the repository, the object table is not loaded into memory, and initial
accesses can take an excessively long time. If you encounter this condition, you
may choose to run the startcachewarmer utility, which explicitly loads the object
table into memory. There is an initial cost at startup, but subsequent performance
will be acceptable.

For details about startcachewarmer, see page 431.

Using remote caches

When running a system on which many users log in simultaneously, consider
using remote caches so that you don’t need to run all Gem processes on the same
machine. There are a couple of ways to optimize this.

= Mid-level caches can reduce network traffic for remote sessions. See “Using
Mid-Level Caches” on page 19.

= To improve performance on remote caches, set
GEM_PGSVR_UPDATE_CACHE_ON_READ (page 403) to True so that
remote Gem sessions will update their local caches. For example:

GEM_PGSVR_UPDATE_CACHE_ON_READ = TRUE;

4.11 Transaction Mode and Disk Space

Sessions only update their view of the repository when they commit or abort. The
repository must keep a copy of each session’s view so long as the session is using
it, even if other sessions frequently commit changes and create new views (commit
records). Storing the original view and all the intermediate views uses up space in

122

GemStone Systems, Inc. April 2008

Running GemStone Transaction Mode and Disk Space

the repository, and can result in the repository running out of space. To avoid this
problem, all sessions in a busy system should commit or abort regularly.

For a session that is not in a transaction, if the number of commit records exceeds
the value of STN_SIGNAL_ABORT_CR_BACKLOG, the Stone repository monitor
signals the session to abort. If the session does not abort, the Stone repository
monitor reinitializes the session or terminates it, depending on the value of
STN_GEM_LOSTOT_TIMEOUT.

Sessions that are in transaction are immune from this process. It is important that
sessions do not stay in transaction for long periods in busy systems; this can result
in the Stone running out of space and shutting down. However, sessions that run
in automatic transaction mode are always in transaction; as soon as they commit or
abort, they begin a new transaction. (For a discussion of automatic and manual
transaction modes, see the “Transactions and Concurrency Control” chapter of the
GemStone/S Programming Guide.)

To avoid running out of disk space, we recommend that you use manual transaction
mode whenever possible. To enter manual transaction mode:

topaz> printit
System transactionMode: #manualBegin
%

Even in manual transaction mode, it is possible to cause a commit record backlog,
depending on how your system is configured. Sessions that are idle should either
issue regular aborts, or set up signalAbort handlers to abort when requested by the
Stone.

At the point that this session needs to commit a change, begin a transaction
manually, then make the changes:

topaz> printit

System beginTransaction

AllUsers addNewUserWithld: #Jane password: "gemstone® .
System commitTransaction

%

After you commit (or abort) the transaction, your session will return to waiting
outside of a transaction.

April 2008

GemStone Systems, Inc. 123

Transaction Mode and Disk Space System Administration Guide for UNIX

124 GemStone Systems, Inc. April 2008

Chapter

5 User Accounts and
Security

This chapter tells how to use the GemStone tools to perform administrative tasks
on an object server. There are two such tools:

= GemBuilder is available as a separate product and requires Smalltalk from a
third-party vendor.

= The Topaz programming environment is a line-oriented interface. It is part of
the GemStone Object Server distribution.

The procedures later in this manual use only the Topaz interface because it is
available to all administrators and because it can be used from any terminal and
readily accepts input from scripts. All administrative tasks can be performed from
the Topaz interface, and a few tasks, such as restoring a backup, require it.

GemBuilder requires a window system. All administrators with access to
GemBuilder can use its visual tools for creating and maintaining user accounts.
Administrators who are experienced with this interface may also prefer to use its
workspace for other administrative tasks, in which case the Topaz examples in this
manual should be helpful because the Smalltalk code is the same.

April 2008 GemStone Systems, Inc. 125

The Administrative Accounts System Administration Guide for UNIX

This chapter also shows you how to perform some common GemsStone user
administration tasks:

< How to create and modify user accounts, including passwords, privileges,
group memberships, and symbol resolution, and how to control the user’s
read-write access to objects through the use of segments.

There are two versions of these procedures, the first using the GemBuilder
administration tools, and the second using Topaz.

< How to configure GemStone login security by restricting valid passwords,
imposing password and account age limits, and monitoring intrusion
attempts.

To perform any of the tasks described in this chapter, you should either have the
GemBuilder administration tools available or be familiar with the Smalltalk
programming language as described in the GemStone Programming Guide.

To perform most of these tasks you must either be explicitly authorized to modify
an affected segment, or have explicit privilege to execute a restricted Smalltalk
method. This chapter introduces these concepts. For a full description, see the
chapter of the GemStone Programming Guide that discusses security.

5.1 The Administrative Accounts

For system administrative work, you will use two logins: DataCurator and
SystemUser. The DataCurator account is used to perform system administration
tasks. The SystemUser account ordinarily is used only for performing GemStone
system upgrades. To log in as SystemUser, simply substitute that name for
DataCurator when you set the GemStone user hame. Access to both of these
accounts should be restricted.

WARNING
Logging in to GemStone as SystemUser is like logging in to your
workstation as root—an accidental modification to a kernel object can
cause a great deal of harm. Use the DataCurator account for system
administration functions except those that require SystemUser
privileges, such as a repository upgrade.

A third administrative account, GcUser, is for the special session that logs in to
perform the garbage collection tasks. Because this user is logged in automatically
by the Stone repository monitor, the primary reason to log in as GcUser yourself is
to tune garbage collection parameters that are stored in GcUser’s UserGlobals.

126

GemStone Systems, Inc. April 2008

User Accounts and Security Defining Your GemStone Environment

5.2 Defining Your GemStone Environment

Before you can launch one of the administrative tools, it’s necessary to define the
session environment. That process is the same as the one described for all users on
page 109. Define the GEMSTONE environment variable and be sure that
$GEMSTONE/bin is in your path.

5.3 User Accounts

This section provides background information about how GemStone stores user
accounts, what accounts are predefined, and what determines an account’s name
space.

UserProfiles

Each GemStone user is associated with an instance of class UserProfile. That
UserProfile object contains information describing objects that the user is allowed
to examine or modify, messages that the user is permitted to send, the user’s native
language, and default attributes of any objects that the user creates.

The following paragraphs describe each of the elements that you specify when
creating a new UserProfile. If you have the necessary privileges or authorization,
you can also modify these elements. In addition, the UserProfile contains a symbol
list for use in resolving symbols in that user’s name space. For a discussion, see
“The UserProfile and Session Symbol Lists” on page 131.

User ID Each UserProfile is associated with a userld—a unique String
that identifies the user to the GemStone system at login.
Embedded spaces are okay.

Password The user supplies this password (an InvariantString) for
identification purposes at login. This password has no
connection with a user’s operating system password and
should be different. GemStone stores the password in
encrypted form in a secure manner. Users must have explicit
privilege to change their own passwords—or anyone else’s.
(See the discussion of privileges below.)

GemStone provides a number of ways to restrict the
passwords that a user can choose, and it can record login
failures and disable the account if failed attempts persist. For
information about changing the default settings, see “How to
Configure GemStone Login Security” on page 165.

April 2008

GemStone Systems, Inc. 127

User Accounts

System Administration Guide for UNIX

Default Segment

Privileges

Groups

When you add a new user to the GemStone system, you must
define the user’s default segment—the segment that, by
default, determines the read and write authorizations for
objects created by the user.

In GemStone Smalltalk, a segment groups objects for
purposes of authorization (protection); that is, if you can read
or write one of a segment’s objects, you can read or write all
of them. The owner of a segment can designate named groups
whose members are authorized to read or write objects in that
segment. For more information about segments, see the
chapter in the GemStone Programming Guide that discusses
security.

When you create a new UserProfile, GemStone ordinarily
creates a new segment in the repository to be the user’s
default segment. By default, the segment’s owner (and no one
else) can read and write in the new segment. You (or the new
owner) can use the segment authorization protocol to enable
other users to read and write in that segment. (For details on
how to do this, see “To Change the Authorization of a
Segment” on page 147 for GemBuilder and page 162 for
Topaz.)

In some cases, you may want to use an existing segment as the
default segment for a new UserProfile. For information, see
page 149 (for GemBuilder) and page 154 (for Topaz).

When you create a new UserProfile, you determine whether
the new user may perform certain “privileged” system
functions that are customarily performed by you, as the
GemsStone data curator. For example, many of the messages to
System require explicit privilege. Table 5.1 lists the Smalltalk
methods associated with each GemStone privilege.

Note that privileges are more powerful than segment
authorization (discussed above). Although the owner of a
segment can always use authorization protocol to restrict read
or write access to objects in a segment, you (as the data
curator) can override that protection by sending privileged
messages that let you change the authorization scheme.

GemsStone uses group membership to supervise access to
objects; each user can examine or modify only those objects
which you (or the segment’s owner) have made available to

128

GemStone Systems, Inc. April 2008

User Accounts and Security User Accounts

that user. Similarly, GemStone ensures that other users cannot
see or change objects that you and the owner have agreed to
keep private.

Each GemStone user may belong to any number of groups.
There are three predefined groups: System, Publishers, and
Subscribers. By default, all new users become members of
group Subscribers.

Table 5.1 Smalltalk Methods with GemStone Privileges

Type of Privileged Methods
Privilege (some methods require more than one privilege)
SystemControl GsSession>>stop
System class>>resumelLogins, shutDown, stopOtherSessions, stopSession:,
suspendLogins, changeCacheSlotloLimit:to:
Statistics System class>>stoneStatistics

SessionAccess

GsSession class>>sessionWithSerial Number:

System class>>concurrencyMode:, currentSessionNames,
descriptionOfSession:, stopOtherSessions, stopSession:,
userProfileForSession:, startGC:, stopGC:, startGC:onExtent:,
startGC:onExtents:, stopGC:onExtent:, stopGC:onExtents:, startGcGem,
stopGcGem, gcSession:, gcSession:onExtent:, gcSession:onExtents:

UserPassword

UserProfile>>oldPassword:newPassword:

DefaultSegment

UserProfile>>defaultSegment:

OtherPassword

UserProfile>>activeUserldLimit, activeUserldLimit:, clearOldPasswords,
isDisabled, lastLoginTime, lastPasswordChange,
loginsAllowedBeforeExpiration, loginsAllowedBeforeExpiration:, password:,
reasonForDisabledAccount, reasonForDisabledAccount:,userld:

UserProfileSet>>findDisabledUsers, findProfileswithAgingPassword

SegmentCreation

Segment class>>newlnRepository:

SegmentProtection

Segment>>group:authorization:, ownerAuthorization:, world Authorization:

FileControl

Repository>>abortRestore, addTransactionLog:replicate:size:, commitRestore,
continueFullBackupTo:MBytes:, continueFullBackupCompressedTo:MBytes:,
createExtent:, createExtent: withMaxSize:, createReplicateOf:named:,
disposeReplicate:, fullBackupTo:, fullBackupCompressedTo:,
fullBackupTo:MBytes:, fullBackupCompressedTo:MBytes:,

restoreFromBackup:, restoreFromBackups:, restoreFromCurrentLogs,
restoreFromLog:, restoreStatus, startNewLog, timeToRestoreTo:

April 2008

GemStone Systems, Inc. 129

User Accounts

System Administration Guide for UNIX

Table 5.1 Smalltalk Methods with GemStone Privileges (Continued)

Type of
Privilege

Privileged Methods
(some methods require more than one privilege)

GarbageCollection Repository>>auditWithLimit:, findDisconnectedObjects, markForCollection,

markGcCandidates, objectAudit, pagesWithPercentFree:, reclaimAll,
repairWithLimit:

System class>>startGC:, stopGC:, startGC:onExtent:, startGC:onExtents:
stopGC:onExtent:, stopGC:onExtents:, startGcGem, stopGcGem, gcSession:,
gcSession:onExtent:, gcSession:onExtents:

(various) System class>>configurationAt:put:

For a more general discussion of UserProfiles in GemStone, see the discussion of
sessions and UserProfiles in the GemStone Programming Guide. Also see the instance
protocol for UserProfile and UserProfileSet in the image.

Predefined Users

When GemStone is first installed, the AllUsers object (a UserProfileSet) has
UserProfiles already defined for the following users. You must never delete these

USers.

SystemUser

DataCurator

GcUser

Nameless

The SystemUser account is the owner of the SystemSegment,
which contains the kernel classes. This account ordinarily is used
only to perform GemStone system upgrades. DO NOT use this
account for ordinary administration tasks. For more about this,
see “The SystemUser Account” later in this section.

The DataCurator account is the account you should use for day-
to-day administration tasks. Initially, DataCurator is granted all
privileges and belongs to all predefined groups. All GemStone
UserProfiles are part of the DataCurator Segment.

The garbage collector user is a special account that logs in to the
repository to perform garbage collection tasks. Initially, GcUser
has only the GarbageCollection privilege and belongs only to
group Subscribers.

The Nameless account is a special account for use only by other
GemStone products. Do not use this account or change it unless
instructed to do so by GemStone.

For more information about AllUsers and other predefined system objects, see
Appendix D, “GemStone Kernel Objects.”

130

GemStone Systems, Inc. April 2008

User Accounts and Security User Accounts

The SystemUser Account

SystemUser is a special user, analogous to root in UNIX. SystemUser has all
privileges, belongs to all predefined groups, and is authorized to read and write
all segments. These privileges and authorizations cannot be taken away, so even if
SystemUser is not a member of a specific group, SystemUser is still able to write to
that group’s segment, no matter what permissions are set on that segment.

SystemUser is the only user in a GemStone system that “breaks the rules” in this
way. All other users have only the authorizations and privileges that you give
them.

SystemUser should only be used when performing administration tasks that
cannot be performed by DataCurator. Normally, the only tasks that require
SystemUser login are installation or upgrade of GemStone products.

If you accidentally create objects in SystemSegment, you can move them into their
proper segment by sending each object the message #changeToSegment:. Todo
this, you will need to log in as SystemUser.

The UserProfile and Session Symbol Lists

As explained in the GemStone Programming Guide, the GemStone Smalltalk
compiler follows a well-defined path in looking for the objects named by source
code symbols (variable names). First, the compiler considers the possibility that a
variable name might be either local (a temporary variable or an argument) or
defined by the class of the current method definition (an instance variable, a class
variable, or a pool variable). If a variable is none of these, the compiler refers to an
Array of SymbolDictionaries in the user’s UserProfile and current session state.
That Array is called the user’s symbol list. The symbol list tells Smalltalk which of
many possible GemStone SymbolDictionaries to search for an object named in a
Smalltalk program. (The predefined SymbolDictionaries are described later.)

Each session’s symbol list consists of two parts. A persistent part (an instance of
class SymbolList) is stored in the repository and referenced from the UserProfile as
the symbolList instance variable. A transient copy of the symbol list is stored in the
GsCurrentSession object for a particular logged-in session. A session’s transient
copy can be modified without affecting (or causing concurrency conflicts with)
either the persistent symbol list or the transient copies controlling other sessions.
Changes to your own UserProfile’s persistent symbol list also change the symbol
resolution of your current session. However, changes to the persistent symbol list
are likely to cause concurrency conflicts with other sessions logged in under the
same userld. For further information about symbol lists and the GsCurrentSession
object, refer to the GemStone Programming Guide.

April 2008

GemStone Systems, Inc. 131

User Accounts System Administration Guide for UNIX

The UserGlobals SymbolDictionary

When you set up a new UserProfile, GemStone automatically creates a new
SymbolDictionary for the user’s private symbols and inserts it as the first element
in the symbol list. This new UserGlobals SymbolDictionary initially contains the
following keys:

= #UserGlobals—the UserGlobals dictionary itself (as the value).

= #NativelLanguage —The user’s native language, in which GemStone will
deliver error messages and dates. Of course, the necessary dictionaries in that
language must be created and installed for this to happen. When you add a
new GemsStone user, the initial #NativelLanguage value is #Engl ish. (For
more information, see the discussion of error handling in the GemStone
Programming Guide manual.)

The UserGlobals dictionary will also contain entries that define the user’s private
objects (for example, test data and new classes that will not be shared with other
GemStone users).

The Globals SymbolDictionary

The second element in each user’s initial symbol list is a “system globals”
SymbolDictionary, ordinarily called Globals. This dictionary contains all of the
GemStone Smalltalk kernel classes (Object, Class, Collection, and so forth).
Although users can read the objects in Globals, ordinarily they cannot modify
objects in that Dictionary. For more information about the Globals Dictionary, see
Appendix D, “GemStone Kernel Objects.”

The Published SymbolDictionary

The third and final element in each user’s initial symbol list is a SymbolDictionary
for application objects that are “published” to all users. Users who have write
authorization (members of the group Publishers) can place objects in this
dictionary to make them visible to other users. Using the Published dictionary lets
you share these objects without having to put them in Globals, which contains the
GemStone kernel classes, and without the necessity of adding a special dictionary
to each user’s symbolList instance variable.

Sharing Objects

As described above, the Globals dictionary provides all GemStone users with
access to such objects as the kernel classes Integer and Collection. If you want
GemStone users to share other objects as well, you need to arrange for references

132 GemStone Systems, Inc. April 2008

User Accounts and Security Using GemBuilder for Administration

to those objects to be added to the users’ symbol lists. There are three primary ways
to do this:

< As amember of group Publishers, you can add the objects to the Published
dictionary. This dictionary is already in each user’s symbol list, so whatever
you add becomes visible to users the next time they obtain a fresh transaction
view of the repository. If you are using the GemBuilder administration tools,
the procedure is similar to that described on page 5-143 for copying a
dictionary, except that you select an object in the Entries pane and choose
Edit > Copy Entry. If you are using Topaz, send the message Publ ished at:
aKey put: aValue.

< You can have users add a special dictionary, such as an application dictionary,
to their own symbol list. The procedure is described under “To Add a
Dictionary to a Symbol List” on pages 5-143 and 5-157. DataCurator typically
can’t make this change for another user without first obtaining write
authorization in that user’s default segment.

< The application itself can add the objects to the individual user’s symbol list,
either to the permanent symbol list in the UserProfile or to a transient symbol
list for that session. For information about this approach, refer to the GemStone
Programming Guide.

Make sure the SymbolDictionaries in each user’s symbol list includes the names of
all objects the user might need. For example, you might add each member of a
programming team to group Publishers. After completing the definition of a new
class, a programmer could make the class available to colleagues by adding it to
the Published dictionary.

For more information, refer to the chapter on symbol resolution and object sharing
in the GemStone Programming Guide.

5.4 Using GemBuilder for Administration

Performing GemStone system administration from GemBuilder involves these
steps:

1. Start GemBuilder and open the GemStone Session Browser. Log in as
described below.

To start GemBuilder, it must have been properly installed in your Smalltalk
image according to the instructions in your GemBuilder release notes. You can

April 2008

GemStone Systems, Inc. 133

Using GemBuilder for Administration System Administration Guide for UNIX

use either your working Smalltalk image or a new stock image, such as
visual .im. For example:

$ visualworks visual.im
In the GemStone menu, choose one of the tools in Admin.
Administer user accounts.

Assign segment authorizations for security purposes.

o &~ WD

When you finish, remember to commit your transaction so that it becomes a
permanent part of the repository.

Logging in Through GemBuilder

Open a GemStone Session Browser (Figure) by choosing Tools > Session
Browser in the GemStone menu.

NOTE
The illustrations shown here are only representative, so the details of
yours may be different.

Choose Add in the upper right portion of the Session Browser, and then fill in the
session parameters in the GemStone Login Editor that appears (Figure 5.2). For
example:

GemStone repository gemservere63
GemStone username DataCurator
GemStone password (type the DataCurator password)

To log in, select the name of the session in the upper left pane of the Session
Browser, then choose Login Link.

For complete information about GemBuilder, see the GemBuilder manual for the
vendor Smalltalk you are using.

134

GemStone Systems, Inc. April 2008

User Accounts and Security Using GemBuilder for Administration

Figure 5.1 The GemStone Session Browser

RI=TEY
Login Lnk | Login Fpc
Add Copy
E dit Remaove...
Commit... Abart. Beqin... Lagaut.... Current ?nL:r?ual
Figure 5.2 The Session Parameters Editor
x

Gemstane repositary

Gemskone usernanme

GemStone password

[] remember
Host usernanme | |
Host password | |
[] remember
FEm Service gemnetabject

| K | Cancel |

April 2008 GemStone Systems, Inc.

135

Using GemBuilder for Administration System Administration Guide for UNIX

Finding the GemBuilder Administration Tools

Once you have successfully logged in to GemStone, you can select any of the
GemBuilder browsers or tools from the GemStone menu and begin working with
the repository.

Figure 5.3 shows the tools that are available through the Admin menu:

= GemsStone Users lets you examine, modify, and delete existing accounts or
create new ones. The GemStone User dialog and the Privileges dialog show the
UserProfile for a particular account.

= Symbol Lists lets you examine and modify the name space of a particular
user. It lets you add and delete dictionaries from the user’s SymbolList, as well
as examine and modify the entries in the dictionaries that make up the
SymbolList.

A third administration tool, the Segment Tool in the Tools menu, lets you create
segments and set their authorizations. Segments provide the means for managing
GemStone authorization at the object level by assigning objects to segments that
have appropriate authorization characteristics.

Committing Your Changes

Remember to commit your changes to the repository. You can do that by choosing
Commit in the row of buttons at the bottom of the Session Browser. Commit is also
available in the File menu of the administration tools shown in Figure 5.3. If you
log out after performing work and do not commit it to the permanent repository,
the uncommitted work is lost.

Logging Out

Log out of GemStone from the Session Browser (Figure) by selecting your session
in the browser’s lower pane and choosing Logout in the row of buttons at the
bottom of the browser. When you log out, GemBuilder prompts you to commit
your changes.

136

GemStone Systems, Inc. April 2008

User Accounts and Security

Using GemBuilder for Administration

Figure 5.3 The GemBuilder Administration Tools

GemStone Users

v GarmnSlone User List
Fle relp

=101x

GemStone User:

LrataCuralor
Gellaer

Plinrm iz

System Lisar

User . SystemUser

Crale Lisor I Show Lisar Info I [hislibir Lisian |

ol
Fle Lser Mo
Lzer D L yate VJ

Fassword |

Mative Language | English

| F'r'wilages..w

B 4

Group Membearship

Fubisbers
Subscribers
Syatam

Add Te Group...

Homowve From Grouw

I.lvdd Tao Mew Group...

[System Contral

[] Statistios

[£] Session Aconss

[#] Usor Password

[¥] Dafault Segmant

[+] Fed Admin Privilege

| [«] Gther Password

Symbol Lists

| Show Symbal List J| Show Segmants

QK Apphy Close

[#] Segment Creation
[#] Segment Protection
[] File Contral

v Symnbeol List Browser =] ﬂ
Fle Mode Lok Obgect Help
Symbal List for :H','.':lmnlj.-.'ur -rl

v Segrvenl Tool on Ses:

[+] Garbage Collection

Cancel

Segment Tool

Dictionaries 1 3 {resnole) lor "Syslembser” on ‘gemseryerb2® ‘lﬂ]ﬂ
Lsavr £3lalinls | Abeslra e Geoment Group [Member Eeports Lhip
Abstra | . |
Published Abstra | Currond | Celaull | Sagmand Mame Cramer Mama [Owmer Acoess | Waorld Acooss
Abstra CataCuratorSegment | DataCurater wirits read
Abstra
| GuTimedonaSegmant | Systaomllser wrili wrili
Selected Dictionary ~ Clobals FPublishedSegmant SystemUser write reene
{aSymbolListDictionary, segms SacurityDataSegment | SystemUzer wirits NorE
Flanasitare Saatam Ranaaiiane 0
Cunverd, | Deladt | SystomSagmand SystomUlser wrilis rasinel =1
HMate: Changas ke plaae imemediataly
Group Name |Group Access | Member List

April 2008

GemStone Systems, Inc.

137

Using GemBuilder for Administration System Administration Guide for UNIX

Administering User Accounts

The GemBuilder administration tools help you create user accounts (UserProfiles)
and examine, modify, and remove existing accounts. Most of these tasks use the
GemStone User List (left side of Figure 5.4) to open a GemStone User dialog (right
side) for a particular user. Follow these general steps for most tasks described in
this section:

Step 1. Inthe GemStone menu, choose Admin > GemStone Users.
Step 2. When the user list appears, select the Userld and choose Show User Info.

Step 3. When the GemStone User dialog appears, carry out the steps in one or
more of the specific procedures that follow.

Step 4. Click on OK or Apply when you are finished.

Step 5. Remember to commit your transaction before logging out.

To List Existing Users

Privileges required: None.

In the GemStone menu, choose Admin > GemStone Users. The resulting
GemStone User dialog lists all users defined in the repository.

For a list of users that includes each user’s group memberships, choose Tools >
Segment Tool from the GemStone menu. When the Segment Tool appears,
choose User Report from the Reports menu.

138

GemStone Systems, Inc. April 2008

User Accounts and Security Using GemBuilder for Administration

Figure 5.4 GemBuilder Tools for Accessing User Profiles

1" GemStone User Lisk =100 x|

File Help

Gem Stone User:

DataCurater R=I
Gellser File User Help
Mam eless
T > User D | YT v
Password
Mative Language | English ~

Systermn U Privileges... Paste To Default Segment
User | SystemUser

Group Membership
Create User || Show User Info Delete User
Publishers Add To Group...
Close Subscribers
System lAdd To Mew Group...

Remove From Group

l Show Symbol List J ‘ Show Segments

0K ﬂ_|:.|:.|:\.' Close

To Add a User

Privileges required: write authorization in the DataCurator Segment;
SegmentCreation.

When you add a user, the GemStone User dialog creates a new UserProfile object
and stores it with other UserProfiles in the global object AllUsers. A new segment
with world read permission is created for the user and is assigned as that user’s
current segment. By default, the new UserProfile has no privileges and no group
membership.

Step 1. Inthe GemStone menu, choose Admin > GemStone Users. When the
list appears, choose the Create User button.

Step 2. When an empty GemStone User dialog appears, enter the User ID.

Step 3. If you enter a Password, it will not be echoed, but you will be asked to
verify it. If you do not enter a password, it will be set to “gemstone”. The

April 2008 GemStone Systems, Inc. 139

Using GemBuilder for Administration System Administration Guide for UNIX

password may not be the same as the Userld and may not be longer than 1024
characters.

Step 4. You can also set privileges and group membership at this time. These
operations are described on page 142 and page 144, respectively.

Step 5. Choose OK when you are finished, or choose Apply if you want to add
another user.

Step 6. Choose Commit in the File menu.

Step 7. Set up the user’s environment, as explained next.

To Set Up the User’s Environment

In addition to adding the UserProfile, you should make sure that each new user
has the GEMSTONE environment variable defined so that it points to the
installation directory. The directory $GEMSTONE/bin must be in each user’s path.
Each user also must know how to execute $GEMSTONE/bin/gemsetup as
described under “To Start a Linked Session” on page 109 or perform similar
functions within an initialization file.

Users may need to belong to the same UNIX group as the Stone repository monitor
process so that they can access the GemStone extents and shared page cache. For
further information, see “To Set File Permissions for the Server” on page 34.

Depending on your site requirements and the application they are running, users
may need to set one or more of the following environment variables:

e GEMSTONE_SYS_CONF and GEMSTONE_EXE_CONF, which can point to
customized configuration files for specific GemStone servers and user
sessions. For general information, see “Creating or Using a System
Configuration File” on page 391.

e GEMSTONE_NRS_ALL, which can set a number of network-related defaults,
including the type of user authentication that GemStone expects. For further
information, see “To Set a Default NRS” on page 81.

= GEMSTONE_LOG, which can set the location of system log files for the Stone
repository monitor and its child processes. For further information, see
“GemsStone Server Logs” on page 212.

= GEMSTONE_LANG, which can be the name of a translated message file in
$GEMSTONE/bin. (only the English version is provided with GemStone,
which does not require this variable.) For further information, see “Specifying
a Language” on page 464.

140

GemStone Systems, Inc. April 2008

User Accounts and Security Using GemBuilder for Administration

Users may require write access to their home directory in order to create .netrc
files and certain log files. At sites where such access is not permitted, refer to “How
to Arrange Network Security” on page 76 and to the discussion of
GEMSTONE_NRS_ALL just cited.

Some users of the Korn shell may encounter errors if their .profile contains
commands that are not IEEE POSIX compliant. Such users should place those ksh
commands within a conditional like the following:

hash -r 2>/dev/null
status=$?
if [$status -ne 0]; then
Place Korn shell-specific initialization here
fi

To Remove a User

Privileges required: write authorization in the DataCurator Segment.

When you delete a user’s account, the GemStone Users tool removes the
UserProfile from AllUsers and puts the UserProfile in your UserGlobals as
oldUserID_userProfile so that objects owned by the former user can still be
accessed. That user’s persistent SymbolList is saved in your UserGlobals as
oldUserID_symbolList. If you remove the UserProfile and SymbolList, the
objects may be discarded.

Step 1. Inthe GemStone menu, choose Admin > GemStone Users.
Step 2. When the user list appears, select the Userld.

Step 3. Choose Delete User. You will be asked to confirm the action. If you
proceed, the old UserProfile and SymbolList will be saved in your
UserGlobals.

Step 4. Remember to commit your transaction before logging out.

April 2008 GemStone Systems, Inc. 141

Using GemBuilder for Administration System Administration Guide for UNIX

To Change a Password

Privileges required: UserPassword to change your own password; OtherPassword
to change another user’s password.

The new password will take effect on the next login after you commit the current
transaction.

Your choice of passwords for your own account may be subject to optional
restrictions as to pattern and the use of certain words. For information, ask your
data curator or see “How to Configure GemStone Login Security” on page 165.

Step 1. Inthe GemStone menu, choose Admin > GemStone Users. When the
user list appears, select the Userld and choose Show User Info.

Step 2. Enter the new password in the GemStone User dialog, then press Tab or
Return. The password may not be the same as the Userld and may not be
longer than 1024 characters.

Step 3. When the verification window appears, enter the new password again.

Step 4. Choose OK or Apply. If you are changing your own password, you will
be asked to enter the old password.

Step 5. Remember to commit your transaction before logging out.

To Change a User’s Privileges
Privileges required: write authorization in the DataCurator Segment.

The new privileges will take effect when you commit the current transaction.

Step 1. Inthe GemStone menu, choose Admin > GemStone Users. When the
user list appears, select the Userld and choose Show User Info.

Step 2. Choose the Privileges button in the GemStone User dialog. Figure 5.5
shows the resulting Privileges dialog.

Step 3. When the Privileges dialog appears, click on the check boxes to toggle
each privilege that you want to change.

Step 4. Choose OK when you are finished.

Step 5. Remember to commit your transaction before logging out.

142 GemStone Systems, Inc. April 2008

User Accounts and Security Using GemBuilder for Administration

Figure 5.5 The Privileges Dialog

x

System Control
Statistics
Session Access
User Password
Default Segment

b

Fed Admin Privilege
Other Password
Segment Creation
Segment Protection
File Control
Garbage Collection

-

To Add a Dictionary to a Symbol List

Privileges required: write authorization in Segment of the symbol list being
modified, which typically is that user’s Default Segment.

You can copy a dictionary from one symbol list and add it to a different user’s
persistent symbol list by using the Symbol List Browser. The change does not affect
the transient copy of the symbol list that is used by another currently logged in
session until that session commits or aborts.

Step 1. Inthe GemStone menu, choose Admin > Symbol Lists.

Step 2. When the Symbol List Browser appears, open Symbol List for and choose
a userld that already has the dictionary in its symbol list. See Figure 5.6.

Step 3. Inthe Dictionaries pane, choose the dictionary you want to copy. Then
choose Edit > Copy Dict.

April 2008

GemStone Systems, Inc. 143

Using GemBuilder for Administration System Administration Guide for UNIX

Step 4. Reopen Symbol List for and choose the userld where you want to add
the dictionary.

Step 5. When the symbol list for that user appears, choose Edit > Paste Dict.

Step 6. Remember to commit your transaction before logging out.

Figure 5.6 The Symbol List Browser

T Symbol List Browser =10] %]

File Mode Edik Ohbject Help

Symbaol List for | DataCurator w
Dictionaries 4 Entries
UserGlobals MusicBoard
Globals MusicCollection
Fublished MusicOrder

MusicRecording

Selected Dictionary | MusicBoard

iaSymbolListDictionary, segment MNumber 2 in L

Fannzitnre Suastam Rannsitare Ownar

To Examine a User’s Group Memberships
No privileges are required for this operation.

< The memberships for a particular user are listed in the GemStone User dialog.
In the GemStone menu, choose Admin > GemStone Users. When the user
list appears, select the Userld and choose Show User Info.

< Forinformation about group memberships for all users, first open the Segment
Tool by choosing Tools > Segment Tool in the GemStone menu. Then
choose Reports > Group Report to see a list of users in each group, or choose
Reports > User Report to see a list of groups for each user.

To Add a User to a Group

Privileges required: write authorization in the DataCurator Segment.

144 GemStone Systems, Inc. April 2008

User Accounts and Security Using GemBuilder for Administration

You can use the GemStone User dialog to add group membership for a particular
user:

= |f the group already exists in the repository, choose Add To Group in the
GemsStone User dialog. Then choose the group name in the list that appears.

< |f the group is a new one in the repository, choose Add To New Group in the
GemsStone User dialog. Then enter the name in the dialog box that appears.

To add group membership for several users, it’s easier to use the Segment Tool:

Step 1. Open the Segment Tool by choosing Tools > Segment Tool in the
GemStone menu.

Step 2. Select the target group:

O Ifthe group already exists in the repository, first select a segment for which the
group has access and then select the group’s name in the list of groups that
appears.

O If the group is a new one, first select the segment to which it is being given
access. Then create the group by choosing Group > Add. Enter a name in the
box that appears and choose OK. By default, the new group will have read
access to that segment; to give write access, select the current access and
change it to “write”.

Step 3. Choose Member > Add and then enter an existing Userld in the box that
appears. Choose OK. Repeat this step for each user.

Step 4. Remember to commit your transaction before logging out.

To Remove a User from a Group

Privileges required: write authorization in the DataCurator Segment.

You can use the GemStone User dialog to remove group membership for a
particular user. Select the group name in the list of group memberships. Then
choose Remove From Group and either OK or Apply.

To remove several users from the same group, it’s easier to use the Segment Tool:

Step 1. Open the Segment Tool by choosing Tools > Segment Tool in the
GemStone menu.

Step 2. Select the group by selecting a segment for which the group has access and
then selecting the group name.

April 2008

GemStone Systems, Inc. 145

Using GemBuilder for Administration System Administration Guide for UNIX

Step 3. Selecta Userld you want to remove, and then choose Member > Remove.
Repeat this step for each user.

Step 4. Remember to commit your transaction before logging out.

To List All Members of a Group

No privileges are required for this operation.

Step 1. Inthe GemStone menu, choose Tools > Segment Tool. (You can also
reach this tool from a GemStone User dialog by choosing the Show Segments
button.)

Step 2. When the Segment Tool appears, choose Group Report from the Reports
menu.

Assigning Segment Authorizations

This section tells how to administer segments using GemBuilder’s Segment Tool.

To Find Out Who Is Authorized to Read or Write in a Segment

Privileges required: read authorization for the segment with which this segment
itself is associated, such as the DataCurator Segment.

Each segment maintains access authorization for its owner, the world, and an
unlimited number of groups. There are three levels of access: none, read-only, and
write (which includes read access).

Step 1. Inthe GemStone menu, choose Tools > Segment Tool to bring up the
Segment Tool, Figure 5.7. (You can also access this tool by choosing Show
Segments in a GemStone User dialog.)

Step 2. Inthe Segment Tool, choose Reports > Segment Report. The report lists
the owner, world, and group authorizations for each segment.

Step 3. To view the members of a particular group, choose Reports > Group
Report. To view the groups to which each user belongs, choose Reports >
User Report.

146 GemStone Systems, Inc. April 2008

User Accounts and Security Using GemBuilder for Administration

Figure 5.7 The Segment Tool

7" Segment Tool on Session 3 (remote) for "SystemUser” on ‘gemsSerye - |EI|5|
File Segment Group Member Reports Help
Current|Default | Segment Name Owner Name |Owner Access |World Access |2
DataCuratorSegment | DataCurator write read
GsTimeZoneSegment| SystemUser write write
PublishedSegment SystemUser write none
SecurityDataSegment | SystemUser write none
Current | Default | SystemSegment SystemUser write read =
Mate: Changes take place immediately
Group Name Group Access Member List

To Change the Authorization of a Segment

Privileges required: SegmentProtection or be the segment’s owner.

Each segment maintains access authorization for its owner, the world, and an

unli

mited number of groups. There are three levels of access: none, read-only, and

write (which includes read access).

The

new authorization will take effect when you commit the current transaction.

Step 1. In the GemStone menu, choose Segments to bring up the Segment Tool,

Figure 5.7. (You can also access this tool by choosing Show Segments in a
GemStone User dialog.)

The top half of the dialog shows the owner, the owner’s access, and the world
access for each segment in the repository.

April 2008

GemStone Systems, Inc. 147

Using GemBuilder for Administration System Administration Guide for UNIX

Step 2. To change owner or world access, select the existing permission you want

to change. Then enter a new permission (“read”, “write”, or “none”).

CAUTION
Use caution when removing write authorization while a user is logged
in. The user will be unable to commit changes if write authorization is
removed from the current segment, and if it is the user’s default segment,
the user’s session will be terminated and the user will be unable to log in
again.

Step 3. To set up or change group access to this segment, do the following:

a

a

Make sure the segment is selected in the top half of the tool. If necessary, click
in the first column of the segment’s row.

To add a group to the authorization list for this segment, choose Add from the
Group menu. Enter the group name in the dialog box that appears. If the
group does not exist in the repository, you will be asked to confirm its creation.

To remove a group from the authorization list, first select the group by clicking
in the first column of the Group Name list. Then choose Remove from the
Group menu. You will asked to confirm the action.

To change the type of access for a particular group, first select that group in the
Group Name list and select the existing permission. Then enter the new
permission (“read” or “write”).

To add a member to a group that has access to this segment, first select that
group in the groups list. Then choose Add from the Member menu. Enter the
Userld and choose OK. (A UserProfile with that Userld must already exist in
the repository.)

To remove a member from a group that has access to this segment, select the
Userld in the member list and choose Remove from the Member menu. You
will be asked to confirm the action.

Step 4. Remember to commit your transaction before logging out. A convenient

way to do that is by choosing Commit from this tool’s File menu.

148

GemStone Systems, Inc. April 2008

User Accounts and Security Using Topaz for Administration

To Change a User’s Default Segment

Privileges required: DefaultSegment to change your own; write authorization in
the DataCurator Segment to change another’s.

Changes to a segment’s authorization do not take effect until the current
transaction is committed.

To change your own default segment:

Step 1. Open the Segment Tool by choosing Tools > Segment Tool in the
GemStone menu.

Step 2. Select the desired segment by clicking in its first column. Then choose
Segment > Make Default. (Alternatively, you can type the @ symbol in front
of the segment name.)

To change someone else’s default segment:
Step 1. In the GemStone User dialog, choose Show Segments.

Step 2. When the Segment Tool appears, select the desired segment by clicking in
the first column. Choose Segment > Grab.

Step 3. Return to the GemStone User dialog. Choose Paste To Default Segment.

Step 4. Choose OK or Apply.

NOTE
If you change any user’s default segment (including your own) to a
segment for which that user lacks write authorization, and you
subsequently commit the transaction, the affected user will no longer be
able to log in to GemStone.

Step 5. Remember to commit your transaction before logging out.

5.5 Using Topaz for Administration

Performing system administration tasks using Topaz involves three steps:
1. Start Topaz and log in to GemStone.

2. Use the Topaz printit command to execute Smalltalk expressions.

April 2008 GemStone Systems, Inc. 149

Using Topaz for Administration System Administration Guide for UNIX

3. Use the Topaz commit command to make your work a permanent part of the
GemsStone repository.

NOTE
You must commit your changes to the repository in order to make them
permanent.

Logging in Through Topaz
To start Topaz, enter:
% topaz -I

Topaz announces itself with a banner:

| GemStone Object-Oriented Data Management System |
| Copyright (C) GemStone Systems, Inc. 1986-2007. |
| All rights reserved. |
L ______ +
| PROGRAM: topaz, Linear GemStone Interface (Linked Session)

| VERSION: 6.3.0, Thu Dec 13 16:51:47 US/Pacific 2007

| BUILT FOR: SPARC (Solaris 8)

| RUNNING ON: 2-CPU mozart sundu (Solaris 2.9 Generic_117171-08) 400MHz
| sparcv9, 2048MB

| PROCESS ID: 1015 DATE: 12/10/07 10:14:19 PDT

| USER IDS: REAL=gsuser (531) EFFECTIVE=gsuser (531)

|

t

opaz>

Next, set three parameters that allow you to log in to the repository: the name of
your GemsStone repository monitor, your GemStone user name, and your
GemStone password. Use the Topaz set command to establish these parameters.
For example:

topaz> set gemstone gemserver63

topaz> set username DataCurator

topaz> set password

GemStone password? (type your GemStone password)
topaz> login

successful login

topaz 1>

The session number in the topaz prompt (“topaz 1>") is a reminder that you are
logged in to a GemStone session. If you log in to additional sessions, the number
in the prompt shows which session is active.

150 GemStone Systems, Inc. April 2008

User Accounts and Security Using Topaz for Administration

If you want to exit to your host operating system from Topaz without terminating
your GemsStone session, use the Topaz spawn command. When the operating
system prompt appears, you can execute system commands. When you’re
finished, type exit. You can then resume your GemStone work from within Topaz.

The Printit Command

The printit command sends text following the command to GemStone for
execution as Smalltalk code, and displays the results. (The run command does the
same thing.) If there is an error in your code, Topaz displays an error message
instead of a legitimate result.

Smalltalk text is terminated by the first line that contains a % symbol in column 1.
For example:

topaz 1> printit
2 +2

%

4

For complete information about Topaz commands, see the GemStone Topaz
Programming Environment. You can also use the help command at the Topaz
prompt.

The Commit Command

The commit command ends the current transaction and stores your changes in the
repository.

NOTE
Always remember to commit changes you want to become persistent.
Your changes are not part of the repository (and therefore not visible to
subsequent sessions) until you issue the Smalltalk message System
commitTransaction or invoke the Topaz commit command.

Administering User Accounts

This section explains how to create user accounts (UserProfiles) and how to
examine, modify, and remove existing accounts using Topaz. Most of these tasks
explicitly access UserProfiles in the global object AllUsers.

To List Existing Users

Privileges required: None.

April 2008

GemStone Systems, Inc. 151

Using Topaz for Administration System Administration Guide for UNIX

There is no direct method within GemStone Smalltalk to list only the names of
existing accounts. The following example shows one way to obtain that
information:

topaz 1> level 1

topaz 1> printit

AllUsers collect: [:each | each userld] .
%

an ldentityBag

_varyingSize 4
_numEntries 4
_indexedPaths nil
_levels 0

#1 DataCurator
#2 SystemUser
#3 Nameless
#4 GcUser

To Add a User

Privileges required: write authorization in the DataCurator Segment;
SegmentCreation.

This section shows how to create a new GemStone UserProfile object. The new
UserProfile is stored in the global object AllUsers (a UserProfileSet), along with all
other UserProfiles

NOTE
You must add each new user to AllUsers.

In addition to creating the new UserProfile, you should also see that each user’s
UNIX environment is set up to provide access to GemsStone. That discussion is on
page 140.

GemsStone Smalltalk provides two methods for adding a user. The simplified form
requires only a Userld and a password. The complete form also allows you to set
the user’s default segment, and the privileges and groups for that segment.

Without Privileges or Groups

You can use the simplified form to create a new user with no privileges or group
memberships. A new segment is created for the user and is assigned as that user’s
default segment. (The new user may subsequently want to restrict access to the
new segment, which is created with read permission for the world.)

152

GemStone Systems, Inc. April 2008

User Accounts and Security Using Topaz for Administration

In the following example, you must supply the new user’s userld and password
(each as a String). The password may not be the same as the Userld and may not
be longer than 1024 characters.

topaz 1> printit

AllUsers addNewUserWithld: “theUserld"
password: "thePassword” .

commit the new UserProfile”

System commitTransaction

%

To Assign Privileges and Group Memberships

Using the complete form allows you to assign privileges to the new user, add the
user to groups (used for read/write authorization in segments), and explicitly
specify the user’s default segment.

Execute this expression (an example follows):

topaz 1> printit
AllUsers addNewUserWithld: “theUserld®
password: "thePassword”
defaultSegment:
(Segment newlnRepository:
(System segment repository))
privileges: anArrayOfPrivStrings
inGroups: aCollectionOfGroupStrings -

(AllUsers userWithld: "theUserld®) defaultSegment
owner: (AllUsers userWithld: “theUserld®) .

commit the new UserProfile"

System commitTransaction.

%

You must supply the new user’s Userld and Password, and specify any privileges
or group memberships. The password may not be the same as the Userld and may
not be longer than 1024 characters. A new segment is created for the new user, and
is assigned as that user’s default segment. The owner : message establishes the

April 2008 GemStone Systems, Inc. 153

Using Topaz for Administration System Administration Guide for UNIX

new user as the owner of that default segment, thus allowing the new user to log
in to GemStone. For example:

topaz 1> printit
AllUsers addNewUserWithld: “Mary*
password: “herPasswd”
defaultSegment:
(Segment newlnRepository:
(System segment repository))
privileges: #("UserPassword® “DefaultSegment®)
inGroups: #[“MarathonRunners®] .

(AllUsers userWithld: "Mary®) defaultSegment
owner: (AllUsers userWithld: “Mary®) .
*commit the new UserProfile"
System commitTransaction.
%

Alternatively, you can assign an existing segment to a user by explicitly specifying
adefaultSegment: argument. Note that before he or she can log in to
GemStone, the new user must be authorized to read and write in the specified
default segment. To modify the previous example:

defaultSegment: anExistingSegment

You can subsequently refer to the new user’s default segment symbolically by
executing an expression of the form:

topaz 1> printit

| theUser|

theUser := AllUsers userWithld: “theUserld™ .
UserGlobals at: #aSymbol put: (theUser defaultSegment)
%

For more information about privileges and default segments, see the discussion
entitled “UserProfiles” on page 127.

To Change Your Own Password

Privileges required: UserPassword.

Your choice of passwords for your own account may be subject to optional
restrictions as to pattern and the use of certain words. For information, ask your
data curator or see “How to Configure GemStone Login Security” on page 165.

154

GemStone Systems, Inc. April 2008

User Accounts and Security Using Topaz for Administration

To modify your own GemsStone password, execute the following expression. The
new password will take effect when you commit the current transaction. The
password may not be the same as the Userld and may not be longer than 1024
characters.

topaz 1> printit
System myUserProfile
oldPassword: "oldPasswordString ™
newPassword : "newPasswordString™ .
System commitTransaction
%

To Change Another User’s Password

Privileges required: OtherPassword.

To modify the password of a GemStone user (other than your own), execute the
following expression.

topaz 1> printit

(AllUsers userWithld: “theUserld®)
password: ‘newPasswordString*®

System commitTransaction

%

The new password takes effect when you commit the current transaction.

The password set by this method is not subject to the optional pattern restrictions
described on page 165 because it can only be set by a user having the
OtherPassword privilege. The password may not be the same as the Userld and
may not be longer than 1024 characters.

Each password change of this type is noted in the GemStone security log, which
currently is the Stone’s log file. The entry includes the userld of the session making
the change but not the new password.

To Examine a User’s Privileges

No privileges are required for this operation.

GemsStone provides messages that allow you to determine which privileged
methods a GemStone user may execute, and to change the privileges of any user.
Naturally, you need the appropriate authorization to use those methods.

To find out which privileged methods a given user is permitted to execute, first
make sure that the Topaz display level is sufficient to display that information. The
Topaz display level determines the amount of detail that appears in the results of

April 2008

GemStone Systems, Inc. 155

Using Topaz for Administration System Administration Guide for UNIX

Smalltalk execution. Use the Topaz level command to raise the level to at least 1,
so that privileges information will be displayed:

topaz 1> level 1
Now send the following message to the desired user’s UserProfile:

topaz 1> printit
(AllUsers userWithld: "theUserld®) privileges
%

This message returns an Array of Strings. Each String in the Array corresponds to
one of the user’s privileges. Refer back to Table 5.1 on page 129 for a list of the
Smalltalk methods that correspond to each privilege.

To Assign a Privilege to a User
Privileges required: write authorization in the DataCurator Segment.
The new privileges will take effect when you commit the current transaction.
To add to a user’s existing privileges, execute the following expression:

topaz 1> printit

(AllUsers userWithld: “theUserld®)
addPrivilege: aPrivilegeString

%

Here’s an example that assigns three new privileges to user Bob:

(AllUsers userWithld: "Bob®)
addPrivilege: “SystemControl®;
addPrivilege: "SessionAccess”;
addPrivilege: “UserPassword”

To Revoke a User’s Privilege
Privileges required: write authorization in the DataCurator Segment.

The privileges will be revoked when you commit the current transaction.

To revoke one (or more) of a user’s existing privileges, execute the following
expression:

topaz 1> printit

(AllUsers userWithld: “theUserld®)
deletePrivilege: aPrivilegeString

%

156 GemStone Systems, Inc. April 2008

User Accounts and Security Using Topaz for Administration

The following example revokes three of user Jane’s privileges:

(AllUsers userWithld: "Jane®)
deletePrivilege: "SystemControl~;
deletePrivilege: "SessionAccess”;
deletePrivilege: “UserPassword®

To Redefine a User’s Privileges

Privileges required: write authorization in the DataCurator Segment.
The new privileges will take effect when you commit the current transaction.

To redefine privileges a user’s privileges, perhaps adding some and revoking
others, execute the following expression:

(AllUsers userWithld: theUserld) privileges:anArrayOfStrings

This expression supersedes any previous privilege assignments. After the change
is committed, only those privileges listed in the expression are valid for the user.
Any privileges that were previously valid, but are not listed, are revoked.

For example:

topaz 1> printit
(AllUsers userWithld: "Sam®) privileges:
#(“UserPassword® “DefaultSegment®) .
System commitTransaction
%

To Add a Dictionary to a Symbol List

Privileges required: write authorization in the Segment of the symbol list being
modified, which typically is that user’s default Segment.

You can add a dictionary to a user’s persistent symbol list by sending the message
UserProfile>>insertDictionary:aSymbolDictionary at:anindex. The
change does not affect the transient copy of the symbol list that is used by another
currently logged in session until that session commits or aborts.

This example inserts dictionary NewDict (which already exists in the Published
dictionary) in to the user’s own symbol list:

topaz 1> printit
System myUserProfile
insertDictory: NewDict at: 2 .
System commitTransaction
%

April 2008

GemStone Systems, Inc. 157

Using Topaz for Administration System Administration Guide for UNIX

Inserting the new dictionary at index 2, as in the example, places it between the
UserGlobals and the Globals dictionaries in the search order. Because symbol
resolution depends on the order of dictionaries in a user’s symbol list, the index
used in this example may not be appropriate for all situations.

To Examine a User’s Group Memberships

No privileges are required for this operation.

To find out which groups a user belongs to, first make sure that the Topaz display
level is sufficient to display that information. Use the Topaz level command to
raise the level to at least 1, so that group membership information will be
displayed:

topaz 1> level 1
Now execute the following expression:

topaz 1> printit
(AllUsers userWithld: "theUserld®) groups
%

This expression returns a Set of Strings indicating the groups to which the user
belongs.

To Add a User to a Group

Privileges required: write authorization in the DataCurator Segment.
Do the following to add a user to a group:

topaz 1> printit
" IFf this is a new group, add it to
the "master list®™ AlIGroups ™
("MarathonRunners® in: AlIGroups)
ifFalse: [AllGroups add: "MarathonRunners® 7].
(AllUsers userWithld: “theUserld®) addGroup: “MarathonRunners*®

%

This expression adds the user to the group MarathonRunners by adding the group
name to the list of groups maintained in the UserProfile. (This action takes effect
when you commit the current transaction.) Now, the user can read or modify any
objects stored in segments for which the group MarathonRunners has the
appropriate authorization.

158

GemStone Systems, Inc. April 2008

User Accounts and Security Using Topaz for Administration

If the group MarathonRunners did not previously exist, this expression creates it
in AllGroups (the “master list” of all group names). See Appendix D, “GemStone
Kernel Objects,” for more information about AllGroups and other predefined
system objects.

To Remove a User from a Group

Privileges required: write authorization in the DataCurator Segment.

You can execute an expression of the following form to remove a user from a
group:

topaz 1> printit
(AllUsers userWithld: “theUserld®) removeGroup: #Sprinters.
%

This expression removes the designated group from the list of groups to which the
user belongs. This action will take effect when you commit the current transaction.
For more information about groups, and about GemStone’s authorization

mechanism in general, see the “Security” chapter of GemStone Programming Guide.

To List All Members of a Group

No privileges are required for this operation.

To list all members of a user group, first make sure that the Topaz display level is
sufficient to display that information. Use the Topaz level command to raise the
level to at least 1, so that group membership information will be displayed:

topaz 1> level 1
Now execute the following expression:

topaz 1> printit
AllUsers membersOfGroup: aString
%

This expression returns an IdentitySet containing the userld for each member of
the group.

To Remove a User Group

Privileges required: write authorization in the DataCurator Segment.

To remove a user group from the global object AllGroups, execute the following
expression. (You do not need to enter the comments, which are within double
guotes.)

April 2008

GemStone Systems, Inc. 159

Using Topaz for Administration System Administration Guide for UNIX

topaz 1> printit
| theGroup aSegment |
theGroup := aGroupString
"Does any segment still have authorization for this group?
If so, return the segment and exit.™
SystemRepository do:
[:aSegment |
(aSegment authorizationForGroup: theGroup) == #none
ifFalse: [~ aSegment asString].
1-
""Does the group still contain any members? If so, First
remove each member from the group™
(AllUsers usersiInGroup: theGroup) do:
[:aUserProfile| aUserProfile removeGroup: theGroup].
“It’s okay to remove the group itself”
AllGroups remove: theGroup .
%

To Modify Someone’s User ID
Privileges required: write authorization in the DataCurator Segment.

The new user ID will take effect when you commit the current transaction.

To modify the user ID of a GemStone user (other than your own), execute the
following expression:

topaz 1> printit
(AllUsers userWithld: "theUserld®) userld: "newld" .
%

An error is raised if newld is the userld of an existing UserProfile.

To Remove an Account
Privileges required: write authorization in the DataCurator Segment.

The global object AllUsers (a UserProfileSet) serves as the master list of all
authorized GemsStone users. When you need to cancel a user’s access to GemsStone,
you can simply move that user’s UserProfile from AllUsers to a UserProfileSet
called OldUsers, which contains all obsolete UserProfiles. Any objects owned by
members of OldUsers remain intact, but their owners can no longer access the
repository.

160 GemStone Systems, Inc. April 2008

User Accounts and Security Using Topaz for Administration

First, verify that OldUsers already exists:
topaz 1> object OldUsers

If OldUsers already exists, Topaz will print some information about it (depending
upon the current display level). If OldUsers does not already exist, Topaz will
issue a message of the form could not find an object named OldUsers.
To create OldUsers, execute the following expression:

topaz 1> printit
UserGlobals at: #OldUsers put: UserProfileSet new
%

Now add the obsolete UserProfile to OldUsers, then delete it from AllUsers:

topaz 1> printit

OldUsers add: (AllUsers userWithld: “theUserld™).

AllUsers remove: (AllUsers userWithld: “theUserld®)
ifAbsent: []

System commitTransaction

%

To subsequently access any segments or other objects owned by the former user,
you can refer to (OldUsers userWithld: "theUserld®) wherever you would refer
to an active UserProfile.

Assigning Segment Authorizations

This section tells how to administer segments using Topaz.

To Find Out Who Is Authorized to Read or Write in a Segment

Privileges required: read authorization for the segment with which this segment is
associated, such as the DataCurator Segment.

Each segment maintains access authorization for its owner, the world, and an
unlimited number of groups. There are three levels of authorization: none, read
(read-only), and write (which includes read permission).

You can find out who is authorized to read or write objects in a segment by sending
it the message asString.For instance:

April 2008 GemStone Systems, Inc. 161

Using Topaz for Administration System Administration Guide for UNIX

topaz 1> printit

PublishedSegment asString

%

aSegment, Number 6 in Repository SystemRepository
Owner SystemUser write

Group Subscribers read

Group Publishers write

World none

To Change the Authorization of a Segment
Privileges required: SegmentProtection or be the segment’s owner.

Each segment maintains access authorization for its owner, the world, and an
unlimited number of groups. There are three authorization symbols: #none, #read
(read-only), and #write (which includes read permission).

The new authorization will take effect when you commit the current transaction.

CAUTION
Do not, under any circumstances, attempt to change the authorization of
the SystemSegment.

To change the authorization for a segment, execute any (or all) of the following
expressions.

topaz 1> printit

theSegment ownerAuthorization: #anAuthorizationSymbol .

%

topaz 1> printit

theSegment worldAuthorization: #anAuthorizationSymbol .

%

topaz 1> printit

theSegment group: #aGroupString
authorization: #anAuthorizationSymbol

%

NOTE

Exercise caution when changing the authorization for any segment that
a user may be using as his or her default segment or current segment —
whether or not the user owns the affected segment. If a user attempts to
commit a transaction, but has created objects in a segment for which he
or she no longer has write authorization, an error will be generated.

162 GemStone Systems, Inc. April 2008

User Accounts and Security Using Topaz for Administration

For example, to authorize the group Accounting to read (but not write) in user Eli’s
default segment, you could execute the following expression:

topaz 1> printit

(AllUsers userWithld: "Eli") defaultSegment
group: #Accounting authorization: #read .

%

If the group #Accounting does not exist, GemStone will return an error. The
discussion “Add a User to a Group” earlier in this chapter tells how to create a new
GemStone group.

To Remove a Group from a Segment’s Authorization List

Privileges required: SegmentProtection or be the segment’s owner; write
authorization for the segment.

To remove a group from a segment’s list of authorized groups, execute the
following expression:

topaz 1> printit
theSegment group: #aGroupString authorization: #none
%

To Change a User’s Default Segment

Privileges required: DefaultSegment to change your own; write authorization in
the DataCurator Segment to change another’s.

Changes to a segment’s authorization do not take effect until the current
transaction is committed.

To change a user’s default segment, execute the following expression:

topaz 1> printit
(AllUsers userWithld: "theUserld®) defaultSegment: aNewSegment
%
NOTE

If you change any user’s default segment (including your own) to a

segment for which that user lacks write authorization, and you

subsequently commit the transaction, the affected user will no longer be

able to log in to GemStone.

April 2008

GemStone Systems, Inc. 163

Using Topaz for Administration System Administration Guide for UNIX

To Check a Segment for Authorization Errors

If your application is experiencing unexplainable authorization errors, do an object
audit and examine the audit report for clues. (For information, see “How to Audit
the Repository” on page 217.”)

If the audit report does not indicate inconsistencies in the repository, you can
perform a segment-level consistency check, which verifies that every segment is
owned, that the owner of each segment is a member of AllUsers, and that each
group is an element of AllGroups. To perform the consistency check, execute the
following expression:

topaz 1> printit
| result |
result = Array new.
SystemRepository do:[:aSegment |
aSegment owner == nil
ifTrue:[
result add: #[aSegment asString, "has no owner®]]-
(AllUsers includes: aSegment owner)
ifFalse:[
result add: #[aSegment, "owner not in AllUsers®]]-
aSegment groups do:
[:aGroup | (AllGroups includes: aGroup)
ifFalse:[
result add:
#[aSegment, aGroup, "group not inAllGroups®]
1
1
1-
~result
%

If the size of the result is not zero, contact your GemStone customer support
representative.

164 GemStone Systems, Inc. April 2008

User Accounts and Security How to Configure GemStone Login Security

5.6 How to Configure GemStone Login Security

GemStone provides several login security features. You can:

= Constrain the choice of passwords to a certain pattern, ban particular
passwords altogether, or ban reuse of a password by the same account.

= Require users to change their passwords periodically (password aging).
= Limit the number of logins under a temporary password.

< Disable accounts that have not logged in for a specified interval (account
aging).
= Limit the number of concurrent sessions by a particular account.

= Monitor failed login attempts and, if necessary, disable further login attempts
on that account.

In all cases, the password may not be the same as the Userld and may not be longer
than 1024 characters.

Additional methods let you determine which accounts have been disabled by one
of these security features and why a particular account was disabled.

CAUTION
GemStone logs certain administrative changes to these security features
in the Stone’s system log. You may want to restrict access to that file.

The SystemUser, DataCurator, and GcUser accounts are never disabled by the
security features.

To Constrain the Choice of Passwords

Privileges required: write authorization in the DataCurator segment.

You can constrain a user’s choice of passwords in terms of pattern (such as the
number of characters that repeat). Independently, you can establish a list of words
that are disallowed as passwords, and you can keep a user from choosing the same
password more than once.

The constraints described here apply only when a user changes his or her own
password by using the message
UserProfile>>oldPassword:newPassword: and only to password changes
after the constraint is committed to the repository. That is, the constraints (other
than the prohibition of userld as the password) do not apply to administrator

April 2008

GemStone Systems, Inc. 165

How to Configure GemStone Login Security

System Administration Guide for UNIX

actions changing any other account’s password using the OtherPassword
privilege, and they do not invalidate existing passwords.

Table 5.2 shows the messages by which you can set the pattern constraints. Send
each message to the global object AllUsers. For example, to set the minimum
password length to six characters, do this:

topaz 1> printit

AllUsers minPasswordSize: 6
System commitTransaction

%

The default setting in all cases is 0, which means there is no constraint on the

pattern.

Table 5.2 Ways to Constrain the Password Pattern

Message to AllUsers

Comments

minPasswordSize:
aPositivelnteger

Sets the minimum number of characters in a
new password; 0 means no constraint.

maxPasswordSize:
aPositivelnteger

Sets the maximum number of characters in a
new password; 0 disables the constraint. (The
password String itself may not be longer than
1024 characters.)

maxRepeatingChars:
aPositivelnteger

Sets the maximum number of adjacent
characters that can have the same value; for
example, 1 allows 'aba’ but not 'aa’. 0 means no
constraint.

aPositivelnteger

maxConsecutiveChars:

Sets the maximum number of adjacent
characters that can be an ascending or
descending sequence, such as '123' or 'zyx'
based on a case-sensitive comparison. 0 means
no constraint.

maxCharsOfSameType:
aPositivelnteger

Sets the maximum number of adjacent
characters that can be of the same type (alpha,
numeric, or special); for example, 3 allows
‘abc4de’ but not 'abcde’. 0 means no constraint.

Any user can inquire about the current setting of a password pattern constraint by
a sending its corresponding Accessing message (that is, without the colon or
argument shown in Table 5.2). For example, to determine the current minimum

size for a password:

166

GemStone Systems, Inc.

April 2008

User Accounts and Security How to Configure GemStone Login Security

topaz 1> printit
AllUsers minPasswordSize
%

6

Disallowing Particular Passwords

Privileges required: write authorization in the DataCurator segment.

You can create a list of disallowed passwords by adding Strings to the AllUsers
instance variable disallowedPasswords. Any messages understood by class Set
can be used. For instance:

topaz 1> printit

(AllUsers disallowedPasswords)
addAll: #("Mother®™ “apple pie®) .

System commitTransaction

%

The default is an empty set.

Additions to the list affect only new passwords requested after the additions are
committed; that is, additions do not invalidate existing passwords. If a user
attempts to change that account’s password to one of the Strings in
disallowedPasswords, the error #rtRestrictedPassword is returned.

Any user can examine the current list of globally disallowed passwords by sending
the message Al lUsers disal lowedPasswords.

Disallowing Reuse of Passwords

Privileges required: write authorization in the DataCurator segment.

You can prevent each user from choosing the same password more than once by
setting the AllUsers instance variable disallowUsedPasswords to true. For
example:

topaz 1> printit

AllUsers disallowUsedPasswords: true .
System commitTransaction

%

The default setting is false.

When reuse of passwords is disallowed, GemStone maintains a separate encrypted
set of old passwords for each user. Each time a user invokes
oldPassword:newPassword:, the new password is checked against the prior

April 2008

GemStone Systems, Inc. 167

How to Configure GemStone Login Security System Administration Guide for UNIX

passwords for that account. If the new password matches a prior one, the error
#rtUsedPassword is returned.

Clearing a User’s Disallowed Old Passwords
Privileges required: OtherPassword.

You can clear the set of old passwords so that they can be reused by sending the
message clearOldPasswords to that user’s UserProfile. As mentioned above,
this set is maintained for each user when the AllUsers instance variable
disallowUsedPasswords is set to true. The following example clears the
remembered passwords for account ga2:

topaz 1> printit

(AllUsers userWithld: "qa2") clearOldPasswords .
System commitTransaction

%

To Require Periodic Password Changes

Privileges required: write authorization in the DataCurator segment.

You can require users to change their password periodically by sending the
message UserProfi leSet>>passwordAgeL imit:numberOfHours. For
example, to set the limit to 120 days:

topaz 1> printit

AllUsers passwordAgeLimit: 120 * 24 .
System commitTransaction

%

The passwordAgeLimit is added to the time the password was last changed to
determine when the password will expire. A setting of 0 (the default) disables
password aging.

Each time this method is invoked, the action is recorded in the GemStone security
log (currently, the Stone’s log).

If a user does not change the account’s password within the specified interval, the
account is disabled. Attempts to log in return error #gsErrLoginFailure. However,
the SystemUser, DataCurator, and GcUser accounts are never disabled by
password aging.

DataCurator or another user with the OtherPassword privilege can reactivate the
disabled account by giving it a new password as explained on pages 5-142 and
5-155.

168

GemStone Systems, Inc. April 2008

User Accounts and Security How to Configure GemStone Login Security

Providing Warning of Password Expiration
Privileges required: write authorization in the DataCurator segment.

You can provide an automatic warning to users whose password is about to expire
by sending the message
UserProfileSet>>passwordAgeWarning:numberOfHours. For example, to
warn users who log in within five days of the time their password will expire, do
this:

topaz 1> printit

AllUsers passwordAgeWarning: 5 * 24 .
System commitTransaction

%

Logins within numberOfHours prior to expiration receive the error
#rtErrPasswordExpirationWarning.

Finding Accounts With Password About to Expire
Privileges required: OtherPassword.

You can find out which accounts have a password within the warning period set
by passwordAgeWarning:. To do this, send the message
FfindProfilesWithAgingPassword to AllUsers. For example:

topaz 1> printit

AllUsers findProfilesWithAgingPassword
collect: [:u | u userlid]

%

an OrderedCollection

#1 qal

#2 qa2

#3 qa3

Finding Out When a Password Was Changed

Privileges required: OtherPassword.

You can find out the last time the password was changed for a particular userld by
sending the message lastPasswordChange to that account’s UserProfile. This

April 2008 GemStone Systems, Inc. 169

How to Configure GemStone Login Security System Administration Guide for UNIX

example converts the DateTime returned to a particular pattern based on
MM/DD/YY:;

topaz 1> printit

(AllUsers userWithld: "ga2") lastPasswordChange US12HrFormat
%

03/19/2007 11:28 am

To Disable Inactive Accounts

Privileges required: write authorization in the DataCurator segment.

You can have the system disable accounts for which there has been no login for a
specified length of time. To do this, send the message staleAccountAgeLimit:
numberOfHours to AllUsers. This example disables accounts when they have not
logged in for 30 days:

topaz 1> printit

AllUsers staleAccountAgeLimit: 30 * 24 .
System commitTransaction

%

Each time this method is invoked, the action is recorded in the GemStone security
log (currently, the Stone’s log).

A setting of 0 (the default) disables account aging.

The SystemUser, DataCurator, and GcUser accounts are not disabled by this
mechanism.

DataCurator or another user with the OtherPassword privilege can reactivate the
account by giving it a new password as explained on pages 5-142 and 5-154.

Finding Out When an Account Last Logged In

Privileges required: OtherPassword.

If at least one age limit applies to an account, you find out when that account last
logged in by sending the message lastLoginTime to thataccount’s UserProfile.
For example:

topaz 1> printit

(AllUsers userWithld: "qga2") lastLoginTime US12HrFormat
%

03/19/2007 01:40 pm

170

GemStone Systems, Inc. April 2008

User Accounts and Security How to Configure GemStone Login Security

The time of the last login is maintained only if loginsAllowedBeforeExpiration is
set in that UserProfile or if at least one of these instance variables is set in AllUsers:
passwordAgeLimit, passwordAgeWarning, or staleAccountAgeLimit.

To Disable a User’s Account

Privileges required: write authorization in the DataCurator segment.

You can have the system disable an individual user’s account. To do this, send the
message disabl e to the account’s UserProfile. This example disables the account
llqaZ!!:

topaz 1> printit

(AllUsers userWithld: "ga2") disable .
System commitTransaction

%

DataCurator or another user with the OtherPassword privilege can reactivate the
account by giving it a new password, using the password: method. For details,
see pages 5-142 and 5-155.

To Limit Logins Until Password Is Changed

Privileges required: OtherPassword.

When you assign a password to an account, you can make the password
temporary by limiting the number of times it can be used. This limitation applies
only to a specific account, that is, to the UserProfile that is the receiver of the
message. It is intended for use with a new or reactivated account as a means of
ensuring that the user changes the password. For example, the following limits the
account “ga2” to two more logins under the current password:

topaz 1> printit

(AllUsers userWithld: "qa2")
loginsAl lowedBeforeExpiration: 2 .

System commitTransaction

%

A setting of 0 (the default) disables this feature.

The limit remains in effect until the user changes the password (see pages 5-142
and 5-154). Once the password is changed, the limit for that account is set to 0. The
password will not expire again unless a new limit is set by repeating

loginsAl lowedBeforeExpiration:.

April 2008

GemStone Systems, Inc. 171

How to Configure GemStone Login Security System Administration Guide for UNIX

If the limit is exceeded before the password is changed, the system disables the
account. DataCurator or another user with the OtherPassword privilege can
reactivate the account by giving it a new password, as explained on pages 5-142
and 5-155.

The SystemUser, DataCurator, and GcUser accounts are not disabled by this
mechanism.

To Limit Concurrent Sessions by a Particular Userid

Privileges required: OtherPassword.

You can limit the number of concurrent sessions logged in under a particular
userld by sending the message activeUserldLimit: aPositivelnteger to the
UserProfile for that account. For example, the following limits the userld “qa2” to
four concurrent sessions:

topaz 1> printit

(AllUsers userWithld: "ga2") activeUserldLimit: 4 .
System commitTransaction

%

A setting of 0 (the default) disables this feature.

If a user attempts to log in when the maximum number of sessions for that userld
are already logged in, the login is denied and the fatal error
#gsActiveUserLimitExceeded is returned.

To Record Login Failures

The Stone repository monitor keeps track of login failures (incorrect passwords)
for each account and can write that information to the GemStone security log
(currently, the Stone’s log). By default, messages are logged when the same
account fails login attempts 10 or more times within 10 minutes. The default limits
can be changed by setting the STN_LOG_LOGIN_FAILURE_LIMIT and
STN_LOG_LOGIN_FAILURE_TIME_LIMIT configuration options.

The log message gives the following information:

-—-Fri 07 Mar 2008 09:39:40 PST ---
GemStone user DataCurator has failed on 10 attempt(s)
to log in within 1 minute(s).
The last attempt was from user account writerl on host
name docs.

172 GemStone Systems, Inc. April 2008

User Accounts and Security How to Configure GemStone Login Security

Disabling Further Login Attempts

If login failures continue, the Stone repository monitor can disable the account by
changing the GemStone password to an invalid one (that is, to a password that
cannot be entered). Be default, the account is disabled when the number of failures
exceeds 15 within 15 minutes. The default limits can be changed by setting the
STN_DISABLE_LOGIN_FAILURE_LIMIT and
STN_DISABLE_LOGIN_FAILURE_TIME_LIMIT configuration options.

Subsequent attempts to login as that account result in the following error message:

Login failed: the GemStone userld/password combination is
invalid.

The SystemUser, DataCurator, and GcUser accounts are not disabled by this
mechanism.

To reactivate an account that has been disabled by this mechanism, the
DataCurator (or another account with explicit OtherPassword privilege) must
change the account’s password to a valid one. See the instructions under “To
Change Another User’s Password” on pages 5-142 and 5-155.

To Find Out Which Accounts Have Been Disabled

Privileges required: OtherPassword.

The message AllUsers findDisabledUsers returns a SortedCollection of
UserProfiles that are disabled by one of the security precautions described in this
section:

= the password expired (through aging or a login limit),
= the account remained inactive, or

= there were repeated password failures.

For example:

topaz 1> level 1
topaz 1> printit
AllUsers findDisabledUsers
collect: [:aUser | aUser userld] .
%
an _Array
#1 qa2
#2 qa3

April 2008

GemStone Systems, Inc. 173

How to Configure GemStone Login Security System Administration Guide for UNIX

In each case, the account has been disabled by setting its password to one that is
invalid. DataCurator or another user with the OtherPassword privilege can
reactivate an account by giving it a new password. For information about how to
do that, see pages 5-142 and 5-154.

To Verify That an Account Is Disabled

Privileges required: OtherPassword.

You can verify that a particular account is disabled by sending the message
isDisabled to the account’s UserProfile. The method returns either True or
False. This example inquires about account ga2:

topaz 1> printit

(AllUsers userWithld: "ga2") isDisabled
%

true

To Find Out Why an Account Was Disabled

Privileges required: OtherPassword.

You can find out why a particular account was disabled by sending the message
reasonForDisabledAccount to the account’s UserProfile. This example
inquires about account ga2:

topaz 1> printit

(AllUsers userWithld: "ga2") reasonForDisabledAccount
%

LoginsWithSamePassword

The value returned is one of these Strings: 'PasswordAgeLimit', 'StaleAccount’,
'LoginsWithSamePassword', ‘LoginsWithInvalidPassword', or
'DisabledByAdmin'.

174 GemStone Systems, Inc. April 2008

Chapter

6

Managing Repository
Space

The repository is the logical unit that represents the universe of shared objects that
are stored within a GemStone system. Within GemStone Smalltalk, the repository
is the single instance of Class Repository. Initially, it has the name
SystemRepository.

The logical repository maps to one or more physical extent files in the file system
or to data on one or more raw disk partitions. Chapter 1 explains how this
mapping is done through GemsStone configuration options. Initially, the
repository is contained in a single file, SGEMSTONE/data/extent0.db¥f.

Optionally, GemStone can maintain a replicate of each extent.

Whenever GemsStone performs a checkpoint, it makes sure that transactions
committed before the checkpoint have been written to the repository extents and
any extent replicates. The STN_CHECKPOINT_INTERVAL configuration option sets
the maximum time between checkpoints (the default is five minutes, but various
factors may cause a checkpoint to occur sooner). The checkpoint limits the amount
of time that is needed to recover from a system crash by guaranteeing that the data
for the transaction is written to the extent and not just to the transaction log. For
information, see “To Control Checkpoint Frequency” on page 44.

April 2008

GemStone Systems, Inc. 175

Repository Growth

System Administration Guide for UNIX

This chapter explains how the repository grows, and tells you how to perform a
number of administrative tasks related to the repository:

how to determine the amount of space in the repository that is currently free,

how to create more space by adding an extent (and optional extent replicate)
while the repository is in use,

how to remove an extent or an extent replicate,
how to reallocate objects among extents,
how to replace a corrupted extent with the extent replicate, and

how to recover from an error caused by a full disk.

6.1 Repository Growth

The repository begins in the compact form of $GEMSTONE/data/extentO.dbT.
As repository activity progresses, the extent file expands for a variety of reasons,
always in increments of 1 MB:

Committed objects are flushed to the disk at certain times by writing the new
page during a checkpoint of the repository. Private (invisible) objects, such as
the structure that supports indexes, also are part of the repository. (Committed
changes are written immediately to a transaction log to preserve the
information in case of a system failure.)

Objects larger than 8 KB (or 2000 OOPs) are stored directly in pages even
though they may become unreferenced by the time the transaction is
committed. Other temporary objects sometimes are swept onto the disk to
provide additional working space in a session’s memory allocation, or are
explicitly moved to the disk by a Smalltalk message.

Each session requires 0.5 MB of headroom. If that space isn’t available, the
repository monitor will expand the extent to provide the necessary free space.

The STN_FREE_SPACE_THRESHOLD configuration option sets the minimum
amount of free space to be available in the repository (the default is 1 MB). If
free space falls to that threshold, the Stone repository monitor enlarges the
repository.

176

GemStone Systems, Inc. April 2008

Managing Repository Space How to Check Free Space

6.2 How to Check Free Space

Use the methods Repository>>fileSize and Repository>>freeSpace to
obtain reports about the logical repository as a whole. For example:

topaz 1> run
SystemRepository FfileSize
%

5242880

The result of the message FileSize is the total size of the repository in bytes. For
a single extent, it is ordinarily the same result as you would obtain by using the
operating system command Is -l extentName.

topaz 1> run
SystemRepository freeSpace
%

688128

The result of freeSpace tells how much space (in bytes) is available for
allocation within the repository at its current size. Free space is equal to the
number of free pages in the extent multiplied by the page size (8 KB). This space
does not include fragments on partially filled data pages.

Depending on the configuration options selected and the available disk space, the
Stone repository monitor may be able to create additional free space by enlarging
the repository.

If your configuration has more than one extent, use
Repository>>fileSizeReport to generate statistics about each individual
extent and also totals for the entire repository. (The heading “Extent#1” identifies
the primary extent regardless of its file name, which initially is extent0.db¥.)
For example:

topaz 1> run
SystemRepository FileSizeReport
%

produces:

April 2008 GemStone Systems, Inc. 177

How to Enter Single-User Mode System Administration Guide for UNIX

Extent #1
Filename = /users/extents/primaryExt.dbf
Replicate = NONE
File size = 10.00 Megabytes
Space available = 1.56 Megabytes

Extent #2
Filename = /users/extents/secondeExt.dbf
Replicate = /users/replicates/secondExt.dbf

File size = 1.00 Megabytes
Space available = 0.98 Megabytes
Totals

Repository size = 11.00 Megabytes
Free Space = 2.54 Megabytes

The number of free pages in the repository can also be determined from the cache
statistic FreePages (see page 245). To obtain the free space, multiply FreePages by
8192,

6.3 How to Enter Single-User Mode

Privileges required: SystemControl and SessionAccess.

Certain procedures in this chapter must be carried out in single-user mode, that is,
by a user who is the only one logged in to the repository. These procedures

= create or dispose of an extent replicate,

= repair object consistency errors in the repository,

= force reclaiming of dead objects in the repository, or
= restore the repository from a backup.

The GcUser (garbage collection) session also must be logged out during these
procedures, and also during an object audit of the repository. The applicable
method takes care of stopping that session. Object audits can be performed in
either single- or multi-user mode, but more comprehensive checks are performed
in single-user mode. See the discussion starting on page 217.

178 GemStone Systems, Inc. April 2008

Managing Repository Space How to Enter Single-User Mode

GemsStone provides several methods to assist in bringing the repository monitor to
single-user mode, and you can combine them to fit the needs of your system. The
following steps are a suggestion:

Step 1. Suspend further logins:

topaz 1> run
System suspendLogins
%

Step 2. Give existing sessions time to finish.
Step 3. Stop any remaining sessions:

topaz 1> run
System stopOtherSessions
%

For each active session (other than the one invoking it) this method aborts the
transaction and terminates the session. It also suspends further logins. If you
prefer, you can use stopSession: aSession to stop individual sessions by
number.

NOTE
It may take as long as a minute for a session to terminate after you send
either stopOtherSessions or stopSession:.If the Gem is
responsive, it usually terminates within milliseconds. However, if a Gem
is not active (for example, sleeping or waiting on 1/O), the Stone waits
one minute for it to respond before terminating it directly.

Step 4. Carry out the intended procedure.
Step 5. Allow logins to resume:

topaz 1> run
System resumelLogins
%

If you do not send resumelLogins, the Stone repository monitor will re-
enable logins automatically when you log out.

April 2008 GemStone Systems, Inc. 179

How to Add Extents and Extent Replicates System Administration Guide for UNIX

6.4 How to Add Extents and Extent Replicates

GemStone provides two ways to add extents or extent replicates:

= You can add new extents at startup by editing your GemStone configuration
file and adding extent names and sizes to the DBF_EXTENT_NAMES and
DBF_EXTENT_SIZES configuration options. Append the new values to the
existing entries, just before the semicolon (;) delimiter. The new extents will be
created the next time the Stone starts up. You can also add extent replicates this
way by adding their names to DBF_REPLICATE_NAMES.

= You can add extents while the Stone is running by invoking the Smalltalk
methods described next. These methods are especially useful in avoiding or
resolving low disk space conditions because the change takes effect
immediately. You can also add an extent replicate this way, if you are the only
user logged in.

To Add an Extent While the Stone is Running

To prevent the repository from becoming full, you can dynamically add another
extent specification (a file or a raw partition) to the configuration file for the Stone,
through Smalltalk. The following section describes the Smalltalk methods that
allow you to do this. For general information about multiple extents, see “To
Configure the Repository Extents” on page 21.

Possible Effects on Other Sessions

When a new extent (or extent replicate) is dynamically added to the logical
repository through Smalltalk, sessions currently logged in must have access to the
new extent. The possibility exists that an on-line session may terminate because it
cannot open a new extent. Reasons for this condition could range from the inability
to start a remote page server process to file permission problems.

CAUTION
The operating system creates the new extents with the ownership and
permissions of the Stone repository monitor process. If these permissions
are not the same as for other extents or extent replicates, you should use
operating system commands to modify them as soon as possible. Such
changes can be made without stopping the Stone.

The view of which files make up the logical repository is updated:
< when users commit or abort their sessions, and

< when the Stone repository monitor hands out disk resources to the session.

180 GemStone Systems, Inc. April 2008

Managing Repository Space How to Add Extents and Extent Replicates

An explicit commit or abort may succeed but then cause the session to be
terminated because of the inability to mount new extents immediately after the
commit or abort operation.

Repository>>createExtent:
Privileges required: FileControl.

The Smalltalk method createExtent:extentFilename creates a new repository
extent with the given extent file name (specified as a String). The new extent has
no maximum size. The extent must be located on the machine running the Stone
process. For example:

topaz 1> run
SystemRepository createExtent: "$GEMSTONE/data/extent2.dbf*
%

You can execute this method when other users are logged in.

The Stone creates the new extent file, and it also appends the augmented extent list
to your configuration file:

DBF_EXTENT_NAMES written by Stone (user Bob) on Tue 22 Jan
2008 08:41:27 PST

DBF_EXTENT_NAMES = "$GEMSTONE/data/extentO.dbf",
"$GEMSTONE/data/extentl.dbf",
"ITCP@mozart#dbf!/users/gemstone/data/extent2.dbf;""

If the given file already exists, the method returns an error and the specified extent
is not added to the repository.

Creating an extent with this method bypasses any setting you may have specified
for the DBF_PRE_GROW option at system startup. Because extents created with this
method have no maximum size, they cannot be pre-grown. If the repository is
using weighted allocation, the new extent will be given a weight equal to the
average weight of all other extents.

If this method is run from a session on a host remote from the Stone, extentFilename
must include a Network Resource String (NRS) specifying the Stone host. The
syntax is shown above in the excerpt from the augmented configuration file. For
information about NRS syntax, see Appendix C.

Repository>>createExtent: withMaxSize:

Privileges required: FileControl.

April 2008 GemStone Systems, Inc. 181

How to Add Extents and Extent Replicates System Administration Guide for UNIX

The Smalltalk method createExtent:extentFilename
withMaxSize:aSmalllnteger creates a new repository extent with the specified
extentFilename and sets the maximum size of that extent to the specified size. You
can execute this method when other users are logged in.

The size must be a hon-zero positive integer representing the maximum physical
size of the file in MB.

If the specified extent file already exists, this method returns an error and the
extent is not added to the logical repository.

If the configuration file option DBF_PRE_GROW is set to True, this method will
cause the newly created extent to be pre-grown to the given size. If the pre-grow
operation fails, then this method will return an error and the new extent will not
be added to the logical repository.

Repository>>createReplicateOf: named:

Privileges required: FileControl.

NOTE
You must perform this operation in single-user mode—that is, you must
be the only user logged in to GemStone. See “How to Enter Single-User
Mode” on page 178.

When you add an extent file using a Smalltalk method, you should also consider
adding a corresponding extent replicate using the method
createReplicateOf:extentFilename named:replicateFilename. For example:

topaz 1> run

SystemRepository

createReplicateOf: "$GEMSTONE/data/extent2.dbf"
named: "$GEMSTONE/replicates/replicate2.dbf"

%

If the specified extent replicate already exists, or if that extent already has a
replicate under another file name, this method returns an error and the extent
replicate is not created.

To avoid ambiguity and lessen the likelihood of unwelcome surprises, we
recommend that you supply the full pathname as part of the file name argument.
Be sure that the case in extentFilename matches the case in the file name itself.

The file name argument is passed directly to the underlying operating system for
handling. Therefore, all environment variables known to the operating system at
large or to the Stone process itself are acceptable. However, environment variables

182

GemStone Systems, Inc. April 2008

Managing Repository Space How to Remove Extents and Extent Replicates

defined only for your application’s process will not be recognized. For this reason,
you may find it preferable to avoid using environment variables in the file name
argument.

6.5 How to Remove Extents and Extent Replicates

This section explains how to remove extents and their replicates:

= The only way to remove an extent file is by first performing a backup and
restore to move the contents of that extent to other extents. See “How to
Remove an Extent.”

= An extent replicate file may be removed after first removing its name from
DBF_REPLICATE_NAMES and restarting the Stone or after removing it through
Smalltalk (see “How to Remove an Extent Replicate”) while you are the only
user logged in.

How to Remove an Extent

Privileges required: FileControl.

Reducing the number of existing extents requires special steps to ensure data
integrity. If you must remove an extent file, follow this procedure:

Step 1. Back up your repository using the GemStone full backup procedure
described on page 272.

Step 2. Shut down the Stone repository monitor.

Step 3. Modify the DBF_EXTENT_NAMES configuration parameter to show the
new extent structure. If the extent is being replicated, also remove the name of
the extent replicate from DBF_REPLICATE_NAMES.

Step 4. Restore the repository from your full backup using the GemStone restore
procedure described on page 277.

How to Remove an Extent Replicate

Privileges required: FileControl, SessionControl, and SessionAccess.

NOTE
You must perform this operation in single-user mode—that is, you must
be the only user logged in to GemStone. See “How to Enter Single-User
Mode” on page 178.

April 2008 GemStone Systems, Inc. 183

How To Reallocate Existing Objects Among Extents System Administration Guide for UNIX

If an extent has a replicate, you can discontinue replication at run time by this
procedure:

Step 1. Bring the repository monitor to single-user mode.
Step 2. Send the message disposeReplicate: to the repository:

topaz 1> run
SystemRepository disposeReplicate: ‘replicateFilename’
%

Step 3. Exit from single-user mode.

At this point it is safe to remove the file containing the extent replicate.

6.6 How To Reallocate Existing Objects Among Extents

If you want to reallocate existing objects among two or more extents, the procedure
depends in part on whether you are also changing the number of extents. Because
changes to DBF_ALLOCATION_MODE directly affect only the subsequent
allocation of pages for new or modified objects, additional steps are necessary.

To Reallocate Objects Among a Different Number of Extents

If you are increasing or decreasing the number of extents and want to change
allocation of existing objects as part of that operation, perform a GemStone full
backup, then restore the backup after setting appropriate weights in the
DBF_ALLOCATION_MODE configuration option.

For example, suppose your existing repository contains 800 MB and you want to
divide them about equally between the existing extent and a new one. To populate
each extent with about 400 MB, follow this procedure:

Step 1. Back up your repository using the GemStone full backup procedure
described on page 272.

Step 2. Shut down the Stone repository monitor.

Step 3. Modify the DBF_EXTENT_NAMES configuration parameter to show the
new extent structure. (If you want to replicate the new extent, also add the
name of its extent replicate to DBF_REPLICATE_NAMES.)

DBF_EXTENT_NAMES = $GEMSTONE/data/extentO.dbf,
$GEMSTONE/data/extentl.dbf;

184

GemStone Systems, Inc. April 2008

Managing Repository Space How To Reallocate Existing Objects Among Extents

Step 4. Edit the DBF_ALLOCATION_MODE configuration option to reflect the
intended distribution of pages (see “Allocating Data to Multiple Extents” on
page 24). For example:

DBF_ALLOCATION_MODE = 10, 10;

Step 5. Restore the repository from your full backup using the GemStone restore
procedure described on page 277. Those instructions tell you to replace the
existing extent with a copy of a fresh one. Do not copy anything to the location
of the new extent; the Stone repository monitor will create the new extent at
startup.

If objects in the repository were explicitly clustered using instances of
ClusterBucket that explicitly specified the first extent, those objects may tend to
migrate back to that extent over time. Such migration can be prevented by placing
size limits on the existing extent, or by explicitly reclustering those objects in the
new extent using a ClusterBucket that specifies either an extentld of nil or the
extentld of the new extent. For information about clustering, refer to the GemStone
Programming Guide.

To Reallocate Objects Among the Same Number of Extents

Changes to DBF_ALLOCATION_MODE directly affect only the subsequent
allocation of pages for new or modified objects. If you want to change the
allocation of existing objects, perform a GemStone full backup, then restore the
backup after placing appropriate size limits in the DBF_EXTENT_SIZES
configuration option.

For example, suppose your existing repository contains 800 MB and you want to
divide them about equally between two existing extents. To populate each extent
with about 400 MB, follow this procedure:

Step 1. Back up your repository using the GemStone full backup procedure
described on page 272.

Step 2. Shut down the Stone repository monitor.

Step 3. Edit the DBF_EXTENT_SIZES configuration option to limit the size of the
first extent temporarily to the size you want to become. For example, if you
want half of an existing 800 MB repository to remain there, set the size of that
extent to 400 MB. Leave the other extent unlimited. For example,

DBF_EXTENT_SIZES = 400, ;

April 2008

GemStone Systems, Inc. 185

How to Shrink the Repository System Administration Guide for UNIX

Step 4. Edit the DBF_ALLOCATION_MODE configuration option to reflect the
intended distribution of pages (see “Allocating Data to Multiple Extents” on
page 24). This setting will determine the distribution of new or modified
objects. For example:

DBF_ALLOCATION_MODE = 10, 10;

Step 5. Restore the repository from your fullbackup using the GemStone restore
procedure described on page 277. Those instructions tell you to delete your
existing extents, and then to replace the first extent listed in
DBF_EXTENT_NAMES with a copy of a fresh one. Do not copy anything to the
location of the second extent; the Stone repository monitor will create that
extent at startup.

Step 6. If you want the first extent to grow beyond the temporary limit you set in
Step 3, stop the Stone after you restore the repository. Edit the configuration
file again, either specifying a higher limit or no limit. For example,

DBF_EXTENT_SIZES = , ;

If objects in the repository were explicitly clustered using instances of
ClusterBucket that explicitly specified the first extent, those objects may tend to
migrate back to that extent over time. Such migration can be prevented by
maintaining the size limit set in Step 3, or by explicitly reclustering those objects in
the new extent using a ClusterBucket that specifies either an extentld of nil or the
extentld of the new extent. For information, refer to the GemStone Programming
Guide.

6.7 How to Shrink the Repository

To shrink the repository files requires taking the repository off-line and restoring
it from a backup, because the restore method compacts the extent.

Privileges required: SystemControl, GarbageCollection, and FileControl.

To shrink the repository to its minimum size, make a full backup. Then take the
repository off-line and restore the backup into a copy of the GemStone distribution

186 GemStone Systems, Inc. April 2008

Managing Repository Space How to Shrink the Repository

repository. Use the following procedure, which compacts the repository into the
minimum set of consecutive pages.

Step 1. Mark your repository for garbage collection. For example:

topaz 1> run
SystemRepository markForCollection
%

For further information about this method, see “To Run markForCollection”
on page 323.

Step 2. Wait for GemStone to complete the garbage collection and reclaim the
space. The time required depends on the size of the repository and, in multi-
user mode, on the status of other sessions. For details of various page
reclamation mechanisms, see “GcGems Specialized to Reclaim Pages” on
page 330.

If other users are logged in, the time required depends in part on the status of
other sessions. Space will not be reclaimed until all sessions have committed
or aborted any transactions concurrent with the markForCol lection. For
further information, see “To Identify Sessions Holding Up Page Reclamation”
on page 341.

Step 3. Make a backup of your repository by sending it the message
ful IBackupTo:fileOrDevice MBytes:byteLimit. You can use an existing
backup only if it was made in full transaction logging mode and you have all
transaction logs written since the backup.

For example:

topaz 1> run
SystemRepository fullBackupTo: "/users/bk/oct31® MBytes: O
%

This example writes the backup to a single disk file. If you need to write
multiple files or multiple tapes, see “To Create a Backup in Multiple Files” on
page 275.

Step 4. Take the repository off-line:

topaz 1> run
System shutDown
%

April 2008 GemStone Systems, Inc. 187

How to Shrink the Repository System Administration Guide for UNIX

Step 5. Remove the existing repository extents. Also remove any extent replicates.
For example:

% cd $GEMSTONE/data
% rm extentNames

Step 6. Make a local copy of the distribution extent, then ensure that you have
write permission on the extent that you are copying.

% cp $GEMSTONE/bin/extentO.dbf tempDirectory
% chmod +w tempDirectory/extentO.dbf

Step 7. Now use copydbf to install your copy of the distribution repository as the
first (primary) extent. For example:

% copydbf tempDirectory/extentO.dbf primaryExtentName

Use chmod to set the extent permission to what you ordinarily use for your
repository.

Step 8. To put the repository back online, issue the startstone command:

% startstone gemStoneName

If you do not specify gemStoneName, startstone defaults to gemserver63.
Step 9. Log in to linked topaz again.

NOTE
To perform the remaining parts of this procedure, you must be the only
user logged in to GemStone. Logins will be disabled when you start the
next step.

Step 10. Restore the repository by using the method
Repository>>restoreFromBackup :fileOrDevice, using the same file or
device as in Step 3. Because it is being restored into a copy of the initial
repository, the restored repository will be compressed to the minimum space.
For example:

topaz 1> run
SystemRepository restoreFromBackup: ®/users/bk/dec31*
%

This example restores the backup from a single disk file. If you need to restore
multiple files or multiple tapes, see “To Restore Multiple-File Backups” on
page 284.

188

GemStone Systems, Inc. April 2008

Managing Repository Space How to Check Page Fragmentation

GemsStone reads the backup and rebuilds the repository in a “shadow” object
space that is invisible to users at this time. If the restore succeeds, GemStone
commits the restore and returns a summary in the form of a nonfatal error
message like the following:

Restore from full backup completed with 30569 objects
restored and O corrupt objects not restored.

Step 11. If the repository was in full transaction logging mode (that is,

STN_TRAN_FULL_LOGGING was set to True), restore from any current logs
and commit the restore. For example:

topaz 1> run

SystemRepository restoreFromCurrentlLogs
%

topaz 1> run

SystemRepository commitRestore

%

Step 12. Enable logins again:

topaz 1> run
System resumelLogins
%

6.8 How to Check Page Fragmentation

Space within the repository is managed in pages having a fixed size of 8 KB. It is
possible for these pages to become fragmented—that is, only partially filled with
objects. You can inquire about the amount of fragmentation in the repository by
executing the following expression. Typical values of aPercentage range from 10 to

25.

SystemRepository pagesWithPercentFree:aPercentage

This method returns an array containing the following statistics:

the total number of data pages processed,
the sum (in bytes) of free space in all pages,
the page size (in bytes), and

the number of data pages having at least the specified percentage of free space.

April 2008

GemStone Systems, Inc. 189

How to Recover by Using an Extent Replicate System Administration Guide for UNIX

GemsStone automatically schedules reclamation of pages with greater than 10%
free space as part of its garbage collection activity.

6.9 How to Recover by Using an Extent Replicate

Recovery using a extent replicate restores the repository to the state of the most
recent checkpoint. If an extent replicate is available, this approach is faster than
restoring the repository from a backup. Use the following procedure:

Step 1. Examine the system log file to determine the name of the failed extent file
or files. For instance, this is an example of the log file entry for an extent failure:

[17:22:42.838]
Log message from user = DataCurator

Repository read failure, pageld = 1347
filename = 1#dbf!/gslocation/data/extent0.dbf
reason = RepReadPage failure.

Step 2. If you have a replicate of the extent that failed, first make a temporary
copy of your system configuration file. Edit the DBF_EXTENT_NAMES list in
the temporary file, replacing the name of the bad extent file with the name of
the extent replicate. For example:

DBF_EXTENT_NAMES = extentO.dbf, replicatel.dbf,
extent2.dbf

Remove the name of that extent replicate from DBF_REPLICATE_NAMES (leave
the commas). GemStone will not start if the same file name appears as both an
extent and an extent replicate. The following example has omitted the extent
replicate that was substituted into DBF_EXTENT_NAMES:

DBF_REPLICATE_NAMES = replicate0.dbf, , replicate2.dbf

Step 3. Run pageaudit to check for page-level problems. Use the -z option to
invoke your temporary configuration file.

% pageaudit -z temporaryConfigFile

Step 4. If the pageaudit is successful, the easiest course (if the file system itself is
usable) is to replace the bad extent with a copy of the good extent replicate:

% copydbf replicatel extentl

190 GemStone Systems, Inc. April 2008

Managing Repository Space How to Recover After Repair of the File System

If a good extent replicate does not exist, but you have recent backups, see the
section, “How to Restore a GemStone Repository” on page 277.

Step 5. Restart the Stone repository monitor.

6.10 How to Recover After Repair of the File System

In case of a disk failure or a corrupt file system, the system manager must repair
the file system before you can restart GemStone. The procedure you need to follow
depends on how the damage was repaired.

To Recover After a File System Repair With fsck

After a repair with fsck, the UNIX file system consistency check and interactive
repair utility, check the condition of the system repository with pageaudit. (See
“How to Audit the Repository” on page 217 for instructions.)

= If the page audit succeeds, try to restart GemStone again. If GemStone starts,
you can resume normal operations.

< If the page audit fails or GemStone doesn’t start, you will need to restore the
repository file. (See the section “How to Restore a GemStone Repository” on
page 277.)

To Recover When a File System Must Be Restored

If your system administrator intends to restore the file system from a backup
device, before that happens it might be worthwhile to copy the repository to
another node or to tape. Although this copy may prove unusable, if a great deal of
important data has been committed since the last backup, it may be worth a try.

To restart GemStone after the file system is restored:

Step 1. If you made a copy of the repository, begin with that copy. To test the
copy, use the methods discussed in the section “How to Audit the Repository”
on page 217. You will need to specify the name and path of the copy using a
temporary configuration file when doing pageaudit so that audit is not
performed on the extent that was restored along with the rest of the file
system.

If you didn’t make a copy of the repository or the copy does not pass
pageaudit, start with the current extentO . dbf file that was restored from the

April 2008 GemStone Systems, Inc. 191

How to Recover from Disk-Full Conditions System Administration Guide for UNIX

file system backup. Check whether the backup was made while GemStone was
running.

O Ifany changes were being made to the repository during the operating system
backup, extentO.dbf may be an inconsistent file that cannot be made to
work. In that case, you need to restore from a GemStone backup (see “How to
Restore a GemStone Repository” on page 277). However, transaction logs
from an operating system backup should be usable.

O If the operating system backup was done while GemStone was suspended or
shut down, continue to the next step.

Step 2. Do a pageaudit to check the current (restored) extentO.dbf file. (See the
section “To Perform a Page Audit” on page 217 for instructions.)

O If the page audit is good, try to restart the system again with startstone. If
GemStone starts, you can resume normal operations.

3 If the page audit fails or GemStone doesn’t start, you will need to restore from
GemStone backups (see “How to Restore a GemStone Repository” on
page 277).

NOTE
Remember that startstone uses (1) a GEMSTONE_SYS _CONF
environment variable or (2) $SGEMSTONE/data/system.conf as the
default system-wide configuration file. If you want it to use parameters
from a different configuration file, be sure to specify that file with the
startstone -z option.

6.11 How to Recover from Disk-Full Conditions

The Stone repository monitor has two critical needs for disk space. It must be able
to:

= append to the transaction log as sessions commit changes, and

= expand the repository as necessary to allocate free pages to current sessions or
to sessions logging in.

Whenever the Stone cannot log transactions or cannot find sufficient free space in
the repository, it issues an error message to any session logged in as DataCurator
or SystemUser. If users report that GemStone appears to be hung or that they get
a disk-full error while logging in, you should check one of these administrative
logins for such a message. The message is also written to the Stone’s log file.

192

GemStone Systems, Inc. April 2008

Managing Repository Space How to Recover from Disk-Full Conditions

The following topics explain the Stone’s actions in greater detail and describe steps
you can take to provide sufficient space.

Repository Full

The Stone takes a number of actions to prevent the repository from becoming
completely full. If the free space remaining in the repository falls below the level
set by the STN_FREE_SPACE_THRESHOLD configuration parameter and the Stone
cannot allocate more space in any extent, it takes the following actions to prevent
a system crash:

1.

It becomes more aggressive about disposing of commit records so that garbage
collection can proceed. (If the stone is very busy, a backlog of commit records
can accumulate.)

It starts a checkpoint if there isn't one in progress and reduces the checkpoint
interval to three minutes until the condition clears. (This checkpoint may free
pages that have been reclaimed.)

It writes a message to the Stone log to indicate the condition.

It prevents new logins except for DataCurator and SystemUser accounts. It
issues a disk-full error to other sessions attempting to log in.

It sends error rtErrFreeSpaceTreshold to any sessions logged in (or
logging in) as DataCurator or SystemUser so that they know disk space is
becoming critical.

It signals Gem session processes to return all except five free pages per extent.
It responds to requests for additional pages by allocating only five pages at a
time.

If the free space available drops below 400 KB (50 pages), the Stone stops
responding to page requests from sessions that are not logged in as an
administrator. This action prevents users from acquiring all of the available
space, which would cause the system to crash. Gem session processes appear
to “hang” while they are waiting for pages. The unhonored page requests are
granted when the free space goes back above the threshold.

If the previous steps do not solve the problem within the time specified by the
STN_DISKFULL_TERMINATION_INTERVAL, then the Stone begins to terminate
sessions holding on to the oldest commit record even if the session is in a
transaction. This action applies to any user session, including logins as

April 2008

GemStone Systems, Inc. 193

How to Recover from Disk-Full Conditions System Administration Guide for UNIX

SystemUser and DataCurator. Allowing the Stone to dispose of the commit
record allows additional garbage collection.

NOTE
The Stone can be configured never to terminate sessions by setting
STN_DISKFULL_TERMINATION_INTERVAL to 0, but doing so
increases the risk of GemStone shutting down because of a lack of free
space in the repository.

9. When the condition clears, another message is written to the Stone log and
operation returns to normal.

If you see a message like the following in an administrative session or in the Stone
log, disk space is becoming critical:

The repository is currently running below the
freeSpaceThreshold.

When the system must dynamically expand the repository, it checks one extent at
a time, in the order dictated by the allocation strategy, to see if that extent can be
expanded to create more space. When no extents can be extended and the free
space is below STN_FREE_SPACE_THRESHOLD, the Stone takes the actions
previously described.

Failure to expand an extent has two possible causes: either the disk containing the
extent is full or the extent has reached its maximum size as set by the
DBF_EXTENT _SIZES configuration parameter. There are a number of things you
can do to create more space in an existing extent, or you can create a new extent.

Creating Space in an Existing Extent

Each of these actions may create sufficient additional space for immediate needs:

< Warnthe current users about the problem, and have them log out until enough
space is made available.

< Remove any nonessential files to create enough space for expanding the
repository.

< Invoke Repository>>markForCollection or markGcCandidates to
mark any unreferenced objects so the Stone can remove them. (See the
discussion on “Invoking Garbage Collection” on page 321 for details.)

Creating a New Extent

You can create a new extent through Smalltalk with
Repository>>createExtent:extentFileName or

194 GemStone Systems, Inc. April 2008

Managing Repository Space How to Recover from Disk-Full Conditions

createExtent:extentFileName withMaxSize: aSmallinteger. If the Stone has
stopped, you can edit the parameters in the configuration file before restarting it.
See “How to Add Extents and Extent Replicates” on page 180.

Transaction Log Space Full

If the space for transaction logs becomes full, the Stone stops processing commits
or other requests that initiate a write to the transaction log. Sessions performing
these operations are blocked until the condition is resolved and may appear to the
user to be hung. The Stone writes a message like the following in its log, and sends
error rtErrTranlogDirFull to each administrative login:

The tranlog directories are full and the stone process is
waiting for an operator to make more space available by
either cleaning up the existing files (copying them to
archive media and deleting them) or by adding a new tranlog

directory.
If the transaction log space is full, you have the following options:

= You can free space by taking some existing log files off-line. Archive them
using operating system utilities and then remove them. GemStone can reuse
that slot in the circular list of log directories. (To archive and remove a log file
from a raw partition, use copydbf and then removedbf.)

= You can increase the available log space by adding a raw partition or a
directory on another disk drive to the STN_TRAN_LOG_DIRECTORIES
configuration option. Add its maximum file size to STN_TRAN_LOG_SIZES. If
transaction logs are being replicated, also add another directory to the
STN_TRAN_LOG_REPLICATES configuration option. For information on how
to make these changes while GemStone is running, see “To Add a Log and
Replicate at Run Time” on page 205.

While it is waiting for space to become available, the Stone continues to process
logins and other requests that do not involve writing to the transaction log. Once
space becomes available, a new transaction log is created and ordinary operations
resume. Waiting sessions can complete operations that were blocked.

April 2008 GemStone Systems, Inc. 195

How to Recover from Disk-Full Conditions System Administration Guide for UNIX

196 GemStone Systems, Inc. April 2008

Chapter

7 Managing

Transaction Logs

7.1 Overview

A transaction log contains the information necessary to redo transactions to the
repository that have been committed by GemsStone sessions since the last
checkpoint or orderly shutdown. This log is used to recover from crashes such as
those caused by a power failure, an operating system failure, or the killing of
GemsStone monitor processes.

If you need to restore the repository from a backup, transaction logs written in the
optional full-logging mode can be used to recreate all transactions committed since
the most recent backup was written.

The transaction log is implemented as a sequence of files having names of the form
tranlog0.dbf ... tranlogNNN.dbf. The numeric fileld starts at 0 when the
Stone starts with a copy of the initial repository extent
($GEMSTONE/bin/extentO.dbf). If the Stone starts on an existing repository
without any logs present, the fileld will be one greater than when the
repository was last shut down cleanly. If the Stone starts on an existing repository
with unrelated transaction logs using the same prefix, it will start numbering with
the next available Fileld. You can control the filename prefix by setting the
STN_TRAN_LOG_PREFIX configuration option.

April 2008

GemStone Systems, Inc. 197

Overview System Administration Guide for UNIX

These logs are written to a list of directories (or raw partitions) specified by the
STN_TRAN_LOG_DIRECTORIES configuration option, which is treated as a circular
list. Each log is limited to the size set for that directory by STN_TRAN_LOG_SIZES.
When one log is full, logging switches to the next directory. (What happens when
logs have been created in all directories is discussed in Table 7.1.) Collectively, the
log files logically form an almost infinite sequential file with a maximum size of
4 x 10 GBytes.

Logging Modes

GemStone provides two modes of transaction logging, selected by setting the
STN_TRAN_FULL_LOGGING configuration option:

= To provide real-time incremental backup of the repository, set
STN_TRAN_FULL_LOGGING to True. All transactions are logged regardless of
their size. This mode is recommended for deployed GemStone systems.

= To allow a simple operation to run unattended for an extended period, set
STN_TRAN_FULL_LOGGING to False (the initial setting). This mode, known as
partial logging, provides limited backup that ordinarily permits automatic
recovery from system crashes that do not corrupt the repository.

Table 7.1 compares full and partial transaction logging.

198 GemStone Systems, Inc. April 2008

Managing Transaction Logs

Overview

Table 7.1 Comparison of Full and Partial Transaction Logging

Characteristic

STN_TRAN_FULL_LOGGING
=TRUE

STN_TRAN_FULL_LOGGING
=FALSE

Type of transac-
tion logged

All transactions

Only those transactions smaller than
STN_TRAN_LOG_LIMIT; successful
commits of larger transactions cause
an immediate checkpoint

Recovery from
system crash
(extents are okay)

Yes, automatic during restart using
checkpoint and log

Yes, automatic during restart using
checkpoint and log

Recovery of trans-
actions since last
backup (as after
media failure)

Yes—can carry forward GemStone
backup by recreating subsequently
committed transactions

No—cannot recover transactions
since the backup

Action when cur-
rent log is full

Logging moves to the next directory
or to the head of the list. If it is a file
system directory, the Stone opens a
new log file there; existing transaction
logs are retained. If it is a raw parti-
tion, a new log can be opened only if
the previous one has been archived
and removed.

The maximum number of file system
logs online at one time depends on
disk space. The maximum number of
raw partition logs depends on the
number of partitions listed in
STN_TRAN_LOG_DIRECTORIES.

Logging moves to the next directory
or to the head of the list. The Stone
removes the existing transaction log
before opening a new one.

The maximum number of logs online
at one time depends on the number of
directories or raw partitions in the list.

Action when log
space becomes full

The Stone pauses execution if it can-
not find space in any of the specified
directories or raw partitions.

The Stone deletes log files from the
circular list of directories and keeps
running.

Administrative
task

Monitor log space; archive log files
and delete them as necessary

None

April 2008

GemStone Systems, Inc.

199

Overview System Administration Guide for UNIX

Use in Recovery from an Unexpected Shutdown

Between checkpoints, GemStone writes each committed transaction to a
transaction log (Figure 7.1). Then, in the event of a system crash, GemStone can
recover by automatically reapplying transactions from the log to the latest
checkpoint (Figure 7.2). Multiple transaction logs may be needed.

You can maintain replicates of transaction logs as an added precaution. If
GemStone cannot read the primary log during recovery, it tries to read the
replicate.

Use ordinary operating system commands to backup the transaction logs in the file
system. To backup a transaction log in a raw disk partition, use copydbf to copy it
to a file system. You’ll also need to use removedbf to clear the partition for reuse.

Figure 7.1 System Time Line: Normal Operation

User Session

DataCurator Periodic
requests User commits User commits GemStone
full backup transaction transaction checkpoint
Time
Repository Transaction Transaction
backed up logged logged Repository
extents
updated

GemStone Actions

200 GemStone Systems, Inc. April 2008

Managing Transaction Logs Overview

Figure 7.2 System Time Line: System Crash

User Session

User commits System Crash GemStone
transaction
Time
Repository Transaction GemStone recreates
checkpoint logged transaction, writes

new checkpoint

GemStone Actions

Use in Rolling Forward from a Backup

An important use of transaction logs is to restore transactions that were committed
between the last full backup and a system failure. However, those transactions can
be restored only if the repository already is in full transaction logging mode and
the backup was made in that mode.

Preconditions

If you have enabled full transaction logging and made a GemStone full backup,
you can use the transaction logs to restore transactions committed since the last
GemStone backup. The following steps show what you must do to prepare:

Step 1. Change the STN_TRAN_FULL_LOGGING configuration option to True.
Step 2. Restart GemStone.
Step 3. Make a GemStone full backup by following the instructions on page 272.

April 2008 GemStone Systems, Inc. 201

Overview System Administration Guide for UNIX

How the Logs Are Used

The GemStone restore procedure (Figure 7.3) starts by copying any good
repository, preferably the initial repository extent that is distributed with
GemStone. That repository contains the GemStone kernel classes in random access
format, which serve as a starting point for the restore. Next, you restore the full
backup, which loads objects from the backup file. Finally, if the repository was in
full transaction logging mode, you restore transactions committed since the
backup by reading the transaction logs in the order in which they were generated.
(For the procedure to roll forward from a restored backup, see “B. To Restore
Subsequent Transactions” on page 286.)

NOTE
Restoring a repository resets its origin to the time of the backup that was
restored. Subsequent transactions can be restored only by starting with
that backup or a more recent one.

Figure 7.3 System Time Line: Restoring a GemStone Backup

Administrator Actions

Restart repository monitor
Restore from GemStone backup

Apply transaction logs

Ready for
ordinary
activity

202 GemStone Systems, Inc. April 2008

Managing Transaction Logs How to Manage Full Logging

7.2 How to Manage Full Logging

When the system is operating with the STN_TRAN_FULL_LOGGING configuration
option set to True, the system administrator should monitor the available log
space. If the log space defined by STN_TRAN_LOG_DIRECTORIES becomes full,
users will be unable to commit transactions to the repository until space is made
available.

For transaction logs in file system directories, “full” means that there is no free
space in the file systems containing those directories. For transaction logs in raw
partitions, “full” means that all partitions listed already contain a GemStone
transaction log or other repository file; after archiving an existing log, you must
invoke removedbf before that partition can be reused.

There are two recovery situations to consider in managing transaction logs under
full logging:

= Recovery from a system crash requires logs for all transactions committed
since the last checkpoint. Because of the way GemStone logs changes
involving large objects, parts of these transactions may be in earlier logs. The
method Repository>>oldestLogFileldForRecovery returnsthefileld
of the oldest log that would be needed if a crash were to occur at that point. All
logs needed for crash recovery should be kept online.

NOTE
You may need more than one transaction log to recover, possibly a
number of transaction logs, depending on whether there are checkpoints
in the transaction logs.

= Recovery from damaged extents, such as a media failure, requires all
transaction logs since the last backup, and earlier logs may be needed if
lengthy transactions were in progress at the time the backup started. Log files
not needed for crash recovery may be archived off-line, although restoring
them will take longer.

To Archive Logs

Ordinary operating system tools, such as tar and cp, can be used to move log files
to other locations or to archival media. We recommend that you archive and free
a complete log directory at a time in the order listed in the
STN_TRAN_LOG_DIRECTORIES configuration option.

NOTE
If you must rename the log files, we recommend that you preserve the

April 2008

GemStone Systems, Inc. 203

How to Manage Full Logging System Administration Guide for UNIX

digits in the original file name as an aid to restoring the files in sequence
should that become necessary. If your transaction logs are in raw disk
partitions, copydbf adds the fileld when you copy a log to a file system
directory.

Two special commands are provided for working with raw disk partitions. The
copydbf command copies a repository file (extent, transaction log, or full backup)
to or from a raw disk partition. If the destination is a directory in the file system,
copydbf generates a file name that includes the file type and its internal fileld. The
removedbf command writes over a raw partition so that GemStone will no longer
think it contains a repository file. Both commands can be used with a remote node
even if itis not running NFS (a NetLDI must be running on that node). For further
information, see the command descriptions in Appendix B.

You can determine the current size of a transaction log that is in a raw partition by
using the method Repository>>currentTranlogSizeMB. For information,
see Table 7.2.

You can determine oldest transaction log that would be needed to recover from the
most recent checkpoint by using the method
Repository>>oldestLogFileldForRecovery. This method returns the
internal fileld, which is part of the file name for transaction logs in the file system.
If a session was in a lengthy transaction at the time of a system crash, the oldest log
needed during recovery may be one that was written before the last checkpoint
occurred; be sure that all transaction log files required for recovery are left online.

Similar information can be obtained by applying copydbf -i to an extent. For
example,

% copydbf -i extentO.dbf
Source fTile: extentO.dbf
file type: extent fileld: O
Last checkpoint written at: Mon 14 Jan 2008 11:07:54 PST.
Oldest tranlog needed for recovery is fileld 5 (
tranlog5.dbf).

204 GemStone Systems, Inc. April 2008

Managing Transaction Logs How to Manage Full Logging

To determine the oldest transaction log needed to roll forward from a backup,
apply copydbf -i to the backup:

% copydbf -i back4.dat
Source fTile: back4.dat

file type: backup fileld: O

The previous file last recordld is -1.
Destination file: /dev/null

Full backup started from checkpoint at: Mon 14 Jan 2008
11:21:20 PST.

Oldest tranlog needed for restore is fileld 5 (
tranlog5.dbf).

For an example script showing how to archive transaction logs out of raw
partitions, see $SGEMSTONE/examples/admin/archivelog.sh. Youwill need
to edit the script to conform to your own partition names and archive location, and
then test it.

Compressed transaction logs

Transaction logs are always written in uncompressed format. However, during
recover and restore, the Stone repository monitor can read transaction logs that
have been compressed using gzip. While compressed transaction logs take up less
space, the 1/0 to these compressed files in much slower, so recovery or restore of
compressed transaction logs will take much longer than uncompressed ones.

To Add a Log and Replicate at Run Time

Privileges required: FileControl.

You can add a directory or a raw partition for transaction logs to the existing list
without shutting down the Stone repository monitor. When you do this, the
repository monitor also records the change in its configuration file so that the
addition becomes permanent. Send the following message:

SystemRepository addTransactionlLog: deviceOrDirectory
replicate: replicateSpec size: aSize

For example:

topaz 1> run

SystemRepository addTransactionLog: "/users/tlogs2”
replicate: "" size: 8

%

April 2008

GemStone Systems, Inc. 205

How to Manage Full Logging System Administration Guide for UNIX

The argument replicateSpec must be consistent with the current list in the
STN_REPL_TRAN_LOG_DIRECTORIES configuration option: If that list is empty
(logs are not being replicated), replicateSpec must be an empty string, as in the
preceding example. If STN_REPL_TRAN_LOG_DIRECTORIES is not empty,
replicateSpec must be a valid device or directory; for example:

topaz 1> run

SystemRepository addTransactionLog: "/users/tlogs2*
replicate: "/user3/reptlogs2® size: 8

%

The argument aSize sets the maximum log size in megabytes for deviceOrDirectory
(and its replicate). It will be added to the list in STN_TRAN_LOG_SIZES.

You can use the method System class>>stoneConfigurationAt: to
examine the contents of STN_REPL_TRAN_LOG_DIRECTORIES at run time. For
information, see “How to Access the Server Configuration at Run Time” on
page 40. The Repository methods in Table 7.2 return other information that is
helpful in managing transaction logs.

Table 7.2 Repository Methods for Information About Transaction Logs

Method Description

currentLogDirectoryld Returns a positive Smalllinteger, which is the one-
based offset of the current log file into the list of log
directory names.

currentLogFile Returns a String containing the name of the transaction
log file to which records currently are being appended.
If the result is size 0, then a log has failed and a
replicate is being used.

currentLogReplicate Returns a String containing the file name of the
transaction log file replicate to which records are being
appended. The result is a String of size 0 if the current
log is not replicated.

currentTranlogSizeMB Returns an Integer that is the size of the currently
active transaction log in units of megabytes.

206 GemStone Systems, Inc. April 2008

Managing Transaction Logs How to Manage Full Logging

Table 7.2 Repository Methods for Information About Transaction Logs

Method Description

logOriginTime Returns the log origin time of the receiver, the time
when a new sequence of log files was started. For
details, see the method comment in the image.

oldestLogFileldForRecovery | Returns a positive Smalllnteger, which is the internal
fileld of the oldest transaction log needed to recover
from the most recent checkpoint, if the Stone were to
crash as of now.

April 2008 GemStone Systems, Inc. 207

How to Manage Full Logging System Administration Guide for UNIX

To Force a New Transaction Log

Privileges required: FileControl.

You can force closure of the current log and opening of a new log at almost any
time by using the method Repository>>startNewLog. The method:

1. starts a checkpoint,

2. waits till the checkpoint completes,

3. starts the new log, and

4. returns a Smallinteger, which is the fileld of the new log.

In the following example, the new transaction log file would be tranlog9.db¥.

topaz 1> run
SystemRepository startNewlLog
%

9

If a checkpoint is already in progress when you execute startNewlLog, the
method will fail and return -1 instead. If you’re using this method in an
application, therefore, you need to accommodate the possibility of such a failure
with code such as:
| id |
id := SystemRepository startNewlLog.
[id < 0] whileTrue: [
System _sleep: 1.
id := SystemRepository startNewLog].

To Change to Partial Logging

Once the full transaction logging has been started on a repository, the
STN_TRAN_FULL_LOGGING state of True persists regardless of later changes to the
configuration file. To terminate full logging, use the following procedure:

Step 1. Do a full backup using Repository>>fullBackupTo:. See “How to
Make a GemStone Backup” on page 272.

Step 2. Edit the configuration file to set the STN_TRAN_FULL_LOGGING option to
False.

Step 3. Stop the Stone repository monitor.

208

GemStone Systems, Inc. April 2008

Managing Transaction Logs How to Manage Partial Logging

Step 4. Replace the first (primary) extent file with a copy of
$GEMSTONE/bin/extent0.dbf. Delete any other extent files.

Step 5. Restart GemStone.

Step 6. Restore the backup using Repository>>restoreFromBackup:. See
“How to Restore a GemStone Repository” on page 277.

7.3 How to Manage Partial Logging

Partial logging is GemStone’s initial mode because it provides ease of
administration with protection against loss of data from system crashes. The Stone
repository monitor treats the log directories as a circular list. If the file in the
current directory reaches the limit set by STN_TRAN_LOG_SIZES, the Stone
switches to the next directory in the list that does not contain a transaction log. In
the process of creating log n, the Stone attempts to find and delete log (n -
size_of STN_TRAN_LOG_DIRECTORIES); for example, if the new log will be
tranlog7.dbf and there are three elements in STN_TRAN_LOG_DIRECTORIES,
the Stone searches all three in attempting to delete tranlog4.dbf.

You should ensure that there always is sufficient disk space for at least two log files
(their default size is 10 MB each), so that one can be preserved when the next is
opened.

To Change to Full Logging

A repository can be changed from partial to full logging simply by changing the
STN_TRAN_FULL_LOGGING setting to True and restarting the Stone repository
monitor.

CAUTION
Be sure to make a new GemStone full backup in full-logging mode so that
you will be able to restore from the transaction logs if necessary.
Transaction logs cannot be restored to backups that were made in partial-
logging mode.

April 2008 GemStone Systems, Inc. 209

How to Manage Partial Logging System Administration Guide for UNIX

210 GemStone Systems, Inc. April 2008

Chapter

8 Monitoring Gem3tone

This chapter tells you:
= Where to look for the log files created by GemStone processes
= How to audit the repository

= How to monitor the performance of the GemsStone server and its clients using
GemStone Smalltalk methods

If you decide to keep a GemStone session running for occasional use, be careful not
to leave it in an active transaction. A prolonged transaction can cause an excessive
commit record backlog and impede garbage collection activity, resulting in
undesirable repository growth, until you either commit or abort.

NOTE
For sessions that are not committing changes to the repository, we
recommend that monitoring be done in manual transaction mode. For
details on entering and using manual transaction mode, see
“Considerations for Large Repositories” on page 122.

April 2008 GemStone Systems, Inc. 211

GemsStone System Logs System Administration Guide for UNIX

8.1 GemStone System Logs

In addition to transaction logs, GemStone creates three types of log files:

= Logs for GemStone server processes (page 212)

= Logs for processes related to individual GemStone gem sessions (page 215)
= Logs for GemStone network server processes, NetLDlIs (page 216)

If a GemStone server is running, the gslist utility can help you locate its logs. Use
gslist -x to display the location of the current log file for Stones, NetLDls, and the
shared page cache monitors.

The logs for the AIO page servers, Free Frame page servers, Page Manager, and
GcGem are in the same location as the corresponding Stone’s log.

WARNING
The Stone writes several files to the /opt/gemstone/locks
directory. To avoid system failure, do not remove these files
manually.Use gslist -c to remove unnecessary files from this locks
directory.

GemStone Server Logs

The Stone repository monitor and its child processes each create a log file in a
single location. By default, the log files are in $GEMSTONE/data and have a name
beginning with the name of the repository monitor. Table 8.1 shows typical log
names for a repository monitor having the default name of gemserver63. Log
names for child processes also include the process id and a descriptive suffix.

Table 8.1 Representative Log Names for GemStone Server Processes

Typical Name GemStone Process
gemserver63.1og Stone repository monitor
gemserver636936pcmon. l1og Shared page cache monitor
gemserver636966pgsvraio. log AIlO page server
gemserver636967pgsvrff.log Free Frame page server
gemserver636923pagemanager . log Page Manager
gemserver636980gc. log Garbage collector session
gemserver636988gc*. 1og Specialized GecGems

212

GemStone Systems, Inc. April 2008

Monitoring GemStone GemsStone System Logs

Several factors can alter the name and location of these logs. The precedence is

1.

3.

Stone Log

A path supplied by startstone -1 logFile. If logFile is relative (that is, not a
complete path preceded by a /), logFile is created in a current directory. Logs
for the child processes in Table 8.2 are placed in the same directory.

A path specified by the GEMSTONE_LOG environment variable. If logFile is
relative (that is, not a complete path preceded by a /), logFile is created in a
current directory. Logs for the child processes in Table 8.2 are placed in the
same directory.

$GEMSTONE/data/gemStoneName. log.

The log for the Stone repository monitor is cumulative across runs. This log is the
first one you should check when a GemStone system problem is suspected. In
addition to possible warnings and error messages, the log records several useful
items:

the GemStone version,

the configuration files that were read at startup and the resulting Stone
configuration,

each startup and shutdown of the Stone, the reason for the shutdown, and
whether recovery from transaction logs was necessary at startup,

each expansion of a repository extent and its current size,
each opening of a new transaction log,

each startup and shutdown of the GcGem (and its processid),
each #abortErrLostOtRoot sent to a Gem,

each suspension and resumption of logins, and

certain changes to the login security system.

Shared Page Cache Monitor Log

The log for the shared page cache monitor is located in the same directory as the
Stone’s log and is for a particular process (in Table 8.2, it is for processid 6936).
Check this log if other messages refer to a shared page cache failure.

When a session logs in from another node and its local shared page cache is
enabled, a log is created for the shared page cache monitor on that node. By
default, this log is named startshrpcmonPidNode . log, where Pid is a process Id

April 2008

GemStone Systems, Inc. 213

GemsStone System Logs System Administration Guide for UNIX

and Node is the name of the node. The default location is the home directory of the
account that started the Stone.

Among the items included in the log for the shared page cache monitor are:

< its configuration (which for remote nodes may be different from the
configuration on the Stone’s node),

= the number of processes that can attach (which can limit the number of logins),

< the UNIX identifiers for the memory region and the semaphore array (these
identifiers are helpful in the event you must remove them manually using the
ipcrm command).

AIO Page Server Log

The logs for the repository monitor’s AlO page servers are located in the same
directory as the Stone’s log. These logs are for specific page server processes and
are removed if the page server exits normally.

These logs ordinarily are not of interest unless they contain an error message.

Free List Page Server Log

The logs for the repository monitor’s free frame page servers are located in the
same directory as the Stone’s log. These logs are for a specific free frame page
server processes and are removed if the page server exits normally.

These logs ordinarily are not of interest unless they contain an error message.

GcGem Logs

Each time the Stone repository monitor starts a new garbage collection (GcGem)
session process, a new log is created in the same location as the Stone’s log. Each
specialized GcGem (page 330) also has its own log. For instance, a new GecGem can
be created in response to certain administrative actions that place the repository in
single-user mode, such as an object audit. If the GcGem exits normally, the current
log is removed. When GcUSser logs in again, a new log is opened under a name that
includes the new process ID of the GcGem.

These logs show the startup value of the garbage collection parameters that are
stored in GcUser’s UserGlobals (such as #reclaimMaxPages), and any changes to
them.

214

GemStone Systems, Inc. April 2008

Monitoring GemStone GemsStone System Logs

Page Manager Log

The Page Manager log is located in the same directory as the Stone’s log. This log

is for a specific page manager process, and is automatically removed if the page
manager exits normally.

This log ordinarily is not of interest unless it contains an error message.

Logs Related to Gem Sessions

Sessions frequently depend on NetLDI services to spawn one or more supporting
processes. In each case, the NetLDI creates a log file that includes in its name the
identity of the node on which the process is running. Typical processes are

= a Gem session process to serve an RPC application (linked Gem session
processes do not produce logs),

= apage server (for the session) to access a repository extent on the server node,

= apage server (for the Stone) to start or access a shared page cache on the
client’s node,

= ashared page cache monitor (for the Stone) to manage the cache on the client’s
node.

When the application is running on the same node as the Stone repository monitor,
only the Gem session process is needed, and only then to serve an RPC application.

These log files ordinarily are located in the home directory of the account that
owns the corresponding process. For the Gem session process and the page server
on the server node, that account ordinarily is the application user. For the shared
page cache monitor and page server on the client node, that account is the one that
invoked startstone.

Table 8.2 shows typical log names for session-related processes, given a Stone and
repository on nodel with a login from a Gem session process on node2.

Table 8.2 Typical Log hames for Session Processes

Typical Name GemStone Process
gemnetobject27853node2. log Gem session process on node2 (serves
gem12a8-0Onode2.log (Windows) | an RPC application)
pgsvrmain27819node2. log Page server on node?2 that the

repository monitor uses to create and
access its shared page cache on node2

April 2008

GemStone Systems, Inc. 215

GemsStone System Logs System Administration Guide for UNIX

Table 8.2 Typical Log names for Session Processes

Typical Name GemsStone Process

startshrpcmon27820node2. 1og Shared page cache monitor on node2

pgsvrmainl2397nodel. log Page server on nodel that the Gem
session process uses to access the
repository extents on nodel

If a process shuts down normally, the log file is removed. After an abnormal
shutdown, any log files that remain can provide helpful information.

You can change the default location by setting #dir or #log in the
GEMSTONE_NRS_ALL environment variable for the NetLDI itself or for individual
clients (see “To Set a Default NRS” on page 81).

The log for a Gem session process ordinarily is not of interest unless it contains an
error message. The other logs have the same content as their counterparts for the
object server child processes, above.

NetLDI Logs

Each NetLDI creates a log file (netLdiName . 1og) in Zopt/gemstone/log on the
node on which it runs. (For compatibility with previous releases, these directories
can be in /usr.) This location and name can be overridden by the option

-llogname when starting the NetLDI. Each NetLDI you start with the same name
appends to one log, so it’s a good idea to remove outdated messages occasionally.

By default, the NetLDI log contains only configuration information and error
messages. The configuration information reflects the environment at the time the
NetLDI was started and the effect of any authentication switches specified as part
of the startup command. The following log description for the default
configuration may be helpful for comparison:

Authentication is required only to create processes.
Process creation is permitted through user’s HOME directory.
Created processes belong to client’s account.

The preceding lines map to NetLDI options in this way:

Line1l Guest mode is not in use (-g), but authentication is not required for all
NetLDI services (-S).

Line 2 Services are not restricted to those listed in
$GEMSTONE/sys/services.dat (-n).

216

GemStone Systems, Inc. April 2008

Monitoring GemStone How to Audit the Repository

Line 3 Captive accounts are not in use (-aname).

In some cases it is helpful to log additional information by starting the NetLDI in
debug mode (startnetldi -d). The debug log records each exchange between the
NetLDI and a client. Because the log becomes much larger, you probably won’t
want to use this mode routinely.

8.2 How to Audit the Repository

This section describes two levels of checks that you can perform on the repository.

= A page audit typically is invoked to ensure page-level consistency after some
kind of system failure, such as a read-write error or a page allocation error. In
these cases, a successful page audit indicates that the problem did not affect
the committed repository. GemStone must be halted when you perform a page
audit.

= An object audit checks the consistency of the repository at the object level and
generates useful statistics in the process. An object audit can be performed as
part of routine maintenance and is always performed while GemStone is
running.

Page audits scan the rootpages in a repository, along with those pages used in the
bitmap structures referenced by the rootpage. Many pages, including data pages,
are not actually checked during a page audit. To check the integrity of all
repository pages, perform a page audit, then perform an object audit.

To Perform a Page Audit

Page audits allow you to diagnose problems in the system repository by checking
for consistency at the page level. You do not need to run this utility as part of
routine maintenance of the repository.

The pageaudit utility can be run only on a repository that is not in use.

To check for page-level problems, run pageaudit on the repository defined in your
ordinary GemStone configuration by issuing this command at the operating
system level:

% pageaudit [gemStoneName] [-zsystemConfig] [-eexeConfig] [-h]
where:
« gemStoneName is the name of the GemStone repository monitor,

= systemConfig is the system configuration file, and

April 2008

GemStone Systems, Inc. 217

How to Audit the Repository System Administration Guide for UNIX

= exeConfig is the executable configuration file.

All four arguments are optional in a standard GemStone configuration. If these
options are not supplied, pageaudit uses gemserver63 for gemStoneName.

< For more information about the pageaudit command, see Appendix B.
< For online documentation, type pageaudit -h or man pageaudit.

As pageaudit runs, it prints repository statistics to the screen. For example:

PAGE AUDIT STATISTICS mozart sund4u (Solaris 2.9 Generic_117171-08) -
12/710/07 11:12:58 PDT

8192 bytes = 1 GemStone Page = 1 disk blocks
1048576 bytes = 1 Mbytes

Repository Size 12 Mbytes
Data Pages 6 Mbytes
Meta Information Pages 0 Mbytes
Shadow Pages 0 Mbytes
Free Space in Repository 4 Mbytes

**** Number of differences found in page allocation = 0.

[11:12:58.986]
Page Audit of Repository completed successfully.

The report contains the following statistics:

Repository Size The total physical size; the same size that the operating
system reports for an extent file.

Data Pages All pages referenced from the object table.

Meta Information Pages
Pages that contain only internal information about the
repository, such as the object table.

Shadow Pages Pages scheduled for scavenging by the reclaim task.

Free Space in Repository
Computed as the number of free pages times the size of a page
(8 KB). That value reflects the number of pages available for
allocation to Gem session processes. It excludes space
fragments on partially filled data pages.

218 GemStone Systems, Inc. April 2008

Monitoring GemStone How to Audit the Repository

If the page audit finds problems, the message to the screen ends with a message
like this:

—————————————— PAGE AUDIT RESULTS ---—-——-----——-
**** NumberOfFreePages = 980 does not agree with audit
results = 988

**** Problems were found in Page Audit.
**** Refer to recovery procedures in System Administrator®s
Guide.

If there are problems in the page audit, you will need to restore the repository file
from backups. (See the section “How to Restore a GemStone Repository” on
page 277.)

To Perform an Object Audit and Repair

Privileges required: GarbageCollection.

Object audits check the consistency of the repository at the object level. The output
includes a description of any errors found and, depending on the particular
method invoked, statistics about the Repository.

GemsStone provides several choices about how the audit is conducted:
= The level of consistency checking required

= The minimum object size for which statistics are generated

= Whether the audit is optimized for speed on large repositories

All of these methods abort the current transaction, and the garbage collector
session is shut down for their duration. If you have uncommitted changes, an error
will be returned and the audit will not run. You will need to manually commit or
abort your changes before reattempting the audit.

To have the highest degree of confidence in the audit results, perform the object
audit in single-user mode and specify full checks. Logins are disabled for the
duration of the audit, page reclamation is forced to complete, and additional
consistency checks are made. If these conditions are not met, an appropriate error
is returned immediately. The basic method is

Repository>>auditWithLimit: sizeLimit fullChecks: fullChecking

where sizeLimit is object size cutoff (bytes or Oops) below which statistics are not
reported, and fullChecking is a Boolean indicating whether an error should be
returned if the conditions for a detailed consistency check are not met.

April 2008

GemStone Systems, Inc. 219

How to Audit the Repository System Administration Guide for UNIX

When a detailed check is not required, the object audit can be performed under less
stringent conditions (other users are logged in or page reclamation could not be
completed), but the degree of confidence in the results is reduced because less
checking is possible.

Three convenience methods are provided:
Repository>>objectAudit

objectAuditisthe simplest method to use. It reports all errors it encounters,
but statistics are reported only for objects larger than 100000 bytes or Oops. If
the system is in single-user mode and reclamation can be completed, detailed
checks are performed. If these conditions are not met, the method performs
more general checks. The audit output indicates whether you are performing
full checks.

Same as auditWithLimit: 100000 fullChecks: false
Repository>>objectAuditFul IChecks

objectAuditFul IChecks is like objectAudit except it guarantees that
the audit will either run using the more detailed checks or will not run at all.

Same as auditWithLimit: 100000 fullChecks: true
Repository>>auditWithLimit: sizeLimit

auditWithLimit: lets you specify the reporting threshold for statistics. Like
objectAudit, it performs detailed checks if the necessary conditions are met,
or performs more general checks. The audit output indicates whether you are
performing full checks.

Same as auditWithLimit: sizeLimit fullChecks: false

The above methods attempt to perform the reclaimAl 1 function if the system is
in single-user mode, then begin with an optimized scan of the Object Table and the
data pages. The audit results and object statistics are written to standard output. If
you want to save the statistics, use output push within Topaz to redirect output
to a log file. For information about the report, see “Understanding Object Audit
Statistics” on page 223. If errors are detected, GemStone ordinarily re-scans the
repository to provide detailed information.

The optimized methods Repository>>quickObjectAuditLevell and
quickObjectAuditLevel?2 are intended for use with large repositories, where
they run substantially faster than objectAudit and auditWithLimit:.
However, they must be run in single-user mode, and the GcGem must have had
time to complete dead object finalization following any garbage collection activity.
Object statistics are not reported in the interest of attaining the fastest performance.

220

GemStone Systems, Inc. April 2008

Monitoring GemStone How to Audit the Repository

quickObjectAuditLevell is optimized to find the most common types of
errors. The object table is not audited by this method, but most other checks done
in the standard object audit (Repository>>auditWithLimit:) are performed.
References to any non-existent, free or dead oops are reported as errors.

quickObjectAuditLevel2 performs the same integrity audits as
Repository>>quickObjectAuditLevell. In addition, all object table entries
are audited to verify the disk address of each object. This method will take longer
to complete than Repository>>quickObjectAuditLevell.

To perform an object audit:
Step 1. Log in to GemStone using linked Topaz (topaz -1).

Step 2. Optionally, put the system in single-user mode (see “How to Enter Single-
User Mode” on page 178).

Step 3. Send one of the audit messages to the repository. For example:

topaz 1> run
SystemRepository objectAudit
%

If errors are reported, and there are unreclaimed dead objects in the repository,
there is a chance that the audit errors are in these unreclaimed dead objects, and
not in persistent data. You can either proceed with the repair, or re-run the audit
after making sure that all unreferenced objects are reclaimed. To do this:

Step 1. Make sure that either the generic GeGem (#GC) or the new specialized
EpochGem (#EPC) is running to complete processing of dead objects.

Step 2. Run markForCollection (see page 323):

topaz 1> run
SystemRepository markForCollectionWait: -1
%

Step 3. Run reclaimAll (see page 339):

topaz 1> run
SystemRepository reclaimAll
%

Step 4. Re-run the object audit.

April 2008

GemStone Systems, Inc. 221

How to Audit the Repository System Administration Guide for UNIX

Audit Errors

The audit involves a number of checks and specific error messages. The following
categories illustrate their nature:

= Object corruption — The object header should contain valid (legal)
information about the object’s tag size, body size (humber of instance
variables), and physical size (bytes or OOPSs). Errors of this type prevent a
rescan for details.

= Obiject reference consistency — No object should contain a reference to a
nonexistent object, including reference to a nonexistent class or segment.

= Identifier consistency — OOPs within the range in use (that is, up to the high-
water mark) should be in either the Object Table or the list of free OOPs, and
Oops for objects existing in data pages should be in the Object Table. The
exceptions should be dead objects in the process of being reclaimed.

= Reclaiming — If the audit is being performed in single-user mode, reclamation
should have removed all shadowed objects, which are the previous values of
committed objects.

Error Recovery

If the errors are a few invalid object references, you may choose to repair them
yourself. Use the Topaz object identity specification format @identifier to substitute
nil or an appropriate reference for an invalid reference. For example, to replace an
invalid reference in an instance of Array:

topaz 1> send ©119873 at: 3 put: nil

You can have GemStone attempt appropriate repairs during the re-scan by
invoking Repository>>repairWithLimit:. The following repairs illustrate
their nature:

= OopNil is substituted for an invalid object reference.
= DataCuratorSegment is substituted for an invalid segment reference.

= Class String is substituted for an invalid class of a byte object, class Array for
a pointer object, or class IdentitySet for a nonsequenceable collection object. If
the object has a dependency tag, OopNil is stored in the tag to dereference the
dependency list.

= Oops in the Object Table for which the referenced object does not exist are
inserted into the list of free Oops. Oops for which an object exists but which
are also in the list of free Oops are removed from the free list.

222 GemStone Systems, Inc. April 2008

Monitoring GemStone How to Audit the Repository

A descriptive message is displayed for each repair.

To have GemStone make the repairs, do the following:
Step 1. Log in to GemStone using linked Topaz (topaz -I).

Step 2. Make sure you are the only user logged in (other than GcUser). See “How
to Enter Single-User Mode” on page 178. The next step will stop the GcUser
session and disable logins for its duration.

Step 3. Send the message repairWithLimit:sizeLimit to the repository,
specifying an appropriate threshold for reporting object statistics. For
example, to use the same reporting limit as objectAudit:

topaz 1> run
SystemRepository repairWithLimit: 100000
%

Because repairWithLimit: includes an object audit, some administrators
prefer to use this method initially rather than repeating the audit in the process of
repairing errors found by a previous audit. However, repairWithLimit:
requires that you be the only user logged in.

Repair Using Backup and Restore

When you create a GemStone backup, all persistent data in the repository is
written to the backup file(s). However, some internal structures, such as the list of
free OOPs, are not written to the backup file. These structures are rebuilt during
the restore from backup process. If corruption is detected in one of the internal
structures, making a backup of the repository and restoring it may repair the
problem.

Understanding Object Audit Statistics

Figure 8.1 shows a representative set of statistics resulting from an object audit.
The report is in three parts:

1. Alist of all objects (including private ones) that exceed a certain size limit,
which in this example is 5000 bytes or Oops. The method objectAudit has
a preset limit of 100000 as the smallest object to be included in the list.

Inspect this list for large objects created by your application. Classes an
application defines will have identifiers of 5277 or higher.

2. Statistics aboutinvisible (private) classes that are reserved for GemStone’s use.
The number of these classes varies from release to release, and some may not
be used in a particular release.

April 2008

GemStone Systems, Inc. 223

How to Audit the Repository System Administration Guide for UNIX

Statistics about instances of visible classes, including instances within the
kernel.

Of particular interest are the number of objects (which you can compare with
the number reported by an audit of the initial GemStone repository) and the
average size of an object’s value. The size statistic may be helpful in estimating
the eventual size of your repository (see “Estimating Extent Size” on page 21).
In this example, the objects occupy an average of 28 bytes each plus an
overhead of 26 bytes each.

Object tags are hidden instance variable slots in all objects except
Smalllntegers, Booleans, and UndefinedObjects (nils). For further information,
see the comment for Object>>tagAt: and tagAt:put: intheimage.

224

GemStone Systems, Inc. April 2008

Monitoring GemStone How to Audit the Repository

Figure 8.1 Statistics From an Object Audit

topaz 1> printit
SystemRepository auditWithLimit:
%

Object audit is proceeding in Singlk
All audit checks are enabled.

User mode:

Object audit as of 08/10/07 11:04:17

Summary of objects whose sizes exceed Bytes or Oops:

ObjectID Class ClassName LogicalSize Segment Owner
922896 276 InvariantString 5479 Bytes 813 SystemUser
924033 276 InvariantString 5966 Bytes 813 SystemUser
931248 261 Array 6010 Oops 815 DataCurator
908 313 SymbolHashDictionary 8682 Oops 815 DataCurator
924170 276 InvariantString SystemUser
22941 446819 WidgetHashCollection Mfg Large
88248 24366 WidgetCollection Mfg L.
2914993 446819 WidgetHashCollection Mg Application
Objects
——————————— Object Statistics Summary —------——————————-
----- Instances of invisible (private) classes -----—-
Number of instances: 437
Total size: 559 K Bytes
Average size: 1310 Bytes
Class: 817 Instances: 0 Total Size: 0 K Bytes
Class: 818 Instances: 279 Total Size: 550 K Bytes .
Class: 819 Instances: 2 Total Size: 0 K Bytes Private Classes
Class: 820 Instances: 2 Total Size: 0 K Bytes Reserved for
Class: 821 Instances: 1 Total Size: 0 K Bytes Gem and Stone
Class: 822 Instances: 0 Total Size: 0 K Bytes
Class: 823 Instances: 0 Total Size: 0 K Bytes
Class: 824 Instances: 0 Total Size: 0 K Bytes

————— Instances of visible classes --- =————=
Number of objects 191014
Total Size : 345110 K Bytes
size of Object Headers : 140449 K Bytes
size of Object Values 200822 K Bytes
size of Object Tags 0 K Bytes
average of Object Value: 28 Bytes

Instance
Statistics

Object Audit: Audit successfully completed; no errors were detected.
Completed execution of object audit. O objects contained errors.
topaz 1>

April 2008 GemStone Systems, Inc. 225

Monitoring Performance System Administration Guide for UNIX

8.3 Monitoring Performance

As part of your ongoing responsibilities, you may find it useful to monitor
performance of the object server or individual session processes. You can obtain
information separately about page reads and writes, or you can obtain more
detailed cache statistics about that session.

GemStone supports monitoring in several ways:
= you can use command-line facilities to determine the general status,

= Smalltalk messages to access statistics maintained in the shared page cache,
and

= two applications—statmonitor and Visual Statistics Display—to monitor
performance in depth.

This section discusses the first two ways; statmonitor and Visual Statistics Display
are discussed in Chapter 11.

To Monitor Page Reads and Writes by a Session

Privileges required: Statistics.

You can obtain information about session 1/0 by invoking the methods

System class>>pageReads and System class>>pageWrites from that
session. These methods return the number of reads and writes performed by that
session since its start. For example:

topaz 1> printit
System pageReads
%

19

topaz 1> printit
System pageWrites
%

0

To Monitor Cache Statistics

The utility programs statmonitor and VSD (Visual Statistics Display allow you
to (respectively) record and graphically examine cache statistics. For details on
their use, see Appendix G.

226 GemStone Systems, Inc. April 2008

Monitoring GemStone Monitoring Performance

A set of methods on the System class provide a way for you to analyze
performance by programmatically examining statistics that are collected in the
shared page cache. (This is the same data that is visible using VSD.)

A process can only access statistics that are kept in the shared page cache to which
it is attached. This means that processes that are remote from the Stone, and are
thus attached to a local shared page cache, cannot access statistics for the Stone or
for other server processes that are attached to the Stone's shared page cache.

Within the shared page cache, GemStone statistics are stored as an array of process
slots, each of which corresponds to a specific process. To find the value of a
particular statistic, you must first determine the process slot for that server process
and the index of the statistic within the process slot. Based on this information, you
can then locate the data of interest.

Process slot 0 is the shared page cache monitor. On the Stone’s shared page cache,
process slot 1 is the Stone; on remote caches, slot 1 is the page server for the Stone
that started the cache. Subsequent process slots are the page servers, Page
Manager, Admin and Reclaim GcGems, and Symbol Gems, and user Gems. The
order of these slots depends on the order in which the processes are started up, and
is different on remote caches.

You can use the method System class >> myCacheProcessSlot to return
the process slot in the shared page cache that corresponds to the calling process.

< cacheStatisticsDescription, when used with display level 1 in Topaz,
prints the description of each slot as shown in the table. For example:

topaz 1> level 1

topaz 1> run

System cacheStatisticsDescription
%

an _Array

#1 ProcessName

#2 Processld

#3 Sessionld

#4 LockedPage

#5 AttachDelta

April 2008 GemStone Systems, Inc. 227

Monitoring Performance System Administration Guide for UNIX

cacheStatistics: aProcessSlot returns an array of the information
described in Table 8.3 for the given process slot.

topaz 1> level 1
topaz 1> printit

System cacheStatistics: 1
%

an _Array

#1 Stone

#2 12256

#3 0

#4 -1

#5 416

All array elements except the first are Integers. Since not every process type
records values for every statistic, the unused elements will have 0 value at that
offset.

myCacheProcessSlot returnsthe process slot in the shared page cache that
corresponds to the calling process

Topaz 1> printit
System cacheStatistics: (System myCacheProcessSlot)
%

cacheSlotForSessionld: aSessionld returns the process slot number for a
given session, which must be connected to the same shared page cache as the
session invoking the method,; if the session cannot be located, the method
returnsnil.

cacheStatisticsForSessionld: aSessionld returns statistics for a Gem
session directly from a session ID, provided that the session is using the same
cache as the session invoking this method.

Topaz 1> printit
System cacheStatisticsForSessionld: aSessionld
%

Each Gem or page server has a unique number appended to its name, so that data
can be related to the correct process in the case where several transient processes
successively occupy the same cache slot.

To make it easier for you to track cache statistics for specific Gems, you can
explicitly give each Gem a unique name. The private method
System _cacheName: aString sets the name for the current Gem session in the

228

GemStone Systems, Inc. April 2008

Monitoring GemStone Monitoring Performance

cache statistics, thus making it much easier to read the statistics in VSD. Note that
_cacheName: is a private method; as such, it is provided here only for your
convenience, and is subject to change in future releases.

Session Statistics

GemsStone Also provides a facility for defining session statistics — user-defined
statistics that can be written and read by each session, to monitor and profile the
internal operations specific to your application. These are retrieved using a
separate protocol, rather than cacheStatistics:.

There are 48 session cache statistic slots available, with names of the form
SessionStat0...SessionStat47.

You can use the following methods to read and write the session cache statistics:
System Class >> _sessionCacheStatAt: anindex

Returns the value of the statistic at the designated index (must be in the range
0..47).

System Class >> _sessionCacheStatAt: anindex put: aValue

Assigns a value to the statistic at the designated index (must be in the range
0..47) and returns the new value.

System Class >> _sessionCacheStatsForProcessSlot: aProcessSlot

Return an array containing the 48 session statistics for the given process slot,
or nil if the process slot is not found or is not in use.

System Class >> _sessionCacheStatsForSessionld: aSessionldt
Return an array containing the 48 session statistics for the given session id, or nil if
the session is not found or is not in use.

Cache Statistics

The following table lists all the statistics available for any process, in numerical
order. This is the same information as provided in the method System class >>
cacheStatisticsDescription. Statistics marked “obsolete” in Table 8.3 always return
zero. For details on the meaning of each statistic, see the following section.

NOTE
The offsets shown in Table 8.3 may change in future releases.

April 2008 GemStone Systems, Inc. 229

Monitoring Performance

System Administration Guide for UNIX

Table 8.3 Cache Statistics

Array Name Cache Slots for
Element? Which Available
1 ProcessName, aString All
2 Processld
3 Sessionld
4 LockedPage (obsolete)
5 AttachDelta
6 AttachedCount
7 SharedAttached Shared page cache
8 Total Attached monitor only
9 FreeFrameCount
10 LocalPageCacheHits All
11 LocalPageCacheMisses
12 LocalPageCacheWrites
13 PageReads
14 PageWrites
15 CommitCount Gems only
16 FailedCommitCount
17 AbortCount
18 ObjsCommitted
19 NewObjsCommitted
20 TotalObjsCommitted (obsolete)
21 TotalNewObjsCommitted (obsolete)
22 ScavengeCount
23 TimelnScavenges
24 DeadObjCount
25 MakeRoomInOldSpaceCount
26 GcNotConnectedCount
27 GcNotConnectedDeadCount
28 IntSendCount (obsolete)
29 ClassCacheCount (obsolete)
30 MethodCacheCount (obsolete)

230

GemStone Systems, Inc.

April 2008

Monitoring GemStone

Monitoring Performance

Table 8.3

Cache Statistics (Continued)

Array Name Cache Slots for
Element? Which Available
31 ExportedSetSize Gems only

32 NoRollbackSetSize

33 NotConnectedObjsSetSize

34 TotalCommits Stone only

35 CommitRecordCount

36 AsyncWritesInProgress

37 AsyncWritesCount

38 LogRecordsWritten

39 LogRecordsloCount

40 DeadObjsCount

41 ReclaimCount

42 ReclaimedPagesCount

43 CheckpointCount

44 not used

45 AioDirtyCount Page servers only
46 AioCkptCount

47 LocalDirtyPageCount Shared page cache
48 GlobalDirtyPageCount monitor only
49 PagesNeedReclaimSize Stone only

50 PossibleDeadSize

51 DeadNotReclaimedSize

52 InTransaction Gems only

53 TimeWaitingForCommit

54 TimeProcessingCommit

55 TimeStoneCommit

56 CommitQueueSize Stone only

57 LockReqQueueSize

58 NotifyQueueSize

59 LoginWaitQueueSize

60 RunQueueSize

April 2008

GemStone Systems, Inc.

231

Monitoring Performance

System Administration Guide for UNIX

Table 8.3 Cache Statistics (Continued)

Array Name Cache Slots for
Element? Which Available
61 PageKindsWrittenByGems (see Table 8.4) Shared page cache
62 PageKindsWrittenByStone (see Table 8.4) monitor only
63 MilliSecPerloSample Stone only
64 AllSymbolsQueueSize
65 PageWaitQueueSize
66 LogWaitQueueSize
67 TempPagesDisposed
68 PersistentPagesDisposed
69 PageDisposesDeferred
70 SigAbortCount Gems only
71 SigLostOtCount
72 MessagesToStone
73 ProgressCount
74 NewSymbolsCount
75 BytesCommittedCount
76 FreePages Stone and Gems only
77 ClientPageReads Page servers only
78 ClientPageWrites
79 VcCacheScavengesCount Gems only
80 VcCacheSizeBytes
81 CodeCacheSizeBytes
82 CodeCacheEntries
83 CodeCacheStaleEntries
84 CodeCacheScavengesCount
85 FramesFromFreeList All
86 FramesFromFindFree
232 GemStone Systems, Inc. April 2008

Monitoring GemStone

Monitoring Performance

Table 8.3

Cache Statistics (Continued)

Array Name Cache Slots for
Element? Which Available
87 GcSweepCount Stone only

88 GcPossibleDeadSize

89 GcPossibleDeadWsUnionSize

90 GcPagesNeedReclaiming

91 GceDeferEpochThreshold

92 GcReclaimMaxPages

93 GcReclaimNewDataPagesCount

94 VoteNotDead Gems only

95 TransactionLevel

96 NonSharedAttached All

97 PrivateAttachLimit

98 LastWakeuplinterval Shared page cache
99 ActiveProcessCount monitor only
100 RecentActiveProcessCount

101 TimelnPgsvrNetReads Stone and Gems only
102 TimelnPgsvrNetWrites

103 GsMsgCount Stone only

104 GsMsgSessionld

105 GsMsgKind

106 StnLoopState

107 DeferCkptCompleteCount

108 ReclaimWaitQueueSize

109 TotalAborts

110 FailedAioCount

111 FreeFrameLimit All

112 EpochGcCount Stone only

113 EpochNewObjsSize

114 EpochScannedObjs

115 EpochPossibleDeadSize

April 2008

GemStone Systems, Inc.

233

Monitoring Performance

System Administration Guide for UNIX

Table 8.3 Cache Statistics (Continued)
Array Name Cache Slots for
Element? Which Available
116 CacheMisses All
117 CacheEvents
118 CacheMissRatio
119 CacheAttachFactor
120 CacheDetachFactor
121 TimelnFramesFromFindFree
122 FramesAddedToFreeList
123 PageLocateCount
124 ObjectTablePageReads
125 DataPageReads
126 BitMapPageReads
127 OtherPageReads
128 GemslnCacheCount Shared page cache
129 PagesRemovedFromCacheCount monitor only
130 PagesNotRemovedFromCacheCount
131 DirtyPageSweepCount Page servers only
132 TimelnStnGetLocks Stone only
133 StoneGetLocksCount
134 TotalNewObjsCommitted
135 FreeOopCount
136 TotalSessionsCount
137 CommitTokenSession
138 StnLoopCount
139 GclnReclaimAll
140 GcVoteUnderway
141 GcNotConnectedDeadCommittedCount Gems only
142 TimelnGcNotConnected
143 AttachDeltaPagesSatisfiedCount
144 ShadowedPagesCount
145 RcConflictCount

234 GemStone Systems, Inc. April 2008

Monitoring GemStone

Monitoring Performance

Table 8.3

Cache Statistics (Continued)

Array Name Cache Slots for

Element? Which Available

146 AllSymbolsConflictCount Gems only

147 CommitRetryFailureCount

148 PageReadsWaitingForCommit

149 PageReadsProcessingCommit

150 PageReadsStoneCommit

151 MessagesToStnWaitingForCommit

152 MessagesToStnProcessingCommit

153 MessagesToStnStoneCommit

154 MessageKindToStone

155 TimeWaitingForStone

156 UpdateUnionsCommitCount

157 TimelnUpdateUnionsCommit

158 RebuildScavPagesForCommitCount

159 PageReadsRebuildScavPagesCommit

160 MessagesToStnRebuildScavPagesCommit

161 TimelnRebuildScavPagesCommit

162 OldSpaceOverflowCount

163 SigAbortsSent

164 SigAbortsReceived

165 LostOtsSent

166 LostOtsReceived

167 OldestCrSession Stone only

168 TargetFreeFrameCount Shared page cache
monitor only

169 RecoverTranlogFileld Stone only

170 RecoverTranlogBlockld

171 RecoverCrBacklog

172 SessionNotVoted

April 2008

GemStone Systems, Inc.

235

Monitoring Performance

System Administration Guide for UNIX

Table 8.3 Cache Statistics (Continued)

Array Name Cache Slots for
Element? Which Available
173 SpinLockPageFrameSleepCount Shared page cache
174 SpinLockHashTableSleepCount monitor only

175 SpinLockFreeFrameSleepCount

176 SpinLockFreePceSleepCount

177 SpinLockSmcQSleepCount

178 SpinLockOtherSleepCount

179 LocalCacheOverflowCount All

180 LocalCacheFreeFrameCount

181 ExtentFlushCount

182 AsyncFlushesinProgress Page servers only
183 DetachAllPagesCount Gems only

184 CommitRecordsDisposedCount Stone only

185 AioRateLimit Page servers only
186 GcForceEpoch Stone only

187 GcReclaimState

188 GcEpochState

189 ClientPid Page servers only
190 StnLoopNetPollCount Stone only

191 StnLoopTimelnNetPoll

192 StnLoopNetPollOobCount

193 StnLoopTimelnNetPollOob

194 RemoteSessionCount

195 LoglOSlotCount

196 TimelnLoglOWait

197 PgsvrPid Gems only

236

GemStone Systems, Inc.

April 2008

Monitoring GemStone

Monitoring Performance

Table 8.3

Cache Statistics (Continued)

Array Name Cache Slots for
Element? Which Available
198 NumlInPgsvrWaitQueue Stone only

199 NuminSetLostOtQueue

200 NumlInRemotePidQueryQueue

201 NumInRemoteKillQueue

202 SmcQueueSize

203 PageMgrPagesNotRemovedFromCachesCount

204 PageMgrRemoveFromCachesPageCount

205 PageMgrPagesRemovedFromCachesCount

206 PageMgrPagesPendingRemovalRetryCount

207 RemoteSharedPageCacheCount

208 PageMgrPagesReceivedFromStoneCount

209 PageMgrRemoveFromCachesCount

210 PageMgrRemovePagesFromCachesPollCount

211 PageMgrTimeWaitingForCachePgsvrs

212 PagesWaitingForRemovallnStoneCount

213 RemoteCachesNeedServiceCount

214 TimelnStonePageDisposal

215 PagesNeedRemovingThreshold

216 OldestCrSessNotInTrans

217 PagesRemovedDirtyFromCacheCount Shared page cache
218 PagesNotFoundInCacheCount monitor only
219 PinnedPagesCount All

220 PrivatePinnedPagesCount

221 RemoveSharedPageCacheMax Stone only

222 WaitsForOtherReader All

8 Offsets may change in future releases. Break in sequence indicates statistics for internal
experimental use only. For current offsets, see the method
System class>>cacheStatisticsDescription.

April 2008

GemStone Systems, Inc.

237

Monitoring Performance System Administration Guide for UNIX

Cache Statistics

This section lists the GemStone/S statistics in alphabetical order. The heading
indicates the processes for which the statistic is applicable: Stone, Gem, SPC
(shared page cache) monitor, Pgsvr (AlO page server), or all.

NOTE
Certain statistics not listed in this chapter, but visible in VSD displays,
are for internal purposes only.

AbortCount (Gem)

The number of aborts executed by a Gem process (or by an application linked to a
Gem) since the Gem was most recently started.

ActiveProcessCount (SPC monitor)

The number of active processes attached to the shared page cache, as computed by
the shared page cache monitor. This value decays slowly. For a faster decay, see
RecentActiveProcessCount.

AioCkptCount (Pgsvr)

The number of dirty pages written from the shared page cache to disk to satisfy a
checkpoint.

AioDirtyCount (Pgsvr)

The number of dirty pages written from the shared page cache to disk by Stone’s
AIlQO page server during normal operation.

AioRateLimit (Pgsvr)

The current 1/0 rate being used by the page server, expressed in 1/0 operations
per second. The page server will perform no more than this number of 1/0
operations per second on average.

AllISymbolsConflictCount (Gem)

The number of commits that resulted in a conflict on AllSymbols.

AllISymbolsQueueSize (Stone)

The number of sessions waiting for a lock on the global object AllISymbols. Because
symbols are canonical (that is, there is only a single instance of each in the system),
transactions that create a new symbol must write AllSymbols during commit

238

GemStone Systems, Inc. April 2008

Monitoring GemStone Monitoring Performance

processing. If the queue typically contains several sessions, you should examine
the number of symbols the application creates.

AsyncFlushesIinProgress (Pgsvr)

The number of pending extent flush operations.

AsyncWritesCount (Stone)

The number of asynchronous writes performed since the process started (only
applies to the Stone repository monitor process).
AsyncWritesInProgress (Stone)

The number of outstanding asynchronous writes queued (only applies to the Stone
repository monitor process).

AttachDelta (all)

Calculated by the cache monitor (shrpcmonitor) process and read by other
processes. This value controls the number of data pages that the process is allowed
to attach in the shared page cache. It is used to control the sharing of the cache
resources among multiple processes using the cache.

The attach delta can be either a positive or negative value. If the value is positive,
the process may attach that many more pages before it must give up an existing
attached page. If the value is negative then the process must give up, that is,
release, that many pages before it can attach another page.

AttachDeltaPagesSatisfiedCount (Gem)
The count of pages that the Gem has detached to satisfy the AttachDelta.

AttachedCount (all)

The number of data pages that the process currently has attached in the shared
page cache. It indicates how much of a load the application is putting on the cache
for resources. See AttachDelta.

BitmapPageReads (all)

The number of bitmap pages read by the process since it was last started. These
page reads are actual disk reads and not reads from the shared page cache.

April 2008

GemStone Systems, Inc. 239

Monitoring Performance System Administration Guide for UNIX

BytesCommittedCount (Gem)

The total number of bytes that have been committed by this session.

CacheAttachFactor (all)

An experimental statistic that may be used in a future version of the shared page
cache monitor for calculating AttachDelta. If used, it will represent the percentage
of free pages that could be attached to this process, based on its CacheMissRatio.

CacheDetachFactor (all)

An experimental statistic that may be used in a future version of the shared page
cache monitor for calculating AttachDelta. If used, it will represent the percentage
of currently attached pages that this process will have to detach, based on its
CacheMuissRatio.

CacheEvents (all)

The sum of LocalPageCacheMisses plus LocalPageCacheHits made during the last
cycle of the shared page cache monitor loop. This is an experimental statistic that
may be used in a future version of the shared page cache monitor for calculating

AttachDelta.

CacheMisses (all)

The number of LocalPageCacheMisses made during the last cycle of the shared
page cache monitor loop. This is an experimental statistic that may be used in a
future version of the shared page cache monitor for calculating AttachDelta.

CacheMissRatio (all)

The ratio of CacheMisses to CacheEvents made during the last cycle of the shared
page cache monitor loop, expressed in terms of CacheMisses per 1000
CacheEvents. This is an experimental statistic that may be used in a future version
of the shared page cache monitor for calculating AttachDelta.

CheckpointCount (Stone)

The number of checkpoints that have been written since the Stone repository
monitor was last started. Writing a checkpoint implies that all of the data and meta
information needed to recover the data corresponding to the commit record
associated with the checkpoint have been written to the disk(s) containing the
extent(s) that make up the repository. Thus, the last checkpoint in the transaction

240

GemStone Systems, Inc. April 2008

Monitoring GemStone Monitoring Performance

log determines how much data in the log must be recovered when there is a system
crash.

In full logging mode, the checkpoints are controlled completely by the
STN_CHECKPOINT_INTERVAL configuration parameter. In partial logging mode,
a checkpoint may be written more often if the size of the transaction exceeds the
value set by the configuration parameter STN_TRAN_LOG_LIMIT. If partial logging
is in use, a rapidly increasing CheckpointCount indicates that
STN_TRAN_LOG_LIMIT may be set too small.

ClassCacheCount (Gem)

Obsolete; always returns zero.

ClientPageReads (Pgsvr)

Indicates the number of pages that have been transmitted by a page server to its
client. This statistic is implemented only for cache slots used by a page server.

ClientPageWrites (Pgsvr)

Indicates the number of pages that have been transmitted by a client to its page
server. This statistic is implemented only for cache slots used by a page server.

ClientPid (Pgsvr)
The process ID of the client process associated with this AIO page server process.

CodeCacheEntries (Gem)

The number of entries in the code cache.

CodeCacheScavengesCount (Gem)

The number of garbage collections of the code cache.

CodeCacheSizeBytes (Gem)

The approximate size in bytes of the code cache. This cache is the private heap
memory of the Gem. The code cache contains copies of methods that have been or
are being executed by the Gem.

CodeCacheStaleEntries (Gem)

The number of stale methods in the code cache.

April 2008

GemStone Systems, Inc. 241

Monitoring Performance System Administration Guide for UNIX

CommitCount (Gem)

The number of commits executed by a Gem process (or application linked to a
Gem) since the Gem was most recently started.

CommitQueueSize (Stone)

The number of Gem session processes waiting for the commit token.

CommitRecordCount (Stone)

The number of outstanding commit records that are currently being maintained by
the system. A number larger than the STN_SIGNAL_ABORT_CR_BACKLOG
configuration option indicates that there is a process in a transaction that is
preventing the Stone from reclaiming (garbage collecting) the resources associated
with those commit records. Large values are usually accompanied by continuing
growth in the size of the repository.

CommitRecordsDisposedCount (Stone)

The total number of commit records disposed by the Stone.

CommitRetryFailureCount (Gem)

The number of commits that failed after exceeding the retry count.

CommitTokenSession (Stone)

The session ID of the Gem holding the commit token. If no Gem is holding the
commit token, the value will be zero.

DataPageReads (all)

The number of data pages read by the process since it was last started. These page
reads are actual disk reads and not reads from the shared page cache.

DeadNotReclaimedSize (Stone)

The number of objects that have been determined to be dead (current sessions have
indicated they do not have a reference to these objects) but have not yet been
reclaimed. Values greater than about 2000 are an approximation using increments
of 65280.

242

GemStone Systems, Inc. April 2008

Monitoring GemStone Monitoring Performance

DeadObjsCount (Gem)

The number of dead objects that have been garbage collected by the in-memory
garbage collection of temporary objects since the process started.

DeadObjsCount (Stone)

The total number of dead objects reclaimed since the Stone repository monitor
process was last started. For a system in “steady state” for a particular application,
look for a uniform discovery rate per garbage collection epoch. Increasing the
duration of the epoch should increase this value, but that could also cause larger
swings in the amount of free space in the repository.

DeferCkptCompleteCount (Stone)

The number of pending commit operations for which the checkpoint will allow
itself to be deferred before it completes.

DetachAllPagesCount (Gem)
The number of times the Gem has detached all pages in the shared cache.

DirtyPageSweepCount (Pgsvr)

The number of times the page server has swept the cache for dirty pages or frames
to add to the free list.

EpochGcCount (Stone)

The number of times that the epoch garbage collection process was run by the
GcGem since the Stone repository monitor was last started. For a system in steady
state, look for uniform periods between runs or a uniform run rate.

EpochNewObjsSize (Stone)

The number of number of new objects created during the last epoch.

EpochPossibleDeadSize (Stone)

The number of possibly dead objects found by the last epoch garbage collection.

EpochScannedObjs (Stone)

The number of objects scanned by the last epoch garbage collection.

April 2008

GemStone Systems, Inc. 243

Monitoring Performance System Administration Guide for UNIX

ExportedSetSize (Gem)

The number of objects in the ExportSet. The ExportSet is a collection of objects for
which the Gem process has handed out an Oop to GemBuilder or Topaz. Objects
in the ExportSet are prevented from being garbage collected by any of the garbage
collection processes (that is, by a Gem’s in-memory collection of temporary objects
or by epoch garbage collection). The ExportSet is used to guarantee referential
integrity for objects only referenced by an application, that is, objects that have no
references to them within the Gem.

The application program is responsible for timely removal of objects from the
ExportSet. The contents of the ExportSet can be examined using hidden set
methods defined in class System. In general, the smaller the size of the ExportSet
the better the performance is likely to be. There are a couple of reasons for this
relationship. The ExportSet is one of the root sets used for garbage collection. The
larger the ExportSet, the more likely it is that objects that would otherwise be
considered garbage are being retained. One threshold for performance is when the
size of the export set becomes greater than 2K objects. When its size is smaller than
2K objects, the export set is stored as a single disk page. When its size is larger than
2K, the export set occupies more than one page and is likely to cause additional
1/0.

ExtentFlushCount (all)

The cumulative number of file flush operations performed on any extent by the
process. Note that extents residing on raw partitions do not require flushing. On
UNIX systems, file flushes are performed by calling the fsync() function. During a
checkpoint, each extent is flushed once, except for the primary extent which is
flushed twice. Most extent flushes are performed by the AlO page servers.

FailedAioCount (Stone)

The number of failed asynchronous 1/0 operations since the Stone was started.

FailedCommitCount (Gem)

The number of attempts to commit that failed due to concurrency conflicts.

FramesAddedToFreeList (all)

The number of frames added to the free list since the session (for Gems), shared
page cache, or Stone started.

244

GemStone Systems, Inc. April 2008

Monitoring GemStone Monitoring Performance

FramesFromFindFree (all)

The number of times the process acquired a page frame in the shared page cache
by scanning the cache entries. The process tries to find free frames this way instead
of taking them from the free list when the number free is below the value set by the
GEM_FREE_FRAME_LIMIT configuration option. While scanning for free frames
under those conditions is desirable from a system perspective, it represents
additional overhead for the particular session.

FramesFromFreeList (all)

The number of times the process acquired a page frame in the shared page cache
from the list of free frames.

FreeFrameCount (SPC monitor)

The number of unused page frames in the shared page cache. It gives some
indication of the utilization of the cache, but it is not tunable. This statistic is valid
(non-zero) only for the shared page cache monitor process slot.

FreeFrameLimit (all)

When the number of free frames in the shared page cache is less than the
FreeFrameLimit, the Gem scans the cache for a free frame rather than use one from
the free frame list, so that the Stone process can use the remaining free frames.

FreeOopCount (Stone)

The number of free OOPs in the free list that have not been allocated to a Gem and
committed.

FreePages (Stone, Gem)

The size of the free page pool for the repository. Free space in the repository is
calculated at 8 KB for each page in the free pool.

GcDeferEpochThreshold (Stone)

The value of the GcUser parameter #deferEpochReclaimThreshold that the
GcGem is currently using.

GcEpochState (Stone)

The state of the Epoch GecGem. In a single-GcGem configuration, see
GcReclaimState. Possible values are:

April 2008

GemStone Systems, Inc. 245

Monitoring Performance System Administration Guide for UNIX

0 = Not active / sleeping

1 = Setup / background activity
2 = (Not used in Epoch GcGem)
3 = Rebuilding AllSymbols table
4 = Write set union sweep
5=Epoch GC

GcForceEpoch (Stone)

GcForceEpoch becomes 1 when a user executes System
class>>forceEpochGC to request that an Epoch GC be started. When the Epoch
GC starts, the value returns to 0.

GclIlnReclaimAll (Stone)

1 if the system is reclaiming pages by executing System reclaimAll; 0
otherwise.

GcNotConnectedCount (Gem)

The number of times the notConnected objects were garbage collected since the
process started.

GcNotConnectedDeadCommittedCount (Gem)

The number of dead objects found during the garbage collection of the
notConnected objects that were previously committed.

GcNotConnectedDeadCount (Gem)

The number of dead objects found during the garbage collection of the
notConnected objects.

GcPagesNeedReclaiming (Stone)

The number of pages that need reclaiming. This value controls whether promotion
of additional objects or epoch garbage collection will be deferred. If this value is
greater than GecDeferEpochThreshold (page 245), then epochs are deferred.

246

GemStone Systems, Inc. April 2008

Monitoring GemStone Monitoring Performance

GcPossibleDeadSize (Stone)

The number of possible dead objects remaining. Initially, it is the size of the
possible dead set received by the GcGem from the Stone. Each time a group of
objects is promoted, this value is decremented by the size of that group.

GcPossibleDeadWSUnionSize (Stone)

The size of the possible dead write set union if a sweep is in progress. It is zero if a
sweep is not in progress. Because ProgressCount (page 259) during a GcGem
sweep may reach this value as its maximum, this value can be used to estimate
when the sweep will complete.

GcReclaimMaxPages (Stone)

The value of the GcUser parameter #reclaimMaxPages that the GecGem is
currently using.

GcReclaimNewDataPagesCount (Stone)

The number of new data pages that the GcGem had to allocate during reclaims
since the Stone process was started.

GcReclaimState (Stone)

The state of the normal GcGem (or the Reclaim GecGem in a dual GeGem
configuration). Possible values are:

< 0= Not active / sleeping

« 1 =Setup / background activity

= 2 =Reclaiming shadowed pages

= 3 =Rebuilding AllISymbols table (not used in Reclaim GcGem)
e 4 =Write set union sweep (not used in Reclaim GcGem)

e 5=Epoch GC (not used in Reclaim GcGem)

GcSweepCount (Stone)

The total number of sweeps of the possible dead write set union that have been
done by the GeGem since it started.

April 2008 GemStone Systems, Inc. 247

Monitoring Performance System Administration Guide for UNIX

GcVoteUnderway (Stone)

Tracks the progress of a number of phases within garbage collection. Possible
values are:

< 0-Not voting

= 1-Gems are voting on the possible dead set

= 2 -Vote completed, possible dead write set union sweep pending
= 3 -Possible dead write set union sweep in progress

= 4 -Possible dead write set union sweep completed

Note that all of these phases must complete before the PossibleDead objects can be
“promoted” to DeadNotReclaimed objects. The GecGem is responsible for
performing the possible dead write set union sweep, and must be running for this
to occur.

For details about the voting phase of garbage collection, see “What Happens to
Garbage?” on page 305.

GemsInCacheCount (SPC monitor)

The total number of Gems using the shared page cache whose process slot you are
viewing—useful for distinguishing Gems using a local shared page cache from
those using a remote shared page cache.

GlobalDirtyPageCount (SPC monitor)

The total number of pages in the shared cache that are dirty but not yet eligible for
asynchronous writing to the disk because they have not yet been committed. If this
value is very large, then very large transactions may be filling the cache.
Otherwise, if the Stone repository monitor is running on this cache, the Stone’s
private page cache size may be too small. This statistic is available only for the
shared page cache monitor’s slot (currently Slot 0).

GsMsgCount (Stone)

The number of messages processed by the Stone on behalf of Gems. This statistic
can help determine how busy the Stone is.

GsMsgKind (Stone)

An integer identifying the kind of message the Stone is currently processing.

248 GemStone Systems, Inc. April 2008

Monitoring GemStone Monitoring Performance

GsMsgSessionld (Stone)

The session identifier of the Gem for which the Stone is currently processing a
message.

InTransaction (Gem)

Indicates whether the Gem process is in a transaction.

IntSendCount (Gem)

Obsolete; always returns zero.

LastWakeuplInterval (SPC monitor)

The average number of milliseconds that the shared page cache monitor is pausing
between recalculations. If this value is low, the monitor is relatively busy; if high
(for example, greater than 500 ms), the monitor is relatively quiet.

LocalCacheFreeFrameCount (all)

The number of frames in the private page cache that are free.

LocalCacheOverflowCount (all)

The number of times a page was moved from private cache to the shared cache
because the private cache was full.

LocalDirtyPageCount (SPC monitor)

The total number of pages in the shared cache that are dirty and eligible for
asynchronous writing to the disk. The Stone’s AlO page server will write these
pages to the disk. This statistic is available only for the shared page cache monitor’s
slot (currently Slot 0).

LocalPageCacheHits (all)

The number of times a page lookup found the page in either the private or shared
page cache. No 1/0 was required to access the page.

LocalPageCacheMisses (all)

The number of times a page was not found in either the private or shared cache and
a read operation was required to get the page.

April 2008

GemStone Systems, Inc. 249

Monitoring Performance System Administration Guide for UNIX

LocalPageCacheWrites (all)

The number of times a page had to be written. With the shared page cache enabled,
this statistic counts the writes from the private cache to the shared cache. If the
shared page cache is disabled, it counts the pages written to disk.

LockedPage (all)

Obsolete; always returns zero.

LockRegQueueSize (Stone)

The number of Gem session processes waiting for a commit to complete so that
their lock request can be serviced.

LoginWaitQueueSize (Stone)

The number of sessions waiting for login completion.

LoglOSlotCount (Stone)

The number of slots available for asynchronous 1/0 operations for transaction log
writes. If this value drops below 3, the Stone may have to wait for earlier
asynchronous writes to complete before starting a new one. This wait time is
reported in TimelnLoglOWait (page 264).

LogRecordsloCount (Stone)

The number of physical write operations performed on the transaction logs since
the Stone repository monitor process was last started. The minimum write to a
transaction log is 512 bytes (one log record). The maximum number of bytes
written in a single 1/0 to the transaction log is 64K. The implication for
performance tuning is that to achieve the best throughput (in transactions per
second) you would like to have as few as possible writes to the transaction logs.
The technique for achieving this is to tune the size of the transactions so that each
transaction writes one or more completely filled 64K records.

LogRecordsWritten (Stone)

The number of log records that have been written to the transaction logs since the
Stone repository monitor process was last started. The size of a log record is 512
bytes.

250

GemStone Systems, Inc. April 2008

Monitoring GemStone Monitoring Performance

LogWaitQueueSize (Stone)

The size of the queue that holds sessions waiting for space to become available in
a transaction log. This queue should be empty or nearly so unless the space for
logging transactions has been exhausted.

LostOtsReceived (Gem)

The number of Lost OT Root signals received and recognized by this session.

LostOtsSent (Gem)

The number of Lost OT Root signals the Stone has sent to this session, although the
session may be in a sleep or I/0 wait state and not yet aware of having received
the signal. (See LostOtsReceived (Gem), above.)

MakeRoomInOldSpaceCount (Gem)

The number of times the oldest temporary object generation filled up. Large values
are OK for a large data load session; otherwise, the GEM_TEMPOBJ_CACHE_SIZE
configuration option may be too small. We suggest comparing this statistic with
NotConnectedObjSetSize (page 253) to see if both are growing. Another useful
comparison is that MakeRoomInOldSpaceCount should be less than one-third the
size of ScavengeCount (page 261); larger ratios indicate that the cache is too small.
MessageKindToStone (Gem)

The message type of the most recent message sent to the Stone.

MessagesToStnProcessingCommit (Gem)

The number of messages sent to the Stone while the Gem is processing its part of
the commit.

MessagesToStnRebuildScavPagesCommit (Gem)

The number of messages the Gem sent to the Stone while the Gem was rebuilding
its list of scavengable pages while processing a commit.

MessagesToStnStoneCommit (Gem)

The number of messages sent to the Stone while the Stone is processing its part of
the commit.

April 2008

GemStone Systems, Inc. 251

Monitoring Performance System Administration Guide for UNIX

MessagesToStnWaitingForCommit (Gem)

The number of messages sent to the Stone while waiting for the commit token.

MessagesToStone (Gem)

The number of messages sent by the Gem session process to the Stone repository
monitor using shared memory as the channel.

MethodCacheCount (Gem)

Obsolete; always returns zero.

MilliSecPerloSample (Stone)

Used as a parameter to implement the configurable 1/0 limit for GemStone
processes. Because a process’s 1/0 rate currently is sampled every 5 1/0s,
MilliSecPerloSample is computed as 1000/ (ioLimit * 5). A value of 1 means that
the process has no 1/0 limit. If the time (in milliseconds) since the last sample
equals or exceeds MilliSecPerloSample, the process can perform another 1/0
operation; if not, the process sleeps. MilliSecPerloSample is particularly useful in
limiting 170 rate of a process that is executing a long-running operation. For
information about setting this value, see the discussion on page 64. If you want to
calculate the current 170 limit, it is given by 1000/ (MilliSecPerloSample * 5).

NewObjsCommitted (Gem)

The number of new objects committed by the most recent transaction committed
by this process.

NewSymbolsCount (Gem)

The number of new symbols created by this session.

NonSharedAttached (all)

The number of pages attached by a process that no other process has attached.

NoRollbackSetSize (Gem)

The number of objects in the NoRollbackSet. The NoRollbackSet is used to provide
different abort behavior for committed objects. Normal behavior for committed
objects is that their state is “rolled back,” that is, the modifications to the object
made by the transaction are rolled back (removed) by the abort. Objects in the
NoRollBackSet do not have this behavior for aborts. Instead, the state of the object

252

GemStone Systems, Inc. April 2008

Monitoring GemStone Monitoring Performance

is preserved across the abort. This is the kind of behavior desired for “temporary”
objects even if they happen to get committed.

Objects are not automatically added or removed from the set by the system.
Instead the application has sole responsibility for adding objects to and removing
objects from the NoRollbackSet. The contents of the NoRollbackSet can be
examined or modified using hidden set methods defined in class System.
Although there are no known limits on this set, it is probably best to keep the size
under 2K objects.

NotConnectedObjsSetSize (Gem)

The number of objects in the notConnectedObjsSet. This set is used to provide
abort behavior for temporary objects written to the disk, that is, for objects that
have not been connected to one of the permanent root objects in the repository.
(Root objects are the kernel classes and predefined objects like Globals, AllUsers,
and so forth.) A large value sometimes indicates that the
GEM_TEMPOBJ_CACHE_SIZE configuration parameter set is too small.

This set is updated during commit processing to remove objects that have become
connected to permanent objects by the commit. New objects are added to this set
when objects move to disk because GEM_TEMPOBJ_CACHE_SIZE overflowed or
because an object already on disk references an object in
GEM_TEMPOBJ_CACHE_SIZE at commit. The contents of the NotConnectedObjsSet
can be examined using the hidden set methods defined in class System. There are
a couple of implications for performance tuning. First, if the size of the set is
monotonically increasing, it is an indication of garbage objects leaking out of the
temporary object space to disk. Second, like the ExportSet, the performance of the
system is improved if the size of the set is under 2K objects.

NotifyQueueSize (Stone)
The number of Gem session processes using notifiers.
NumlInPgsvrWaitQueue (Stone)

The number of remote sessions logged out and waiting for their pgsvr process to
die.

NumInRemoteKillQueue (Stone)

The number of sessions that the page manager is in the process of killing.

April 2008

GemStone Systems, Inc. 253

Monitoring Performance System Administration Guide for UNIX

NumInRemotePidQueryQueue (Stone)

The number of sessions for which the page manager is trying to determine
existance.

NumInSetLostOtQueue (Stone)

The number of sessions waiting for set lostOt in shared caches.

ObjectTablePageReads (all)

The number of object table pages read by the process since it was last started. These
page reads are actual disk reads and not reads from the shared page cache.

ObjsCommitted (Gem)

The number of objects committed by the most recent transaction committed by this
process.

OldestCrSession (Stone)

The session ID of a session referencing the oldest commit record. Note that more
than one session may reference a commit record. A value of -1 indicates the oldest
commit record is not referenced by any session.

OldestCrSessNotInTrans (Stone)

The session ID of the oldest session that is not in a transaction that is currently
referencing the oldest commit record. This session may be preventing the commit
record from being disposed.

OldSpaceOverflowCount (Gem)

The number of times objects were moved from old space into the NotConnectedSet
because old space filled.

OtherPageReads (all)

The number of pages read by the process that were not object table, data, or bitmap
pages since the process was started. These page reads are actual disk reads and not
reads from the shared page cache.

254

GemStone Systems, Inc. April 2008

Monitoring GemStone Monitoring Performance

PageDisposesDeferred (Stone)

The number of times a page disposal had to be deferred. This deferral can be
caused by an asynchronous operation (checkpoint) being in progress on the page
or by the page being attached or locked.

PageLocateCount (all)

The number of times that the process located a page. The page may have been read
from disk or found in the cache.

PageKindsWrittenByGems (SPC monitor)
PageKindsWrittenByStone (SPC monitor)

Each of these statistics consists of an array of counts for 21 page kinds. Together,
these arrays show the current contents of the shared page cache in terms of the
kind of page and who initiated it (a Gem or the Stone). Table 8.4 shows the page
kinds that may be of interest to users. The statistics are available only for the
shared page monitor’s slot (currently Slot 0).

Table 8.4 Page Kinds in Shared Page Cache

Page Kind

Index Code Page Kind

1 0 Invalid (empty) page

2 1 Root page

3 2 (for internal use)

4 3 Old commit record page

5 4 Data page

6 5 Object Table internal page

7 6 Object Table leaf page

8 7 Bitmap internal page

9 8 Bitmap leaf page
10-12 9-11 (for internal use)

13 12 Bitlist page (a form of bit array)
14-19 13-18 (for internal use)

20 19 Lost Object Table page

21 20 Commit record page

GemStone Systems, Inc. 255

Monitoring Performance System Administration Guide for UNIX

PageMgrPagesNotRemovedFromCachesCount (Stone)

The total number of pages the Page Manager was unable to remove from one or
more shared page caches.

PageMgrPagesPendingRemovalRetryCount (Stone)

The current number of pages that could not be removed from shared page caches
by the Page Manager on the first attempt and are waiting to be retried.

PageMgrPagesRemovedFromCachesCount (Stone)

The total number of pages the Page Manager has successfully removed from all
shared page caches.

PageMgrPagesReceivedFromStoneCount (Stone)

The total number of pages the Page Manager session received from the Stone to
remove from shared page caches.

PageMgrRemoveFromCachesCount (Stone)

The total number of pages the Page Manager has successfully removed from all
shared page caches.

PageMgrRemoveFromCachesPageCount (Stone)

The total number of pages the Page Manager has attempted to remove from shared
page caches. This statistic includes pages processed by page removal retry
operations, which occur whenever a page cannot be removed from a shared page
cache on the first attempt.

PageMgrRemovePagesFromCachesPollCount (Stone)

The number of times the Page Manager called poll() or select() to determine which
cache page servers have completed removing pages from their shared caches. This
statistic represents the value during the most recent page disposal operation and
is not cumulative. It always varies between zero (when there are no remote shared
caches on the system) and the number of remote shared page caches.

PageMgrTimeWaitingForCachePgsvrs (Stone)

The total amount of real time (in milliseconds) that the Page Manager has spent
waiting to receive data from remote cache page servers.

256

GemStone Systems, Inc. April 2008

Monitoring GemStone Monitoring Performance

PageReads (all)

The number of pages read by the process since it was last started. These page reads
are actual disk reads and not reads from the shared page cache.

PageReadsProcessingCommit (Gem)

The number of pages read while the Gem is processing its part of the commit.

PageReadsRebuildScavPagesCommit (Gem)

The total of pages read while the Gem was rebuilding its list of scavengable pages
while processing a commit.

PageReadsStoneCommit (Gem)

The number of pages read while the Stone is processing its part of the commit.

PageReadsWaitingForCommit (Gem)

The number of pages read while waiting for the commit token.

PagesNeedReclaimSize (Stone)

The amount of reclamation work that is pending, that is, the backlog waiting for
the GcGem reclaim task. Values greater than about 2000 are an approximation
using increments of 65280.

PagesNeedRemovingThreshold (Stone)

The threshold for the Page Manager to process the backlog described by
PagesWaitingForRemovallnStoneCount.

PagesNotFoundinCacheCount (SPC monitor)

The total number of pages not found in the shared cache when the Page Manager
Gem or cache page server attempted to remove them.

PagesNotRemovedFromCacheCount (SPC monitor)

The number of pages that the cache page server or Page Manager Gem was unable
to remove from the cache. Requests to remove pages come from the Stone.

PagesRemovedDirtyFromCacheCount (SPC monitor)

The number of dirty pages successfully removed from the cache by the cache page
server or the Page Manager at the Stone's request.

April 2008

GemStone Systems, Inc. 257

Monitoring Performance System Administration Guide for UNIX

PagesRemovedFromCacheCount (SPC monitor)

The total number of pages successfully removed from the cache by the cache page
server or the Page Manager at the Stone's request.

PagesWaitingForRemovallnStoneCount (Stone)

The number of pages in the Stone that are waiting to be removed from the shared
page cache by the Page Manager.

PageWaitQueueSize (Stone)

The size of the queue that holds sessions waiting to be allocated free pages. This
gueue should be empty or nearly so unless the repository is below its free space
threshold.

PageWrites (all)

The number of pages written by the process since it was last started. These page
writes are actual disk writes and not just writes into the shared page cache. Unless
a large data load is in process, the number should be low for all processes except
the Stone’s AIO page server process.

PersistentPagesDisposed (Stone)

The number of persistent pages (pages already checkpointed) that have been
disposed of while in the Stone’s private cache.

PgsvrPid (Gem)

The Process ID of the session’s page server (remote Gems only).

PinnedPagesCount (all)

The number of pages that the process has pinned (locked) in the shared cache.
Pages may be pinned by more than one process at the same time.

PossibleDeadSize (Stone)

The number of objects previously marked as dereferenced in the repository, but for
which sessions currently in a transaction might have created a reference in their
object space. The object is not declared (“promoted to”) dead until each active
session verifies the absence of such references during its next commit or abort.
Values greater than about 2000 are an approximation using increments of 65280.

258

GemStone Systems, Inc. April 2008

Monitoring GemStone Monitoring Performance

PrivateAttachLimit (all)

An intermediate value used to calculate the AttachDelta.

PrivatePinnedPagesCount (all)

The number of pages that the process has pinned (locked) in its private page cache.

Processld (all)

The operating system processld for the process associated with this shared page
cache process slot.

ProcessName (all)

Astring that identifies the process kind (Gem, Stone, page server, or shared page
cache monitor).

ProgressCount (Gem)

Can be used to monitor the progress of certain Repository methods that may run
for extended periods.

During markForCol lection, ProgressCount for that Gem’s cache slot first
indicates the number of objects swept during the mark-sweep (transitive closure)
phase. The transition to the second phase is marked by ProgressCount being reset
to zero. During the second phase, it indicates the number of possible dead objects
identified by taking the difference between the universe and those objects found
during the mark-sweep phase.

During ful IBackupTo: and restoreFromBackup:, ProgressCount for that
Gem’s cache clot is the number of objects written to or restored from the backup
file.

During objectAudit orauditWithLimit:, Progress count for that Gem’s
cache slot is the number of objects audited.

For the GecGem'’s cache slot, ProgressCount during the reclaim task is the number
of pages reclaimed. During epoch garbage collection, ProgressCount first is the
number of objects swept, and then is number of objects identified as possibly dead
(the same as during markForCol lection, above).

RcConflictCount (Gem)

The number of commits that resulted in an reduced-conflict (RC) conflict.

April 2008

GemStone Systems, Inc. 259

Monitoring Performance System Administration Guide for UNIX

RebuildScavPagesForCommitCount (Gem)

The total number of times the Gem rebuilt is list of scavengable pages while
processing a commit.

RecentActiveProcessCount (SPC monitor)

The number of active processes attached to the shared page cache. It is computed
more often than ActiveProcessCount and has decays quickly.

ReclaimCount (Stone)

The number of reclaims performed by a GcGem process since the Stone repository
monitor was last started.

ReclaimedPagesCount (Stone)

The number of pages reclaimed by a GcGem reclaim process since the Stone
repository monitor process was last started. The count indicates the number of
pages that have been or will soon be placed back into the repository’s pool of free

pages.
ReclaimWaitQueueSize (Stone)

The size of the queue for session that are waiting for reclaimAll to complete.

RecoverCrBacklog (Stone)

The size of the commit record backlog that was in effect during the generation of
the tranlog record currently being replayed during system recovery or restore.

RecoverTranlogBlockld (Stone)

The block ID of the tranlog currently being replayed during system recovery or
restore.

RecoverTranlogFileld (Stone)

The file ID of the tranlog currently being replayed during system recovery or
restore.

RemoteCachesNeedServiceCount (Stone)

The number of outstanding requests to start or stop a remote shared page cache.
Requests are initiated by the Stone and executed by the Page Manager session.

260

GemStone Systems, Inc. April 2008

Monitoring GemStone Monitoring Performance

RemoteSessionCount (Stone)

The number of sessions that are running on a host other than the Stone's host.

RemoteSharedPageCacheCount (Stone)

The total number of remote shared page caches attached to the system.

RemoteSharedPageCacheMax (Stone)

The maximum number of remote shared page caches that may be used with this
system.

RunQueueSize (Stone)

The number of Gem session processes waiting for service from the Stone
repository monitor.

ScavengeCount (Gem)

The number of times that the in-memory temporary object garbage collector was
executed since the process started.

Sessionld (all)

The GemStone sessionld associated with this client.

SessionNotVoted (Stone)

The Stone sessionld of a session that has not yet voted on the possible dead objects.

ShadowedPagesCount (Gem)

The number of data pages added to the reclaim list due to commits by this Gem.
This statistic is only updated during a commit.

SharedAttached (SPC monitor)

The number of data pages in the shared page cache that are attached by more than
one process. A large value indicates that processes may be accessing the same
objects, while a small value indicates that processes are mostly accessing different
objects. This value is valid (non-zero) only for the shared page cache monitor
process slot.

April 2008

GemStone Systems, Inc. 261

Monitoring Performance System Administration Guide for UNIX

SigAbortCount (Gem)

The number of abort signals that have been sent by the Stone to this session. This
counter is incremented when the Stone sends the signal, even if the session ignores
it.

SigAbortsReceived (Gem)

The number of times the Stone has signaled this session to abort, that it has
received and recognized.

SigAbortsSent (Gem)

The number of times the Stone has signaled this session to abort, although the
session may be in a sleep or I/0 wait state and not yet aware of having received
the signal. (See SigAbortsReceived (Gem), above.)

SigLostOtCount (Gem)

The number of lost object table signals that have been sent by the Stone to this
session.

SmcQueueSize (Stone)

The number of sessions in the SMC (shared memory communication) queue
waiting to be added to the run queue by Stone.

SpinLockFreeFrameSleepCount (SPC monitor)

The number of times the process was forced to sleep on a semaphore while
attempting to acquire the free frame list spin lock. Available only for shared page
cache monitor slot.

SpinLockFreePceSleepCount (SPC monitor)

The number of times the process was forced to sleep on a semaphore while
attempting to acquire the free page cache entry spin lock. Available only for shared
page cache monitor slot.

SpinLockHashTableSleepCount (SPC monitor)

The number of times the process was forced to sleep on a semaphore while
attempting to acquire a hash table spin lock. Available only for shared page cache
monitor slot.

262

GemStone Systems, Inc. April 2008

Monitoring GemStone Monitoring Performance

SpinLockOtherSleepCount (SPC monitor)

The number of times the process was forced to sleep on a semaphore while
attempting to acquire either the AllISymbols or shared counter spin lock. Available
only for shared page cache monitor slot.

SpinLockPageFrameSleepCount (SPC monitor)

The number of times the process was forced to sleep on a semaphore while
attempting to acquire a page frame spin lock. Available only for shared page cache
monitor slot.

SpinLockSmcQSleepCount (SPC monitor)

The number of times the process was forced to sleep on a semaphore while
attempting to acquire the SMC (shared memory communication) queue spin lock.
The SMC queue allows Gems to communicate with the Stone process via shared
memory. Available only for shared page cache monitor slot.

StnGetLocksCount (Stone)

The total number of times the Stone retrieved the lockset and passed it to a remote
Gem.

StnLoopCount (Stone)

The total number times the Stone has executed its service loop. If this number
remains unchanged for a significant period (for example, ten seconds or so), the
Stone has hung.

StnLoopNetPollCount (Stone)

The total number of times the NetPoll() function was called from the Stone's main
control loop.

StnLoopNetPollOobCount (Stone)

The total number of times the NetPollOob function was called from the Stone's
main control loop. This function is used to poll out-of-band sockets to Gems for
activity.

StnLoopState (Stone)

An integer identifying where, in the Stone control loop, the Stone process is
currently executing. For a meaningful statistic, set your sample rate to faster than
a second. For state definitions, consult GemStone Technical Support.

April 2008

GemStone Systems, Inc. 263

Monitoring Performance System Administration Guide for UNIX

StnLoopTimelnNetPoll (Stone)

The total amount of real time (in milliseconds) the Stone spent calling the NetPoll()
function.

StnLoopTimelnNetPollOob (Stone)

The total amount of real time (in milliseconds) the Stone has spent in the
NetPollOob function.

TargetFreeFrameCount (SPC Monitor)

The minimum number of unused page frames the free frame page server(s) will
attempt to keep in the cache. The free frame count can still fall below this value if
the cache contains mostly dirty pages, which free frame page servers cannot
preempt.

TempPagesDisposed (Stone)

The number of temporary pages (pages allocated since the last checkpoint) that
have been disposed.

TimelnFramesFromFindFree (all)

The cumulative number of milliseconds that the Gem or Stone has spent scanning
the shared page cache for a free frame since the session (for Gems) or Stone started.

TimelnGcNotConnected (Gem)

The cumulative number of milliseconds that the Gem or Stone has spent garbage-
collecting the NotConnectedSet since the session started. This statistic also
includes time spent performing makeRoomInOldSpace and generational
scavenge (epoch garbage collection) operations.

TimelnLoglOWait (Stone)

The total amount of real time (in milliseconds) that the Stone has had to wait for
prior asynchronous transaction log writes to complete before starting a new one.
A high value indicates problems with asynchronous writes on the Stone’s
machine.

TimelnPgsvrNetReads (Stone, Gem)

The cumulative number of milliseconds that the Gem or Stone has spent reading
data across the network from the page server.

264

GemStone Systems, Inc. April 2008

Monitoring GemStone Monitoring Performance

TimelnPgsvrNetWrites (Stone, Gem)

The cumulative number of milliseconds that the Gem or Stone has spent writing
data across the network to the page server.

TimelnRebuildScavPagesCommit (Gem)

The total amount of real time the Gem spent rebuilding its list of scavengable pages
while processing a commit.

TimelnScavenges (Gem)

The CPU time (in milliseconds) spent in the in-memory temporary garbage
collector.

TimelnStnGetLocks (Stone)

The total time spent by the Stone retrieving the lockset and passing it to a remote
Gem.

TimelnStonePageDisposal (Stone)

The total amount of real time (in milliseconds) that the Stone has spent performing
page disposal tasks.

TimeProcessingCommit (Gem)

The cumulative amount of time (in milliseconds) that the Gem session process has
spent doing the processing for commits while it has the commit token.

TimeStoneCommit (Gem)

The cumulative amount of time (in milliseconds) that the Gem session process has
waited for the Stone repository monitor to complete commits by this session.

TimeWaitingForCommit (Gem)

The cumulative amount of time (in milliseconds) that the Gem session process has
spent waiting for its turn to commit, that is, the time waiting for the commit token
and the Stone’s processing time for serialization.

TimeWaitingForStone (Gem)

The total time the Gem spent waiting for a response from the Stone.

April 2008

GemStone Systems, Inc. 265

Monitoring Performance System Administration Guide for UNIX

TimelnUpdateUnionsCommit (Gem)

The total real time the Gem spent updating its unions while waiting for the commit
token.

TotalAborts (Stone)

The number of abort operations performed system-wide since the Stone was
started.

TotalAttached (SPC monitor)

The total number of data pages attached in the cache (the sum of AttachedCount
for all processes). The results are valid (non-zero) only for shared page cache
monitor process slot.

TotalCommits (Stone)

The total number of commits (excluding read-only commits) performed by all
processes since the Stone repository monitor was last started.

TotalINewObjsCommitted (Stone)

The total number of new objects committed by all Gems.

TotalObjsCommitted (Gem)

Obsolete; always returns zero.

TotalSessionsCount (Stone)

The total number of sessions currently logged in to the system.

TransactionLevel (Gem)

Describes the state of the Gem.

1 =in a transaction.

0 = outside a transaction.

-1 = a transactionless state in which the Stone will never signal the Gem to abort.

UpdateUnionsCommitCount (Gem)

The total number of times the Gem updated its unions while waiting for the
commit token. This count will be at least one for every commit.

266

GemStone Systems, Inc. April 2008

Monitoring GemStone Monitoring Performance

VcCacheScavengesCount (Gem)

The number of garbage collections of the VC space. VC space is a memory region
private to the virtual machine.

VcCacheSizeBytes (Gem)

The total size in bytes of the VVC space. This space is the private heap memory of
the Gem.

VoteNotDead (Gem)

The number of objects that the Gem process removed from the possibleDead set
the last time that it voted on the possibleDead.

WaitsForOtherReader (all)

PageRead operations avoided by waiting for read already in progress by another
process.

April 2008

GemStone Systems, Inc. 267

Monitoring Performance System Administration Guide for UNIX

268 GemStone Systems, Inc. April 2008

Chapter

9 Making and Restoring

Backups

This chapter explains how to make backups of your repository and, should it
become necessary, how to use them to restore the repository. We recommend that
you use backup and restore methods provided as part of the GemStone kernel.
However, it is also possible to use operating system backups, if you comply with
the precautions this chapter describes. Finally, this chapter also describes how to
recover in the case of a disk failure or corrupted file system.

9.1 Overview

One way of safeguarding your repository is to create a GemStone backup
periodically and then store the backup in a secure place.

Use the method Repository>>ful IBackupTo:, which copies all the objects in
the repository and arranges them in a compact form. This backup can be made
while the repository is in use. Then, if you have enabled full transaction logging,
the logs save information about all objects committed since the backup.

The advantage of this procedure over operating system backups is that you have
full control of backups, and the backups can be made while users are logged in.
Also, dynamic internal data structures are copied and will be restored, improving
performance of such routine maintenance tasks as garbage collection.

April 2008

GemStone Systems, Inc. 269

Overview

System Administration Guide for UNIX

In the event of a subsequent repository failure, the last full backup and the
transaction logs can restore the current repository. In the absence of both extent
replicates and full transaction logging, a media failure can cause the loss of all
updates since the last backup.

It’s best to establish a regular backup schedule that fits your application and to
keep system users informed of that schedule.

Also back up transaction logs, especially if you have enabled full transaction
logging. These logs allow you to roll forward from a backup to the state of the last
committed transaction. Transaction logs in the file system can be backed up as part
of a regularly scheduled system backup using operating system utilities. For a
related discussion, see “To Archive Logs” on page 203.

Because backup files do not include the object table, they are typically 15-20%
smaller than the running repository, not including any free space in the extents.

Backups Are Made While GemStone Is Running

GemStone programmatic backups are always made while the Stone repository
monitor is running. The method Ful IBackupTo: saves the most recently
committed version of the repository in a way that is consistent from a transaction
viewpoint. Other sessions can continue to commit transactions, but those
transactions will not be included in the backup in progress.

A full backup has three steps:

1. The Gem performing the backup scans the object table, building a list of objects
to back up. This step runs in a transaction and can therefore cause a temporary
commit record backlog in systems with high transaction rates. However, this
step usually lasts ten minutes or less.

2. The Gem performing the backup next writes all shadow objects to the backup
file. This step also runs in a transaction; furthermore, backing up shadow
objects requires more disk 1/0 than backing up live objects, so the rate of
objects backed up per second is slower in this step than in the next.

(For definitions of shadow and live objects, see “What Is Garbage?” on
page 300.)

If necessary, the 1/0 rate can be limited for the session performing the backup
so it does not monopolize system resources. For further information, see “To
Limit the Session 1/0 Rate” on page 63.

270

GemStone Systems, Inc. April 2008

Making and Restoring Backups Overview

3. Inthe final step, all live objects are written to the backup file. This step is
performed outside a transaction; if the Stone signals the session to abort, it will
do so. For most systems, this step takes the longest of the three.

Which Files Can Be Backed Up by the Operating System

While the Stone repository monitor is running, only transaction logs can be backed
up safely using operating system facilities. Extents cannot be backed up safely that
way because of the manner in which they are written.

WARNING
Do not make operating system backups of extents while the Stone
repository monitor is running because they are likely to be unusable. See
“Why Operating System Backups May Not Be Usable,” below. Always
shut down the Stone before making backups using the operating system.

Operating system facilities and copydbf can be used safely to backup a repository
ONLY following an orderly shutdown, such as by stopstone gemStoneName.
During the shutdown process, a checkpoint is performed in which all committed
transactions are written to the extents and to any replicates. A copy of the extents
after an orderly shutdown constitutes a complete operating system backup of the
repository without the necessity of backing up existing transaction logs.

Recovery using backups by the operating system requires a special procedure,
which is described under “How to Restore from an Operating System Backup” on
page 294.

Why Operating System Backups May Not Be Usable

If changes were being made to the logical repository during an operating system
backup, the individual extent files in the backup may form an inconsistent
repository that cannot be made to work.

To protect your data, we recommend that you create backups of the repository
using the method Repository>>ful IBackupTo: as described in this chapter,
rather than using operating system methods such as dump, tar or cp. The
GemStone backups created with ful IBackupTo: are the most reliable because
they are written from a transaction point of view and save a consistent state of the
repository. The GemsStone backups also have the advantage of being made while
the repository is online and are much smaller.

April 2008

GemStone Systems, Inc. 271

How to Make a GemStone Backup System Administration Guide for UNIX

9.2 How to Make a GemStone Backup

Privileges required: FileControl.

The message ful IBackUpTo: forces a checkpoint of the repository at the time the
method is executed and then creates a backup from that checkpoint. Other sessions
can continue to commit transactions, but those transactions will not be included in
the backup in progress. There are two related messages:

Repository>>ful IBackupTo:fileOrDevice and
Repository>>ful IBackupTo:fileOrDevice MBytes:mByteLimit

If full transaction logging is enabled, the backup file together with logs created
since the backup contain all information necessary to restore the repository to its
current committed state.

The argument fileOrDevice specifies the file or device where the backup is to be
created. Backups can be created on a remote node by using a network resource
string (NIRS) to specify the node name as part of fileOrDevice. For an example, see
“To Create a Backup on a Remote Node” on page 274.

WARNING
If fileOrDevice runs out of space, such as off the end of a tape, the
backup will terminate with a system 1/O error at that point. The backup
will be unusable. To avoid having to repeat the entire backup, make sure
the device has sufficient space or set mByteLimit appropriately.

The argument mByteLimit in the second message lets you create a multiple-file
backup by limiting the size of each part. This argument is especially useful when
the size of the backup exceeds the capacity of a single tape. For further information
and an example, see “To Create a Backup in Multiple Files” on page 275. If you
don’t want to limit the size of the backup file, specify a mByteLimit of 0 or use the
first message, which omits MBytes - mByteLimit entirely. A value of mByteLimit
less than 0 or greater than 4096000 generates an error.

NOTE
We recommend that individual backup files be no greater than 16 GB.

272 GemStone Systems, Inc. April 2008

Making and Restoring Backups How to Make a GemStone Backup

To perform a full backup, send your repository the message
Fful IBackupTo:fileOrDevice. For example:

topaz 1> run

"Create a full backup of SystemRepository in the file
*/users/backups/decl3.07""

SystemRepository fullBackupTo: */users/backups/decl3.07"

%

true

The backup file named dec13.07 is created.

During the backup, the session is put in manual transaction mode so the backup
won’t interfere with ongoing garbage collection. When the backup completes, the
session is left outside of a transaction. If you want to make changes to the
repository, send System beginTransaction or System
transactionMode: #autoBegin.

The session performing the backup performs an initial abort; if this session has any
uncommitted changes, it will return an error and will not run.

If the backup file already exists, the method returns an error.

If the fileOrDevice argument is an empty string, an error will be returned. You must
specify the name of a file or device, not a directory name.

Additional Performance Tips

For the session performing the backup, the statistic ProgressCount (described on
page 259) indicates the number of objects written to the backup file so far. If you
know the number of objects in the repository, you can use this to determine how
far the backup has progressed.

Backup and restore operations accessing tape drives are usually slower than those
accessing a hard disk.

You can often improve both backup and restore performance if you increase the
size of the shared page cache.

You can usually improve both backup and restore performance if you also increase
the size of the private page cache for the Gem performing the backup or restore.
For example, in that Gem’s configuration file, include the line:

GEM_PRIVATE_PAGE_CACHE_KB = 65536;

April 2008

GemStone Systems, Inc. 273

How to Make a GemStone Backup System Administration Guide for UNIX

Backups and Garbage Collection

NOTE
Tips in this section will be easier to understand if you have first read and
understood the section entitled “Basic Ideas” on page 300 in Chapter 10,
“Managing Growth.”

Because shadow objects must be backed up, it is more efficient to run a backup
when there are few shadow objects. If possible, first check the statistic
PagesNeedReclaimSize (page 257). If that statistic is high, run one or more Reclaim
GcGems before performing the backup. (Such GeGems are described in “GcGems
Specialized to Reclaim Pages” on page 330.) This action could hasten step 2
considerably.

Dead objects waiting to be reclaimed (measured by the statistic
DeadNotReclaimedSize, described on page 242) are not backed up, as these objects
are going to be deleted anyway.

Possibly dead objects are included in the backup file. (Possibly dead objects are
defined in “What Happens to Garbage?” on page 305). However, the possible dead
set is not backed up. So if a markForCol lection or other garbage-marking
operation completed before the backup, but the possibly dead objects had not yet
been promoted to dead, the garbage-marking operation will have to be repeated.

To avoid this, therefore, if you back up your repository after a

markForCol lection or other garbage-marking operation, wait until the
statistics PossibleDeadSize (described on page 258) and GcPossibleDeadSize fall,
and the statistic DeadNotReclaimedSize (described on page 247) rises.

To Create a Backup on a Remote Node

The following example uses an NRS to access a tape drive located on another node.
The same approach can be used to access a remote disk. Of course, performing a

backup across the network is likely to take much longer than writing it to a local

device.

topaz 1> run

""Access a tape device on node flute"
SystemRepository FfullBackupTo:"!1@flute!/dev/rst0O”
%

A GemStone NetLDI must be running on the remote node. The user performing
the backup must provide authentication for that node, such as an entry in a
-netrc file. The requirements are similar to those given in Chapter 3 for starting
an RPC Gem session process on a remote node.

274

GemStone Systems, Inc. April 2008

Making and Restoring Backups How to Make a GemStone Backup

To Create a Backup in Multiple Files

To create a multiple-file backup, include the argument MBytes : byteLimit. For
example, MBytes: 10 tells GemStone to limit the size of the backup file to 10 MB.
When backing up to tape, use the tape’s available megabytes as the MBytes:
argument.

NOTE
Writing a backup to multiple files takes longer than writing it to one file.

If a backup requires more space than you specified in mByteLimit, the backup stops
after creating one file and returns a result similar to this:

topaz 1> run

"Start a full backup of SystemRepository in the file
"/users/backups/dec13.07""

SystemRepository fullBackupTo: "/users/backups/decl3.07" MBytes:

10

%

GemStone has finished writing backup file 0 of a multifile backup

To create the next file in the backup, send your repository the message
continueFul IBackupTo:fileOrDevice MBytes:mByteLimit.

Both ful IBackupTo: MBytes and continueFul IBackupTo:fileOrDevice
MBytes:mByteLimit return true if the backup is complete, or “GemStone has
finished writing backup file...”, if the backup is incomplete and the backup process
must be continued.

For example:

topaz 1> run
"Continue a full backup by writing a second file to
"/users/backups/decl13.07_2""
SystemRepository continueFul IBackupTo:
"/users/backups/decl13.07_2" MBytes: 10
true

If the backup is suspended because it reached the specified byte limit, the session
may or may not be in a transaction, depending on how far the backup has
progressed. The continueFul IBackupTo: method operates properly in either
case.

Commits and aborts by the session doing a multiple-file backup are disallowed
until the backup completes. If you need to cancel the backup, use the method

April 2008

GemStone Systems, Inc. 275

How to Make a GemStone Backup System Administration Guide for UNIX

Repository>>abortFul IBackup. The session can then commit or abort its
current transaction.

When backing up to multiple disk files, be sure to specify a unique file name for
each continuation. If you need to verify the file sequence later, each file contains a
sequential fileld, which you can examine using copydbf fileName -i.

To Create Compressed Backups

It is possible to write and read full backup files in compressed mode.

Writing to, and reading from, a compressed file can be performed only to a local
file system file or a file system that is NFS-mounted.

Backup files written in compressed mode are automatically appended with the
suffix . gz if that suffix is not specified by the user and if the backup is being
written to a file system file.

All restore methods automatically detect whether a file is compressed or not and
read itaccordingly. Even a backup originally created in uncompressed mode, then
later compressed externally with gzip, is readable by restoreFromBackup:.

NOTE
Tranlogs are always written in uncompressed format. These files may be
compressed with gzip before archiving them to tape or to other disks.
Such archived tranlogs can be restored directly, without having to run
gunzip on them, although the process is less efficient.

To support compression, the following methods in class Repository (category
Backup and Restore) are provided:

continueFul IBackupCompressedTo: fileOrDevice MBytes: mByteLimit

This method is similar to continueFul IBackupTo:MBytes: except that the
output file is written compressed in gzip format. The output file must be on a local
file system or accessible via NFS. Backup files written to a file system in
compressed mode are automatically appended with the suffix . gz if that suffix is
not specified by the user.

Fful IBackupCompressedTo: fileOrDevice

This method backs up the receiver to a single backup file or tape in gzip format.
The output file is written compressed in gzip format and cannot be written to a raw
device. The output file must be on a local file system or accessible via NFS. Backup
files written to a file system in compressed mode are automatically appended with
the suffix . gz if that suffix is not specified by the user.

276

GemStone Systems, Inc. April 2008

Making and Restoring Backups How to Restore a GemStone Repository

FfulIBackupCompressedTo: fileOrDevice MBytes: mByteLimit

This method is similar to ful IBackupTo:MBytes: except that the output file is
written compressed in gzip format. See ful IBackupCompressedTo:

To Verify a Backup is Readable

If you want to verify that a backup file is readable, use the GemStone utility
copydbf. You can conserve disk space and reduce disk activity by specifying
/dev/nul I as the destination. For instance:

% copydbf /users/backup/decl3.07 /dev/null

To Examine the Backup Log

The path of the backup file and starting time are written to

UserGlobals at:#BackuplLog. To see a listing of previous backups performed
by the current userld, execute the following (which returns an error if the
repository has never been backed up):

topaz 1> level 2

topaz 1> run

BackuplLog

%

ful lBackup to /users/backups/decl3.07 started at Dec/13/2007
11:39

9.3 How to Restore a GemStone Repository

Privileges required: FileControl.
NOTE
To avoid failure of the restore operation, after a repository conversion or
upgrade, you must run the restore from the SystemUser account.
Restoring the repository ordinarily takes place in two phases:
1. Restore the repository from the last GemStone backup file or tape.

2. Apply transaction logs to restore transactions that were committed after the
backup was started. (The backup must have been made while the repository
was in full transaction logging mode.)

Figure 9.1 illustrates the process.

April 2008 GemStone Systems, Inc. 277

How to Restore a GemStone Repository System Administration Guide for UNIX

To protect your data, we recommend that you restore from backups created by
GemsStone, not from backups created by operating system commands such as
dump, tar or cp. GemStone backups are created by the method
Repository>>ful IBackupTo:. These backups are the most reliable because
they are written from a transaction point of view and save a consistent state of the
repository. (If you need to restore backups made by operating system commands,
see the section “How to Restore from an Operating System Backup” on page 294.)

NOTE
Backups created by a dump of the whole file system may or may not be
usable. Before you consider restoring from OS-level backups, be sure to
read “How to Restore from an Operating System Backup” on page 294.

Before you begin, make sure you have a backup of the system repository that is
complete, and make sure that the backup was created by GemStone with the
method Ful IBackupTo:. (See the discussion “How to Make a GemStone
Backup” on page 272.) If full backups of your repository require more than one
tape, restoring tape 1 without tape 2 does not give you a usable version of the
repository. The objects on tape 1 are copied, but the transaction cannot be
committed until you restore tape 2. (The Topaz commit command does not
commit a partial restore, even though the message may say the commit was
successful.)

278 GemStone Systems, Inc. April 2008

Making and Restoring Backups How to Restore a GemStone Repository

Figure 9.1 System Time Line: Restoring a GemStone Backup

User Steps

cp $GEMSTONE/bin/extent0.dbf

startstone
restoreFromBackup
restorefFromLog
restoreFromCurrentLogs
commitRestore

Stone starts with GemStone Off-line logs On-line Ready for
fresh primary backup restored logs ordinary
extent restored (if any) restored commits

GemStone Actions

After the backup has been restored, the repository reflects its state at the time of
the backup. All the objects are intact and ordinarily are clustered in a way similar,
but not identical, to their organization in the original repository. This clustering
reflects both explicit clustering of objects by the application and default clustering
into the generic “don’t care” cluster bucket.

If the number of extents during restoration is the same as when the backup was
started, the allocation of objects to extents in the original repository takes
precedence over the DBF_ALLOCATION_MODE configuration setting used by the
Stone performing the restore operation. If the number of extents differs, then the
DBF_ALLOCATION_MODE setting at the time of the restore controls the
distribution of objects across extents.

April 2008

GemStone Systems, Inc. 279

How to Restore a GemStone Repository System Administration Guide for UNIX

A. To Restore to the Point of the Backup

To begin, you need a file copy (not a GemStone backup) of a good repository. We
recommend that you use a copy of the extentO. dbf that was shipped in
$GEMSTONE/bin, although any extent file that is a complete, uncorrupted
repository will work. We recommend that you use the GemStone copydbf
command to create the copy, rather than using the UNIX cp command; copydbf
must be used if you are copying to or from a raw partition.

Since copydbf requires write permission to the extent you are copying, you will
need to make a local copy of $GEMSTONE/bin/extent0.dbT to use copydbf.

The user restoring the backup must be the only user logged in to the server. The
method that starts the restoration will suspend other logins.

NOTE
We recommend that you log in as DataCurator or SystemUser to restore
the backup. If you start the restore as another user and that UserProfile
disappears as a result of the restore, Topaz will see a fatal error.

To restore your repository from a GemStone backup, perform the following
procedure:

Step Al. If GemStone is still running, tell all users to log out and use stopstone to
stop the system. Certain file system failures while the Stone is running may
make it necessary to use Kill processid to kill the Stone process.

Step A2. Make sure that you have full backups of good repository files. If the
backup consists of multiple files, the complete set must be available.

Step A3. If you are restoring the repository because of a suspected GemStone
failure, preserve a copy of the extents in case Technical Support wants to
examine them.

CAUTION
Do NOT delete the transaction log files as of the crash—Ileave them
online without moving them.

280

GemStone Systems, Inc. April 2008

Making and Restoring Backups How to Restore a GemStone Repository

Step A4. Remove all extent files, and removedbf all extents on raw partitions, that
are specified in DBF_EXTENT_NAMES in your configuration file. Similarly,
remove all replicates specified in DBF_REPLICATE_NAMES.

Copy the unmodified distribution extent in $GEMSTONE/bin to the location
of your primary extent, which is the extent listed first in
DBF_EXTENT_NAMES (by default $GEMSTONE/data/extent0.db¥f). For
example:

% cp $GEMSTONE/bin/extent0.dbf $GEMSTONE/data/extent0.dbf

or

% cp $GEMSTONE/bin/extent0.dbf /tempDir/extentO.dbf
% chmod +w /tempDir/extentO.db¥f
% copydbf /tempDir/extentO.dbf $GEMSTONE/data/extentO.dbf

Step A5. Use chmod to give the copy the same permissions you ordinarily assign
to your repository files.

% chmod 600 $GEMSTONE/data/extentO.dbf

Step A6. Ensure that there is space to create a log file during recovery. At least
one of the directories specified by STN_TRAN_LOG_DIRECTORIES must have
space available or one of the raw partitions must be empty. You may need to
add entries to STN_TRAN_LOG_DIRECTORIES and STN_TRAN_LOG_SIZES in
your configuration file.

GemStone starts a new transaction log file, and a new transaction log
sequence, when you start the restoration process (Step A9). Thisis a
independent sequence of transaction logs from the one that you will be
restoring, although the names may look similar.

Step A7. Use startstone to restart the Stone.

Step A8. Log in to GemStone as DataCurator or SystemUser using linked Topaz
(topaz -1). Remember that the password will be the original one, not
necessarily the one you have been using.

NOTE
To perform the following steps, you must be the only user logged in to
GemStone. Once you start the next step, other logins will be suspended.

Step A9. Restore the most recent full backup to the new repository by sending the
message restoreFromBackup: fileOrDevice. The argument fileOrDevice can
be the name of a file or tape device. This method automatically detects whether

April 2008 GemStone Systems, Inc. 281

How to Restore a GemStone Repository System Administration Guide for UNIX

a backup is compressed or not and reads it accordingly. For information about
using tapes, see “To Restore Backups from Tape” on page 284.

The following example restores the repository from a backup that consists of
asingle disk file. For information about restoring backups from more than one
file, see “To Restore Multiple-File Backups” on page 284.

The message restoreStatus can return helpful information at any point in
the restore process. This status is an attribute of the repository, not of the
session, and will persist across login sessions and stopping and starting of the
Stone repository monitor.

topaz 1> run

SystemRepository restoreStatus

%

Restore is not active

topaz 1> run

SystemRepository restoreFromBackup: */bk/decl13.07*"
%

If the full backup is contained in one file, the system commits the restore and
returns a summary and status. For instance:

The restore from full backup completed, with 30569
objects restored and 0 corrupt objects not restored.

Step A10. If the backup was made in a repository with the configuration
parameters STN_TRAN_FULL_LOGGING set to true, the status line is similar to
this:

Ready for restore from transaction log(s).

Continue with “B. To Restore Subsequent Transactions” on page 286.

CAUTION
Although you can end the restore process before restoring from all
transaction logs, doing so can make it impossible to restore the omitted
logs later by repeating the process. If you plan to terminate the restore
prematurely, first read “Precautions When Restoring a Subset of
Transaction Logs” on page 294.

282 GemStone Systems, Inc. April 2008

Making and Restoring Backups How to Restore a GemStone Repository

If full logging was disabled (partial logging was in effect), the final status line
reads:

Restore complete. (Backup made while in partial logging

mode.)

This status means that transaction logs cannot be restored. The repository is
ready for ordinary use, and logins have been enabled.

Performance Tips

Restoring from backup usually takes 10-30% longer than the full backup took.

For the session performing the restore, the statistic ProgressCount (described on

page 259) indicates the number of objects restored from the backup file so far. If

you know the number of objects in the backup file, you can use this to determine
how far the restore has progressed.

You can improve restore performance by using one aio page server for every
extent that resides on its own dedicated disk drive, but only if the repository uses
weighted extent allocation mode, and the disks are on separate physical disks. For
example, if you’re restoring a repository with six extents, each on its own separate
physical hard drive, the following parameters, set in the restoring Gem’s
configuration file for the duration of the restore, would improve performance:

STN_NUM_LOCAL_AI0O_SERVERS = 6;
DBF_ALLOCATION_MODE = 10,10,10,10,10,10;

Here are some tips on getting restores completed as soon as possible:

e Use restoreFromBackups: or restoreNoShadowsFromBackups:
methods, rather than restoring backups one by one. These methods require
you to specify all backup files in the correct order in an Array.

< Maximize the repository shared cache size, and the private page cache size for
the process performing the restore, keeping the total within the 4 GB space that
a 32-bit process can address.

e Setthe GEM_FREE_FRAME_LIMIT low; for example, a setting of 500.

< Restore from uncompressed files rather than compressed files. The
decompression libraries are slow and perform inefficient /0. Backups created
from Ful IBackupCompressedTo: can be uncompressed using gunzip
before the restore operation; this makes a significant difference in performance.

< Place extents on striped file systems.

April 2008

GemStone Systems, Inc. 283

How to Restore a GemStone Repository System Administration Guide for UNIX

< Make sure the backup files being restored are not on the same disk spindles as
the extents or tranlogs.

To Restore Backups from Tape

When restoring from tape, use the device name for the fileOrDevice parameter. For
example,

topaz 1> run
SystemRepository restoreFromBackup: */dev/rmt0.4"
%

Depending on your operating system and the type of tape drive, you may need to
issue operating system commands first. For information, check your operating
system documentation.

To access a tape device on another host, make sure a NetLDI is running on that
host and then include the host’s name in fileOrDevice as a network resource string.
For instance:

topaz 1> run
SystemRepository restoreFromBackup: *!1@flute!/dev/rstO”
%

To Restore Multiple-File Backups

If you are restoring a backup that occupies more than one file or tape, each backup
file must be restored in the correct sequence. You can determine the restore status
and the internal identification of the backup file required next by using the method
restoreStatus. If arestore process is active, the reply indicates the date and
time to which the repository has been restored, and the type of file and the internal
file identification number (Fi leld) of the file that must be restored next. (The
Fileldis reset to 0 at the beginning of each full backup.)

Repeat Step A9 on page 281, using the next file in sequence, for each part of the
backup. If you are uncertain of the sequence in which to restore a particular file,
use copydbf fileName -i to display its fileld.

Another way is to use restoreFromBackups: arrayOfFilesOrDevices and
include all files or devices in the array in proper sequence. Since all backup files
are verified for integrity at the beginning of the restore, they all must be available

284 GemStone Systems, Inc. April 2008

Making and Restoring Backups How to Restore a GemStone Repository

when this method is called. This example restores a backup that occupies two files
by placing the file names in an array:

topaz 1> run
SystemRepository restoreFromBackups:
#("/backups/decl13.07_1-

*/backups/decl3.07_2")
%
[restore info]:GemStone is starting to restore the
repository from 2 backup files.
[restore info]:GemStone is verifying 2 backup files.
[restore info]:GemStone has finished verifying 2 backup
files. No errors were detected.
[restore info]:GemStone attempting to open
/backups/dec13.07_1 .
[restore info]:GemStone reading from /backups/decl13.07_ 1 .
[restore info]:GemStone attempting to open
/backups/decl13.07 2 .
[restore info]:GemStone reading from /backups/decl3.07 2 .
[restore info]: GemStone has finished restoring 872 data
pages and 25 object table pages.
[Info]: Logging out session 3 at 12/20/07 13:31:47 PST
The restore from full backup completed, with 44249 objects
restored and O corrupt objects not restored.

Ready for restore from transaction log(s).

Another alternative is to use restoreNoShadowsFromBackups:
arrayOfFilesOrDevices. This method is the same as restoreFromBackups:
except that partially filled data pages are not added to the list of scavengable pages
upon completion of the restore. Using this method may cause the restored
repository to perform faster than one restored using restoreFromBackups:,
especially immediately following the restore.

When you restore the last backup file, GemStone either commits the restore or
indicates that it is ready to restore from transaction logs, as explained on page 283.

If you need to cancel the process and start over while restoring a multiple file
backup, use the method Repository>>abortRestore.

If the Topaz login session dies before the last backup file has been restored, you
must start over by restoring the first file of the set.

April 2008

GemStone Systems, Inc. 285

How to Restore a GemStone Repository System Administration Guide for UNIX

B. To Restore Subsequent Transactions

If full transaction logging was in effect, the second phase of restoring the
repository is to roll forward from the state of the last backup to the state of the last
committed transaction. This action repeats the transactions in the order in which
they were committed. You can do this only if the STN_TRAN_FULL_LOGGING
configuration option was set to True at the time the backup was made. You can
only restore transactions committed within a single backup-restore cycle; that is,
the transactions being restored cannot span a more recent restore.

CAUTION
Ordinarily, you will restore transactions from all log files written since
the backup. (You may need multiple logs, depending on whether there are
checkpoints in the transaction logs.) If for some reason you plan to omit
one or more log files, first read “Precautions When Restoring a Subset of
Transaction Logs” on page 294.

Step B1. Before continuing the restore process, you must log in again. (The
restoreFromBackup: method (Step A9) terminated the session when it
completed.)

topaz> login

Step B2. Determine the location of all needed transaction logs. The method
restoreStatus identifies the oldest transaction log that is needed, or you
can use copydbf -i backupName. If a session was in a lengthy transaction at the
time of the backup, that log may be one that was written before the backup
started. In this example, it is tranlog37 .dbf:

topaz 1> run

SystemRepository restoreStatus

%

Restoring from Transaction Log files,
restored to Tue 14 Dec 2007 14:52:06 PST
next fileld = 37

Compare the fileld in the message with the names of the transaction log files
in the directories specified in STN_TRAN_LOG_DIRECTORIES. For transaction
logs in the file system, fileld forms the numeric portion of the file name,
tranlogNN.dbf. For transaction logs in raw partitions, use copydbf
rawPartition -i to display the fileld.

The methods in category Configuration File Access of class System allow you
to inspect the log directory paths and file name prefixes for the current

286

GemStone Systems, Inc. April 2008

Making and Restoring Backups How to Restore a GemStone Repository

configuration (for information, see “How to Access the Server Configuration
at Run Time” on page 40).

Step B3. Restore the transaction logs in time sequence, beginning with the log
identified by restoreStatus. How you do this depends on where the oldest
logs are located and is described next. If you encounter a failure because of a
truncated or corrupted transaction log, refer to “Errors While Restoring
Transaction Logs” on page 291.

If only current on-line transaction logs are needed - that is, all transaction log
files beginning with tranlodfileld.db¥ are in the locations specified by the
STN_TRAN_LOG_DIRECTORIES or STN_REPL_TRAN_LOG_DIRECTORIES
configuration options, skip to Step B4.

If any of the older transaction logs that are needed have been moved to a
different disk location, you will need to restore from archived logs. You can
restore the logs individually, or restore all logs in a set of directories.

To restore all archive logs, send the message
Repository>>restoreFromArchivelLogDirectories:
replicatePrefix:. The following example restores logs archived in /GS-
archive, which is not one of the active locations listed in
STN_TRAN_LOG_DIRECTORIES:

topaz 1> run
SystemRepository restoreFromArchivelLogDirectories:
#("GS-archive®)
tranlogPrefix: **
replicateDirectories: #()
replicatePrefix: **
%
[Info]: Logging out session 2 at 12/20/07 16:20:21 PST
Restore from transaction log(s) succeeded.
restoreFromBackup succeeded.

See the method comment in the image for details. A directory location can
include an NRS for a remote node, but a NetLDI must be running on that node.

If you only have a few transaction logs to restore, you can alternatively execute
Repository>>restoreFromLog:fileOrDevice for each file or raw partition

April 2008 GemStone Systems, Inc. 287

How to Restore a GemStone Repository System Administration Guide for UNIX

in time sequence. (If the files are on tape, the files must first be restored to a
disk drive, but they do not need to be in their original location.) For example:

topaz 1> run

SystemRepository restoreStatus

%

Restoring from Transaction Log files,

restored to Tue 14 Dec 2007 17:28:13 PST

next fileld = 38

topaz 1> run

SystemRepository restoreFromLog: “/GS-archive/tranlog38.dbf-
%

Restore from transaction log(s) succeeded.

Each restore operation, on completion, terminates its GemStone session. You
will need to log in again before performing the next restore operation.

Continue with Step B4 to restore from on-line logs.

Step B4. Restore transactions from all remaining on-line log files by executing the
method Repository>>restoreFromCurrentlLogs. The remaining log
files (all log files beginning with the Fileld currently returned by
restoreStatus) must be online and in the directories or raw partitions
specified by STN_TRAN_LOG_DIRECTORIES or
STN_REPL_TRAN_LOG_DIRECTORIES.

topaz 1> run

SystemRepository restoreFromCurrentlLogs

%

Restore from transaction log(s) succeeded.

You may also use Repository>>restoreFromLog:fileOrDevice to restore
individual current transaction logs.

You will need to log in again before performing the next restore operation.

Step B5. Send the message commitRestore, which tells the system you are
finished restoring transaction logs.

topaz 1> run

SystemRepository commitRestore

%

[Info]: Logging out session 2 at 12/20/07 16:21:47 PST
Restore from transaction log(s) succeeded.
commitRestore succeeded

288 GemStone Systems, Inc. April 2008

Making and Restoring Backups How to Restore a GemStone Repository

At this point, restore mode is no longer active, and no further logs can be
restored. Logins have been enabled, and ordinary user commits will be
allowed.

If you send commitRestore earlier in the restore process (prior to
restoreFromCurrentlLogs), a warning is issued because all previously
committed transactions may not have been restored. However, this usage
provides a way to recover as much as is available when a log file has been
corrupted or lost.

This step completes the restore process. Make a new GemStone full backup
as soon as operational circumstances permit.

To Restore Logs to a Point in Time

Ordinarily, the methods Repository>>restoreFromLog: and
restoreFromCurrentLogs: restore all transactions in the log file. However,
you can specify an earlier stopping point by sending the message
timeToRestoreTo: aDateTime. Restoration will stop at the first repository
checkpoint that originally occurred at or after aDateTime.

To display the time a transaction log was started and the time of each checkpoint
recorded in it, use copydbf fileName -1. The maximum interval between
checkpoints by default is five minutes. For example:

% copydbf tranlog2.dbf -1

Source file: tranlog2.dbf
file type: tranlog fileld: 2
The file was created at: Tue 14 Dec 2007 10:50:53 PST.
The previous file last recordld is -1.
Scanning file to find last checkpoint...

Destination file: /dev/null
Checkpoint 1 started at: Tue 14 Dec 2007 15:33:50 PST.
oldest transaction references fileld -1 (this file).
Checkpoint 2 started at: Tue 14 Dec 2007 15:38:50 PST.
oldest transaction references fileld -1 (this file).
Checkpoint 3 started at: Tue 14 Dec 2007 15:43:40 PST.
oldest transaction references fileld -1 (this file).
File size is 72704 bytes (142 records).

April 2008 GemStone Systems, Inc. 289

How to Restore a GemStone Repository System Administration Guide for UNIX

The following sequence restores the repository to the first checkpoint that would
have included a commit on December 15 at 3:35:00 a.m.:

topaz 1> run
SystemRepository timeToRestoreTo:
(DateTime fromString: "15/12/2007 15:35:007) .
SystemRepository restoreFromCurrentlLogs
%

You can continue restoring past aDateTime by issuing another restoreFromLog:
or restoreFromCurrentLogs. If you firstissue another timeToRestoreTo:,
restoration stops at the new aDateTime; otherwise, restoration continues to the end
of the log.

Page Reclamation During Restore

The process of restoring transaction logs results in pages with shadow objects,
which must either be reclaimed, or will cause the repository to grow. (For a
detailed explanation of shadow objects and related concepts, see Chapter 10,
“Managing Growth.”) GcGems do not run during restore to handle this reclaim
task in the background, so the Stone must reclaim these pages in the foreground,
in addition to performing the restore itself.

The Stone configuration parameter STN_RECOVERY_PAGE_RECLAIM_LIMIT.
controls the amount of reclaim work that is done. By default this is 2000, meaning
that for every transaction log record replayed, the Stone will reclaim 2000 pages.
Since each transaction log contains many, perhaps thousands, of transaction log
records, this default ensures that all reclaim work is performed, and avoids any
risk of excessive repository growth if there are a large number of shadow pages.

For fastest crash recovery or restore from backup, however, you may wish to do
less reclaim, and accept more repository growth. In this case, set the
STN_RECOVERY_PAGE_RECLAIM_LIMIT to a much smaller value — perhaps 5
or 10. Determining the best balance between performance and growth may require
tuning. Also, some operations, such as indexing, markForCollection, and
migrations, create a very large number of shadows, so be sure that the
configuration you design allows for these situations.

For automatic recovery following a system crash, the configuration file setting for
STN_RECOVERY_PAGE_RECLAIM_LIMIT will be used.

When you are restoring from backups, you may set configure the amount of
reclaim programmatically using System configurationAt:
#StnRecoveryPageReclaimLimit put: aninteger, prior to restoring
transaction logs. You must be SystemUser to execute this statement.

290

GemStone Systems, Inc. April 2008

Making and Restoring Backups How to Restore a GemStone Repository

Alternatively, you can restore transaction logs as quickly as possible, doing no
reclaim, by using restoreNoReclaimFromLog: fileOrDevice instead of
restoreFromLog: fileOrDevice. After the commitRestore, the garbage-collection
Gem will reclaim the shadow pages in the background.

NOTE
Using restoreNoReclaimFromLog: can cause the database to
grow significantly, possibly running out of disk space.

For warm standby systems, which run the restoreFromLog: operations
continuously to keep a secondary repository updated from a primary’s transaction
logs, the balancing of restore performance and repository growth is more critical.
For more on this, see “Managing Page Reclamation in Warm Standbys” on

page 52.

Errors While Restoring Transaction Logs

Sometimes a transaction log is inadvertently truncated or corrupted. For instance,
an unnoticed disk-full error during a copy operation can result in a truncated log
that goes undetected until you try to restore from it. Because of the way transaction
logs are written, a truncated log may appear to restore properly, and the gap will
not be detected until the next log is read.

If the logs are being restored as a batch (such as restoreFromCurrentlLogs),
that method wiill try to recover by reading a replicate log.

If the missing transaction records are not found in a replicate log, or if you are
restoring logs individually (restoreFromLog:), a message like the following
appears:

Restore from transaction log failed.
Reason: Log with fileld 37 is truncated or corrupt.
Continue restore with complete copy of this log.

Check the fileld in the message to identify the log that caused the problem, which
may be either the log currently being restored or the previous one. If the
transaction log is a file (not a raw partition), its default name is
tranlodfileld.dbf.

The method restoreStatus will return additional information indicating the
next record expected within the current log file. For instance:

April 2008

GemStone Systems, Inc. 291

How to Restore a GemStone Repository System Administration Guide for UNIX

topaz 1> run

SystemRepository restoreStatus

%

Restoring from Transaction Log files,
restored to Tue 14 Dec 2007 14:52:06 PST
next fileld = 37, record = 53

Retrieve a copy of the transaction log from an operating system backup, and
complete restoring it by using restoreFromLog :fileOrDevice. Then continue the
restore process by using either restoreFromCurrentlLogs or another
restoreFromlLog:.

In the following example, restoreFromCurrentLogs encounters a truncated
log (which happens to be in the first log). Invoking restoreStatus confirms
that tranlogl.dbf isincomplete and shows that restoration needs to continue
with record 33:

topaz 1> run

SystemRepository restoreFromBackup: “dbf/back.dat*

%

Restore from full backup completed with 39402 objects
restored and 0 corrupt objects not restored.

Ready for restore from transaction log(s).

topaz> login

successfTul login

topaz 1> run

SystemRepository restoreFromCurrentlLogs

%

Gemstone: Error Nonfatal

Restore from transaction log failed. Reason: "Log with
fileld 1 is truncated or corrupt.

Continue restore with complete copy of this log."
topaz>login

successftul login

topaz 1> run

SystemRepository restoreStatus

%

Restoring from Transaction Log files,
restored to Tue 14 Dec 2007 14:52:06 PST
next fileld = 1, record = 33

292

GemStone Systems, Inc. April 2008

Making and Restoring Backups How to Restore a GemStone Repository

We recover by restoring a complete copy of that transaction log by name (here,
“tranlogl.dbf.full”).

topaz 1> run

SystemRepository restoreFromLog: "dbf/tranlogl.dbf._full”
%

Restore from transaction log succeeded.

topaz>login

successful login

topaz 1> run

SystemRepository restoreStatus

%

Restoring from Transaction Log files,
restored to Tue 14 Dec 2007 17:28:13 PST
next fileld = 2

The restore status now shows that we are ready for the next transaction log,
tranlog2.dbf. Because the remaining logs are online, we will return to our
original procedure of restoring them as a group and then commit the restored
repository:

topaz 1> run

SystemRepository restoreFromCurrentlLogs

%

[Info]: Logging out session 2 at 012/20/07 16:18:21 PST
Restore from transaction log(s) succeeded.
restoreFromBackup succeeded.

topaz>login

successful login

topaz 1> run

SystemRepository commitRestore

%

[Info]: Logging out session 2 at 12/20/07 16:13:46 PST
Restore from transaction log(s) succeeded.
commitRestore succeeded

If you cannot find an undamaged copy of the transaction log, commitRestore
will commit as much as has been restored. However, if there is any chance of a
finding a good copy, you should read “Precautions When Restoring a Subset of
Transaction Logs,” next.

April 2008

GemStone Systems, Inc. 293

How to Restore from an Operating System Backup System Administration Guide for UNIX

Precautions When Restoring a Subset of Transaction Logs

If for some reason you want to end the restore process before restoring transactions
from one or more log files, you can do that at any time after
restoreFromBackup: by invoking commitRestore. Before doing that,
however, you should be aware of the likely consequences and some precautions
that may be appropriate:

1. Obviously, the omitted transactions will be lost. Unless the omitted log is
missing, presumably that is your intent.

2. Less obvious, where the omitted logs actually are present, is that it may be
difficult or impossible to reverse your action later and restore the omitted logs
by repeating the entire restore process. Operations after the first restore create
atime fork in the repository, and attempting to reverse the course later results
in object audit errors.

If there is any chance that you may want to restore from the omitted transaction
logs later, modify the ordinary restore procedure in this way:

1. Before starting the Stone on the fresh extent (Step A9, on page 281) move all
transaction logs (and log replicates, if used) to another directory.

2. After restoring from the backup, restore transaction logs individually by using
restoreFromLog: (Step B2, on page 286) and providing the new path.
Repeat this step for each log file you want to restore.

3. Invoke commitRestore toend the restore operation.

If you decide later to restore all logs by repeating the entire process, first remove
any new log files and then move the previous transaction logs back to their original
location. Follow the ordinary restore procedure.

9.4 How to Restore from an Operating System Backup

Privileges required: FileControl.

This section describes how to restore the Repository from an operating system
backup made using dump, tar, cp, or similar methods. For complete recovery, this
backup must have been made while the Stone repository monitor was shut down.
That is, the backup must have been started after you stopped GemStone and must
have been completed before you restarted it.

294

GemStone Systems, Inc. April 2008

Making and Restoring Backups How to Restore from an Operating System Backup

If the file system itself has been corrupted, not just the extent files, see the section
“Disk Failure or File System Corruption” on page 118.

NOTE
Backups created by an operating system dump of the whole system may
or may not be usable. Before you consider restoring from system-wide
backups, be sure to read “Why Operating System Backups May Not Be
Usable” on page 271.

Step 1. If GemStone is still running, tell all users to log out. Use stopstone to stop
the repository monitor.

Step 2. Make sure that you have operating system backups of good extents and
that the backups were made after an orderly shutdown of the Stone repository
monitor. If a backup consists of multiple files, all such files must be available.

WARNING
Do not delete the transaction log files as of the crash—Ileave them online
without moving them.

Step 3. Delete all extent files specified by DBF_EXTENT_NAMES in your
configuration file.

Step 4. Restore the operating system backup copies of the extent files to the
locations specified by the DBF_EXTENT_NAMES configuration option.

Step 5. Ensure that there is space to create a log file. At least one of the directories
specified by STN_TRAN_LOG_DIRECTORIES must have space available or one
of the raw partitions must be empty. You may need to add entries to
STN_TRAN_LOG_DIRECTORIES and STN_TRAN_LOG_SIZES in your
configuration file.

Step 6. The next step depends on whether full transaction logging was in effect at
the time the backup was made.

If partial transaction logging was in effect (STN_TRAN_FULL_LOGGING was
set to False), the restoration process is complete. Restart GemStone by
invoking startstone in the usual manner. You may now use your restored
repository.

If full transaction logging was in effect (STN_TRAN_FULL_LOGGING was set to
True), continue by restoring from transaction logs. Use startstone -R to restart
GemsStone. The -R option places the repository monitor in a state in which itis
ready to restore from transaction logs, equivalent to that which follows
restoration of a GemStone full backup.

April 2008

GemStone Systems, Inc. 295

How to Recover After Repair of the File System

System Administration Guide for UNIX

To restore transaction logs, continue with the instructions under “B. To
Restore Subsequent Transactions” on page 286

9.5 How to Recover After Repair of the File System

In case of a disk failure or a corrupt file system, the system manager must repair
the file system before you can restart GemStone. The procedure you need to follow
depends on how the damage was repaired.

To Recover After a File System Repair with fsck

After a repair with fsck, the UNIX file system consistency check and interactive
repair utility, check the condition of the system repository with pageaudit. (See
“How to Audit the Repository” on page 217 for instructions.)

If the page audit succeeds, try to restart GemStone again. If GemStone starts,
you can resume normal operations.

If the page audit fails or GemStone doesn’t start, you will need to restore the
repository file. (See the section “How to Restore a GemStone Repository” on
page 277.)

To Recover When a File System Must Be Restored

If your system administrator intends to restore the file system from a backup
device, before that happens it might be worthwhile to copy the repository to
another node or to tape. Although this copy may prove unusable, if a great deal of
important data has been committed since the last backup, it may be worth a try.

To restart GemStone after the file system is restored:

Step 1. If you made a copy of the repository, begin with that copy. To test the

copy, use the methods discussed in the section “How to Audit the Repository”
on page 217. You will need to specify the name and path of the copy using a
temporary configuration file when doing pageaudit so that audit is not
performed on the extent that was restored along with the rest of the file
system.

If you didn’t make a copy of the repository or the copy does not pass
pageaudit, start with the current extentO . dbf file that was restored from the
file system backup. Check whether the backup was made while GemStone was
running.

296

GemStone Systems, Inc. April 2008

Making and Restoring Backups Version compatibility

O Ifany changes were being made to the repository during the operating system
backup, extentO.dbf may be an inconsistent file that cannot be made to
work. In that case, you need to restore from a GemStone backup (see “How to
Restore a GemStone Repository” on page 277). However, transaction logs
from an operating system backup should be usable.

O If the operating system backup was done while GemStone was suspended or
shut down, continue to the next step.

Step 2. Do a pageaudit to check the current (restored) extentO.dbf file. (See the
section “To Perform a Page Audit” on page 217 for instructions.)

O If the page audit is good, try to restart the system again with startstone. If
GemStone starts, you can resume normal operations.

3 If the page audit fails or GemStone doesn’t start, you will need to restore from
GemStone backups (see “How to Restore a GemStone Repository” on
page 277).

NOTE
Remember that startstone uses (1) a GEMSTONE_SYS_CONF
environment variable or (2) $SGEMSTONE/data/system.conf as the
default system-wide configuration file. If you want it to use parameters
from a different configuration file, be sure to specify that file with the
startstone -z option.

9.6 Version compatibility

It is not always possible to restore backups made by a previous version of
GemsStone into a new version.

If you archive backups of your GemStone repository over multiple upgrades of
your GemStone installation, you should also archive the GemStone executables for

each version.

9.7 Warm Standby Systems

GemsStone’s backup and restore mechanisms can be used to set up a secondary
server, running almost in parallel with the primary server and ready to take over
as quickly as possible in case of any failure of the primary system.

To do this, a backup of the primary server is restored into a separate location. This
backup is left running in restore mode, and as the transaction logs are created on

April 2008 GemStone Systems, Inc. 297

Warm Standby Systems

System Administration Guide for UNIX

the primary server, they are immediately restored into the warm standby system.
In case of failure of the primary system, the warm standby replays the final
transaction log, executes a commitRestore, and is immediately ready to use.

For details on how to set up a warm standby system, see “How to Operate a
Duplicate Server / Warm Standby” on page 49.

298

GemStone Systems, Inc. April 2008

Chapter

O Managing Growth

In the course of everyday operations, your GemStone repository will grow. Some
of this growth will be the result of a growing business, but some will represent
unreferenced or outdated objects. These objects, no longer needed, must be
removed to prevent the repository from growing arbitrarily large. The process of
removing unwanted objects to reclaim their storage is referred to as garbage
collection.

GemStone/S 6.3 implements a variety of garbage collection mechanisms, some
automatic and some as a result of actions you take as you deem necessary. All
these mechanisms can be tuned in various ways to best suit your operations.

This chapter describes GemStone’s garbage collection mechanisms and explains
how and when to use them. The following chapter, “Tuning Performance,”
describes various techniques for tuning both garbage collection and other aspects
of your system.

This chapter discusses the following topics:

Basic Ideas
explains the main concepts underlying garbage collection.

Automatic Garbage Collection
describes the garbage collection mechanisms that occur automatically.

April 2008

GemStone Systems, Inc. 299

Basic Ideas

System Administration Guide for UNIX

Invoking Garbage Collection
describes when, how, and why to invoke the garbage collection mechanisms
that must be started by administrators.

10.1 Basic ldeas

What Is

Smalltalk execution can produce a number of objects needed only for the moment.
In addition, normal business operations can cause previously committed objects to
become obsolete. To make the best use of system resources, it is desirable to
reclaim the resources these objects use as soon as possible. Removing unwanted
objects is a two-phase process:

1. Identify—mark—superfluous objects.
2. Reclaim the resources they consume.
Together, marking and reclaiming unwanted objects is collecting garbage.

Complications ensue because each Gem in a transaction is guaranteed a consistent
view of the repository: all visible objects are guaranteed to remain in the same state
as when the transaction began. If another Gem commits a change to a mutually
visible object, both states of the object must somehow coexist until the older
transaction commits or aborts, refreshing its view. Therefore, resources can be
reclaimed only after all transactions concurrent with marking have committed or
aborted.

Older views of committed, modified objects are called shadow objects.
Garbage collection reclaims three kinds of resources:

= identifiers for dead objects,

= the storage occupied by dead objects, and

= the storage occupied by shadow objects.

Garbage?
Garbage consists of dead objects, shadow objects, and object identifiers (OOPs).

live object
GemsStone considers an object live if it can be reached by traversing a path from
AllUsers, the root object of the GemStone/S repository. By definition, AllUsers
contains a reference to each user’s UserProfile. Each UserProfile contains a
reference to all the symbol lists for a given user, and those symbol lists in turn
point to classes and instances created by that user’s applications. Thus,

300

GemStone Systems, Inc. April 2008

Managing Growth Basic Ideas

AllUsers is the root node of a tree whose branches and leaves encompass all
the objects that the repository requires at a given time to function as expected.

transitive closure

Traversing such a path from a root object to all its branches and leaves is called
transitive closure.

dead object
An object is dead if it cannot be reached from the AllUsers root object. Other
dead objects may refer to it, but no live object does. Without living references,

the object is visible only to the system, and is a candidate for reclamation of
both its storage and its OOP.

shadow object
A shadow object is a committed object with an outdated value. A committed
object becomes shadowed when it is modified during a transaction. Unlike a
dead object, a shadow object is still referenced in the repository because the old
and new values share a single object identifier. The shadow object must be
maintained as long as it’s visible to other transactions on the system; then the
system can reclaim only its storage, not its OOP (which is still in use
identifying the committed object with its current value).

commit record
Views of the repository are based on commit records, structures written when a
transaction is committed. Commit records detail every object viewed (the read
set) and modified (the write set), as well as the new values of modified objects.
The Stone maintains these commit records; when a Gem begins a transaction

or refreshes its view of the repository, its view is based on the most recent
commit record available.

Each session’s view is based on exactly one commit record at a time, but any
number of sessions’ views can be based on the same commit record.

NOTE
The repository must retain each commit record and the shadow objects to
which it refers as long as that commit record defines the transaction view
of any session.

commit record backlog

The list of commit records that the Stone maintains in order to support
multiple repository views is the commit record backlog.

April 2008 GemStone Systems, Inc. 301

Basic ldeas System Administration Guide for UNIX

Shadow or Dead?

The following example illustrates the difference between dead and shadow

objects. In Figure 10.1, a user creates a Symbol Association in the SymbolDictionary
Published. The SymbolAssociation is an object (oop 126321) that refers to two other
objects, its instance variables key (#Cost, oop 168165), and value (5.75, oop 126309).

The Topaz command “display oops” causes Topaz to display within brackets ([])
the identifier, size, and class of each object. This display is helpful in examining the
initial SymbolAssociation and the changes that occur.

Figure 10.1 An Association Is Created and Committed

topaz 1> display oops

topaz 1> printit

Published at: #Cost put: 5.75 .

Published associationAt: #Cost .

%

[126321 sz:2 cls: 1745 SymbolAssociation] a SymbolAssociation

key [168165 sz:4 cls: 1733 Symbol] Cost
value [126309 sz:8 cls: 1521 Float] 5.7500000000000000E+00

topaz 1> commit
Successful commit

Dictionary

&Association Symbol

value \ Float

Figure 10.2 shows a second Topaz session that logs in at this point. Notice the
Topaz prompt identifies the session by displaying a digit. Because Session 1
committed the SymbolAssociation to the repository, Session 2 can see the
SymbolAssociation.

302 GemStone Systems, Inc. April 2008

Managing Growth Basic Ideas

Figure 10.2 A Second Session Can See the Association

topaz 2> display oops

topaz 2> printit

Published associationAt: #Cost .

%

[126321 sz:2 cls: 1745 SymbolAssociation] a SymbolAssociation

key [168165 sz:4 cls: 1733 Symbol] Cost
value [126309 sz:8 cls: 1521 Float] 5.7500000000000000E+00
topaz 2>

Now Session 1 changes the value instance variable, creating a new
SymbolAssociation (Figure 10.3). Notice in the oops display that the new
SymbolAssociation object has the same identifier (126321) as the previous
Association.

= The SymbolAssociation is now shadowed. Because the shadow
SymbolAssociation was part of the committed repository and is still visible to
other transactions (such as that of Session 2), it cannot be overwritten. Instead,
the new SymbolAssociation is written to another page, one allocated for the
current transaction.

= The previous value (oop 126309) is no longer referenced in the repository. For
now, this object is considered possibly dead; we cannot be sure it is dead
because, although the object has been dereferenced by a committed
transaction, other, concurrent transactions might have created a reference to it.

April 2008

GemStone Systems, Inc. 303

System Administration Guide for UNIX

Figure 10.3 The Value Is Replaced, Changing the Association

topaz 1> printit

Cost := Cost + 0.50 .

Published associationAt: #Cost .

%

[126321 sz:2 cls: 1745 SymbolAssociation] a SymbolAssociation

key [168165 sz:4 cls: 1733 Symbol] Cost
value [126417 sz:8 cls: 1521 Float] 6.2500000000000000E+00

topaz 1> commit
Successful commit

Dictionary
LT TTTTT]

Z

i

\\Association Symbol
Previous association key -
(becomes shadowed) value
Brevi Eloat Float
revious Floa
(dereferenced, garbage) >| 575
New association key -

(same identifier)
value
Float
New Float
(new identifier) 6.25 ‘

Even though Session 1 committed the change, Session 2 continues to see the
original SymbolAssociation and its value (Figure 10.4). Session 2 (and any other
concurrent sessions) will not see the new SymbolAssociation and value until it
either commits or aborts the transaction that was ongoing when Session 1
committed the change.

GemStone Systems, Inc. April 2008

Managing Growth Basic Ideas

Figure 10.4 Session 2 Sees Change After Renewing Transaction View of Repository

topaz 2> printit

Published associationAt: #Cost .

%

[126321 sz:2 cls: 1745 SymbolAssociation] a SymbolAssociation

key [168165 sz:4 cls: 1733 Symbol] Cost
value [126309 sz:8 cls: 1521 Float] 5.7500000000000000E+00

topaz 2> abort

topaz 2> printit

Published associationAt: #Cost .

%

[126321 sz:2 cls: 1745 SymbolAssociation] a SymbolAssociation

key [168165 sz:4 cls: 1733 Symbol] Cost
value [126417 sz:8 cls: 1521 Float] 6.2500000000000000E+00

Only when all sessions with concurrent transactions have committed or aborted
can the shadow object be garbage collected.

What Happens to Garbage?

GemsStone/S 6.3 implements a variety of garbage collection mechanisms tailored
for specific scenarios. The following idealized process describes none of them.
Instead, it provides a general framework you can use to understand how each
different mechanism handles the scenarios it was designed to handle.

NOTE
Not every garbage collection mechanism uses every step of the process
below. Later sections describe each specific process in detail.

The basic garbage collection process encompasses nine steps:

1. Find all the live objects in the system by traversing references, starting at the
system root AllUsers. This step is called mark/sweep.

2. The Gem that performed mark/sweep now has a list of all live objects. It also
knows the universe of all possible objects: objects whose OOPs range from
zero to the highest OOP in the system. It can now compute the set of possible
dead objects as follows:

a. Subtract the live objects from the universe of possible objects.

b. Subtract all the unassigned OOPs in that range.

April 2008

GemStone Systems, Inc. 305

Basic Ideas

System Administration Guide for UNIX

This step is called the object table sweep because the Gem uses the object table to
determine the universe of possible objects and the unassigned OOPs.

The Gem performing this work now has a list of possibly dead objects. We can’t
be sure they’re dead because, during the time that the mark/sweep and object
table sweep were occurring, other concurrent transactions might have created
references to some of them.

The Gem sends the Stone the possible dead set and returns.

NOTE
The Stone holds the set in memory until the next checkpoint; if the
system should fail at this point, these steps would have to be redone.

Now, in a step called voting, each Gem logged into the system must search its
private memory to see if it has created any references to objects in the possible
dead set. When it next commits or aborts, it votes on every object in the
possible dead set. Objects referenced by a Gem are removed from the set.

NOTE
Gems do not vote until they complete their current transaction. If a Gem
is sleeping or otherwise engaged in a long transaction, the vote cannot be
finalized and garbage collection halts at this point. Commit records
accumulate, garbage accumulates, and a variety of problems can ensue.

Because all the previous steps take time, it’s possible that some Gems were on
the system when the mark/sweep began, created a reference to an object now
in the possible dead set, and then logged out. They cannot vote on the possible
dead set, but objects they’ve modified are in the write sets of their commit
records. The GcGem, a process dedicated to garbage collection tasks, scans all
these write sets (the write set union), and votes on their behalf. This is called the
write set union sweep.

After all voting is complete, the resulting set now holds nothing but
unreferenced objects. If any of those objects are indexed collections, however,
additional work must be done. And if any are compiled methods, other Gems
currently logged into the system will have to be signaled to reload their
method caches. The GcGem now hunts through the set, looking for these
special cases; when it finds them, it performs its job as necessary.

The Stone now promotes the objects from possibly dead to dead.

The GecGem reclaims pages: it copies live objects on the page onto a new page,
thereby compacting live objects in page space. The page now contains only
recycleable objects and perhaps free space.

306

GemStone Systems, Inc. April 2008

Managing Growth Basic Ideas

9. OOPs are returned to their free pool.

NOTE
For information about tuning each step of garbage collection, see
“Garbage Collection for Tuners” on page 370.

Different Ways to Collect Garbage

Where

How

Garbage collection mechanisms vary according to:

= where garbage collection occurs—temporary (scratch) memory or permanent
object space,

= how it occurs—automatically, or in response to an administrator’s action, and

= what is collected.

Each Gem session has its own private memory intended for scratch space, known
as local object memory. This it uses for a variety of temporary objects, which can be
garbage collected individually.

NOTE
For a detailed description of the structure of local object memory and its
garbage collection process, see “Excessive In-Gem Garbage Collection”
on page 366.

Permanent objects are organized in units of 8 KB called pages. Pages exist in the
Gem’s private page cache, the repository’s shared page cache, and on disk in the
extents. When first created, each page is associated with a specific transaction; after
its transaction has completed, GemStone does not write to that page again until all
its storage can be reclaimed.

Objects on pages are not garbage collected individually. Instead, the presence of a
shadow or dead object triggers reclamation of the page on which it resides.

Some garbage collection mechanisms, such as the process that scavenges local
object memory, occur automatically when needed in a manner invisible to the user.
Another garbage collection mechanism is scheduled automatically, but is
configurable.

As a unit, these automatic mechanisms are designed to catch as much garbage as
possible. But they can’t catch everything; therefore, the system administrator has

April 2008

GemStone Systems, Inc. 307

Basic Ideas

System Administration Guide for UNIX

What

a variety of additional tools: Smalltalk methods to invoke a wide variety of other
mechanisms. With a bit of trial and error, you can find the right subset of these to
run at intervals appropriate for your operational profile.

The main garbage collection mechanisms operate on whatever garbage they find
in their universes. But if you have identified a specific kind of problem, you can
invoke garbage collection processes that will operate only on shadow objects, or
only on dead objects. With parallel resources, you can run both processes at the
same time.

Sites with enough CPUs, 1/0 bandwidth, and multiple extents can run several
such processes on specified extents, or on all extents, at the same time.

GemStone’s Six Ways

GemStone 6.3 provides six mechanisms that together mark and reclaim garbage:

Both Marking and Reclaiming

Local object memory collection — This mechanism, which you might think of as
preventive, reclaims objects in local object memory while they exist within view of
only the session that created them. Each Gem session process performs this task
automatically. The goal is to prevent temporary garbage objects from reaching
permanent object memory through either a committed transaction or an overflow
of temporary object space. These objects are collected individually, instead of in
pages. This mechanism occurs automatically and cannot be configured.

NotConnectedSet collection — This mechanism examines the set of objects that
the Gem session had to move to pages, even though they are not referenced by
permanent objects. Each Gem performs a mark-sweep on this notConnectedSet
when configurable thresholds are reached; it then releases the dead objects for the
next garbage collection in permanent object memory. This mechanism also occurs
automatically, but unlike the first, it can be configured. (Instructions are provided
starting on page 366.)

Marking Only

Epoch garbage collection — The third mechanism examines objects shortly after
they are committed to pages. Periodically, the GcGem examines all transactions
written since a specific, recent time (the beginning of this epoch) for objects that
were created and then dereferenced during that period. However, epoch garbage

308

GemStone Systems, Inc. April 2008

Managing Growth Basic Ideas

collection cannot reclaim objects that are created in one epoch but dereferenced in
another.

In spite of its name, epoch garbage collection only marks; it does not reclaim.
Various aspects can be configured to maximize its usefulness. (Basic instructions
are provided on page 312, and more information is on page 360.)

Targeted marking — If you have reason to believe that specific objects are dead,
you can invoke garbage collection specifically to mark them. These objects are
added to the global queue GcCandidates, and the administrator initiates their
collection by invoking Repository>>markGcCandidates in a GemStone
Smalltalk session. This method sweeps the repository and marks those objects in
GcCandidates that have no other references to them.

Repository-wide marking — The broadest mechanism must be invoked
occasionally by a GemStone administrator to reclaim any dead objects that slip
through the other collection mechanisms: Repository>>markForCol lection.
Because this method marks dead objects anywhere in the entire repository, it finds
objects that elude detection with any other mechanism.

Reclaiming Only

Parallel reclamations in all specified extents — If you’ve traced a problem to an
excess of shadow objects or an excess of dead objects, you can launch processes
specialized to reclaim either shadow or dead objects. These specialized GcGems do
not identify garbage; one reclaims pages with dead objects, and the other reclaims
pages with shadow objects. They are not compatible with any other garbage
collection mechanism, however.

Table 10.1 summarizes these different mechanisms:

April 2008 GemStone Systems, Inc. 309

Basic ldeas System Administration Guide for UNIX

Table 10.1 Garbage Collection Mechanisms Compared

Configurable Mark or

Mechanism What? How? ? Reclaim? GcGem?
Local object ephemeral objects in automatic no both not involved
memory collection Gem’s memory
NotConnectedSet ephemeral objects in automatic yes both not involved
collection Gem’s private page cache
Epoch marking dead and shadow object automatic yes mark only one of its
storage and OOPs in duties
repository
Targeted marking dead and shadow object invoked yes mark only finalizes
storage and OOPs among voting,
identified candidates sweeps
write set
union
Parallel dead and either dead objects and invoked yes reclaim specialized
shadow reclaim OOPs, or shadow objects only GcGem
Repository-wide dead and shadow object invoked yes mark only finalizes
marking storage and OOPs in voting,
repository sweeps
write set
union

310 GemStone Systems, Inc. April 2008

Managing Growth Automatic Garbage Collection

10.2 Automatic Garbage Collection

Collecting garbage from local object memory and the notConnectedSet is an
automatic process, though aspects of the notConnectedSet can be tuned for your
operational profile.

Epoch garbage collection is also automatic; its default operation is controlled by
configuration parameters in the GcGem'’s user account, GcUser—parameters you
may wish to reconfigure once your applications have been running for a while and
you have a good idea of what kind of garbage they produce, how much, and how
often. Information on tuning epoch garbage collection is available on page 315 and
also in “Inefficient Epoch Sweep” on page 360.

Collecting Local Object Memory

Local object memory exists in each session’s private memory space. GemStone
performs object garbage collection in local object memory to maximize its use and
to minimize the number of dead objects that find their way to disk.

When a session creates a new object, GemStone allocates space for it in a work
space in that Gem’s local object memory. (Large objects, those occupying more
than a single 8 KB page, are written directly in permanent object memory.) Objects
that survive repeated generational scavenges in the work space eventually migrate
to the Gem’s temporary object space (also sometimes called old space.) The size of
temporary object space is configurable; you may wish to tune it to the needs of
your application.

If temporary object space fills, GemStone first performs a mark/sweep to remove
any dead obijects. If there is still not enough room, the next step is more drastic:
objects in the first part of temporary object space are moved directly to permanent
object memory, where they become part of the Gem’s notConnectedSet. If the
pages containing these objects are committed, future garbage collection must be
handled by other, more costly techniques.

The GEM_TEMPOBJ_CACHE_SIZE configuration option determines the size of
temporary object space, which by default is 585 KB. Sessions that create a large
number of temporary objects may need to increase this to avoid cluttering
permanent object memory with ephemeral objects.

For information on monitoring and tuning local object memory garbage collection,
see “Excessive In-Gem Garbage Collection” on page 366.

April 2008

GemStone Systems, Inc. 311

Automatic Garbage Collection System Administration Guide for UNIX

Collecting the NotConnectedSet

After each generational scavenge of local object memory, each Gem examines the
total number objects in its notConnectedSet—unreferenced objects that the Gem
had to move to permanent object memory after temporary object space
overflowed. When configurable limits are reached, the Gem performs a mark-
sweep on the set. Any objects referenced from local object memory are kept in the
notConnectedSet and protected from garbage collection. Remaining objects are
garbage collected by the Gem, or (if the page has been committed) are marked for
the next time pages are reclaimed.

Removing objects from a Gem’s notConnectedSet provides two benefits:
= The objects can now be garbage collected while the session is still logged in.

= Voting overhead (page 306) is reduced because these objects have not become
visible to other sessions.

For more information, see “Tuning the notConnectedSet” on page 367.

Epoch Garbage Collection

Epoch garbage collection operates on a finite set of recent transactions: the epoch.
Using the write set the Stone maintains for each transaction, the GcGem examines
every object created during the epoch. If it’s unreferenced by the end of the epoch,
it’s marked as garbage and added to the list of possible dead. (Storage and
identifiers are not reclaimed until the GcGem is reclaiming pages from other
garbage as well.)

Epoch collection is efficient because:

= It’sfaster and easier to perform atransitive closure on a few recent transactions
than on the entire repository.

= Most objects die young, especially in applications characterized by numerous
small transactions updating a few previously committed objects. An epoch of
the right length can collect most garbage automatically.

Although epoch collection identifies a lot of dead objects, it can’t replace
markForCol lection because it will never detect objects created in one epoch
and dereferenced in another.

Epoch garbage collection runs by default, but you can disable it, which you may
wish to do for a period of time while you run other garbage collection mechanisms.
You can also change how often it runs, or make it run at a time of your own
choosing. After your installation has been operating for a while, and you’ve had

312

GemStone Systems, Inc. April 2008

Managing Growth Automatic Garbage Collection

the chance to collect operational statistics, you’ll probably agree that epochs of the
wrong length can be notably inefficient. An in-depth discussion of the
performance trade-offs of short or long epochs starts on page 315. For more tuning
information, see “Inefficient Epoch Sweep” on page 360.

Epoch garbage collection is one of several jobs that the GcGem performs. While it
is running epoch garbage collection, the GcGem is occupied; its other jobs must
wait. However, if too many pages need reclaiming, epoch garbage collection is
deferred to free the GcGem for its page reclaim task.

The GecGem

To run epoch garbage collection, GemStone provides a specialized Gem, the
GcGem, and a special predefined user account: GecUser.

The GcGem performs several tasks:
< |t runs epoch garbage collection;
< finalizes the vote on possibly dead objects (Step 5, page 306);

< handles indexing structures, compiled methods, and other household tasks;
and

< reclaims pages and OOPs.

While occupied with the write set union sweep and other household tasks (the
middle two bullet items), the GcGem is unavailable for epoch garbage collection
or page reclamation.

When STN_GC_SESSION_ENABLED is set to True (the default), GcUser logs in to the
repository at GemStone startup through a Gem session process running as a child
process of the Stone repository monitor. The GcUser session can be disabled in the
GemsStone configuration file, and certain Smalltalk methods stop the GcUser
session temporarily by entering single-user mode.

Parameters to control epoch garbage collection and page reclamation are stored in
GcUser’s UserProfile. To modify them, log in as GcUser (GecUser’s default
password is the same as DataCurator’s or SystemUser’s default password) and

April 2008 GemStone Systems, Inc. 313

Automatic Garbage Collection System Administration Guide for UNIX

send the message at:aKey put:aValueto UserGlobals. For example, to set
#GemIOLImit to 100:

topaz> set user GcUser password thePassword
login

topaz 1> run

UserGlobals at: #GemlOLimit put: 100 .
System commitTransaction

%

Changes to GcUser’s configuration parameters are not soon detected while the
GcGem is executing a long-running operation, such as the write set union sweep.
To change the 170 rate during execution of such operations, use the procedure
described under “Changing the 1/0 Limit During a Long Operation” on page 64.

The following instance methods in Repository shut down the GecGem for their
duration:

auditWithLimit: repairWithLimit:

objectAudit

The method Repository>>restoreFromBackup: shuts down the GcGem
when it begins. If it succeeds, the GcGem remains shut down until
restoreFromCurrentLogs has successfully executed.

For information on tuning the GcGem, see “Overloaded GcGem” on page 364.

Collecting Statistics

Some cache statistics relevant to epoch garbage collection are:
< GcEpochState

e GcForceEpoch

= GcReclaimState

= ProgressCount

For more information on monitoring cache statistics, see “Monitoring
Performance” on page 226.

314

GemStone Systems, Inc. April 2008

Managing Growth Automatic Garbage Collection

Determining the Epoch Length

Epoch garbage collection’s ability to identify unreferenced objects depends on the
relationship between three variables:

= the rate of production R of short-lived objects,
= the lifetime L of these objects, and
= the epoch length E.

The only variables under your direct control is epoch length. You cannot specify it
explicitly, together, these GcGem configuration parameters control the length of
an epoch:

= #epochGcEnabled
Enables (true) or disables (false) epoch garbage collection—by default,
enabled.

e #epochGcTimeLimit
The maximum frequency of epoch garbage collection—by default, 15 minutes.

= #epochGcTransLimit
The number of transactions required to trigger epoch garbage collection—by
default, 5000.

= #epochGeBytelLimit
The number of bytes of new or modified committed objects required to trigger
epoch garbage collection—by default, 5 million.

= #deferEpochReclaimThreshold
The number of pages needing to be reclaimed (another responsibility of the
GcGem'’s) that will cause the GecGem to defer epoch garbage collection in favor
of reclaiming pages—by default, 1000.

Epoch garbage collection occurs when:

(pages that need reclaiming < deferEpochReclaimThreshold) AND
(the time since last epoch > epochGcTimeLimit) AND

((transactions since last epoch > epochGcTransLimit) OR
(bytes committed since last epoch > epochGcByteLimit))

or when the method System>>forceEpochGc is executed

The following discussion assumes that the epoch is determined by the minimum
time interval (#epochGcTimeLimit) because other thresholds are always met.

April 2008 GemStone Systems, Inc. 315

Automatic Garbage Collection System Administration Guide for UNIX

Figure 10.5 shows the effect of the epoch on the number of items marked. If L = E,
for example, five minutes, every object’s lifetime spans epochs (top part of graph),
and none are collected.

When the epoch is longer than an average object’s lifetime, however, some objects
live and die within the same epoch, and can be marked. The lower part of

Figure 10.5 shows an example where E = 3L and objects are created at a uniform
rate. Objects created during the first two-thirds of the interval die before its end
and are marked. Only those created during the final third survive to the next
epoch.

The results shown in Figure 10.5 can be expressed as:

Objects Missed by EpochGC RxL
Objects Recovered by EpochGC RE-L)

For example, assume R = 1000 objects per minute, L =5 minutes, and E = 15
minutes. Then, for each epoch:

Objects Missed = 1000 x 5 = 5000
Objects Recovered = 1000 (15 - 5) = 10000

316

GemStone Systems, Inc. April 2008

Managing Growth Automatic Garbage Collection

Figure 10.5 Effect of Collection Interval on Epoch Garbage Collection

Case: E=L @® Object created

O Object dereferenced

' @ ; @) '
| e | o |
' ° Lo
| | e O
I | I ® @)
| | |
L Time
T T T
-<—E —>» Epoch 2 Epoch 3
Case: E=3L
! |
| [J O |
| ® o) I
| ® O
e o |
| ° ' o
I I
| I I I O I N A N N A O B ! >
N I R I O Y N
| |
- E -

April 2008 GemStone Systems, Inc. 317

Automatic Garbage Collection System Administration Guide for UNIX

Therefore:
O Set#epochGcTimeLimitE > lifetime L of short-lived objects

Figure 10.6 graphs the effect of the epoch. When E = L, epoch garbage collection is
in effect disabled—all objects survive into the next epoch; the number of unmarked
yet dead objects in the repository grows at the creation rate. These dead objects
remain unidentified until you run markForCol lection.

When the epoch is extended so that E = 3L, each epoch garbage collection marks
those objects both created and dereferenced during that interval. This ratio causes
the sawtooth pattern in the graph. If the creation rate is uniform, two-thirds of the
dead objects are marked ((E L)/E), and one-third are missed (L/E). Consequently,
the repository grows at one-third the rate of the case E = L.

This configuration trades short bursts of epoch garbage collection activity for:
< moderate growth in the repository, and

< the need to run markForCollection often enough to mark dead objects
that survive between epochs.

318

GemStone Systems, Inc. April 2008

Managing Growth

Automatic Garbage Collection

Figure 10.6 Repository Growth with Short Epoch

Unmarked Dead Objects in Repository (000's)

70

60

50

40

30

20

10

E=L
Ve
E=3L
/]
NV
/ /
/
/
L =5 min.
R = 1000 objects/min.
—» E -
60 120 180

Time in Minutes

April 2008

GemStone Systems, Inc.

319

Automatic Garbage Collection System Administration Guide for UNIX

Suppose we extend the epoch to E = 12L. The result is shown in Figure 10.7,
superimposed on part of the previous figure.

Figure 10.7 Effect of Longer Epoch on Repository Growth

70] -
60
50 E=12L
40

30

20

Unmarked Dead Objects in Repository (000's)

10

0 60 120 180
Time in Minutes

Although the longer epoch allows many more dead objects to accumulate, the
growth rate of the repository is substantially less—25% of the previous case.

This configuration trades a slower growth rate for:
= aneed for greater headroom on the disk, and
= longer bursts of epoch garbage collection activity.

In some cases an epoch as long as several hours, or even a day, is appropriate.

320 GemStone Systems, Inc. April 2008

Managing Growth Invoking Garbage Collection

Some application architectures commit objects that are used by a particular user's
session, then dereference those objects when a user logs out. If most or all users log
out at night, running an epoch GC once each night can be especially effective. To
do this, you would set #epochGcTimeLimit to some value greater than 24 hours,

and run a script each night that executes the method System>>forceEpochGc.
For more information on the use of this method, see the comment on this method.

10.3 Invoking Garbage Collection

This section gives procedures and methods for controlling repository growth.

To prevent the repository from growing large enough to cause problems, on a
regular basis, run:

Repository >> markForCollection
Instructions start on page 323.

If you can identify plausible targets for garbage collection yourself, you can supply
hints to the system with:

Repository >> markGcCandidates
Instructions start on page 327.

To focus on reclaiming pages having either shadow or dead objects, or to run
multiple reclamation processes at once, the following method starts either of two
special kinds of GeGem:

System Class >> startGC: gcSymbol

One kind of GcGem reclaims storage from dead objects and object identifiers, as
well as performing other tasks. The other kind reclaims storage from shadow
objects. Instructions start on page 330.

If you have parallel resources and could benefit from multiple concurrent garbage
collection processes on any or all of the extents, use the special kinds of GcGems
started by either of these methods:

System Class >> startGC: gcSymbol onExtent: extentld
System Class >> startGC: gcSymbol onExtents: extentlds

For examples of how to invoke these methods, see “To Start or Stop GcGems
Individually” on page 333.

To force the system to reclaim pages in general, you can use:

Repository >> reclaimAll

April 2008

GemStone Systems, Inc. 321

Invoking Garbage Collection System Administration Guide for UNIX

Instructions start on page 339.

If you find this plethora of choices a bit bewildering, see “Choosing When to Do
What,” below. This sketches a few typical scenarios and lists the incompatibilities
between different mechanisms.

This section also provides a procedure for explicitly removing references to large
objects, on page 343, and hints for collecting garbage collection candidates off-line,
on page 345.

Choosing When to Do What

To begin with, for normal operations, we recommend that you run with the
defaults appropriate to the size of your repository, as indicated by the sample
configurations described starting on page 4. Depart from these defaults after
analysis of your operations indicates a reason for doing so and a direction to go.

To aid in your analysis, GemStone gives you several tools, as well as the ability to
collect a wide variety of statistics on many aspects of the system. These tools are
described in Chapter 8, the statistics in “To Monitor Cache Statistics” on page 226.

Additional tools you can use to view and analyze these statistics, as well as
common performance bottlenecks, are described in Chapter 11.

Specialized GcGems are provided to deal with a large backlog of garbage awaiting
reclaiming. Statistically, this situation evidences itself with high numbers for
PagesNeedReclaimSize or DeadNotReclaimedsSize.

Page backlogs can build up for several reasons: The GecGem may be spending too
much time in epoch garbage collection, or handling voting, therefore falling
behind on reclaiming pages. Or, perhaps you collect garbage daily, before the
regularly scheduled full daily backup. If reclaiming does not complete before the
backup starts, it’s interrupted when the backup starts and not necessarily resumed
when the backup completes. Unclaimed pages accumulate, and the next day’s
garbage marking process makes matters worse.

With four jobs, the generic GcGem has a lot to do and can sometimes be
overloaded. The specialized GcGems are provided to help take some of the load
off, by providing the ability to target system resources on specific kinds of page
reclamation. But you cannot mix these GcGems indiscriminately. Their operations,
and restrictions on those operations, are described starting on page 330.

322

GemStone Systems, Inc. April 2008

Managing Growth Invoking Garbage Collection

To Run markForCollection

Privileges required: GarbageCollection.

The method Repository>>markForCol lection sweeps the entire repository
and marks as live all objects that can be reached through a transitive closure on the
symbol lists in AllUsers, as described on page 300. The remaining objects become
the list of possible dead objects.

markForCollection only provides a set of possible dead objects for voting and
eventual reclaiming as described under “What Happens to Garbage?” on
page 305. It does not reclaim the space or OOPs itself—the GcGem does.

Some objects may escape other garbage collection mechanisms, but the method
Repository>>markForCol lection isthe broadest, identifying unreferenced
objects in the entire repository.

However, markForCol lection temporarily makes the repository larger. The
repository grows in proportion to the total number of objects (live or dead) in the
repository. In the worst case, this can add ((numberLive + numberDead) / 4) bytes.
This bloat begins to decrease after the next checkpoint after markForCol lection
completes.

To mark unreferenced GemStone objects for collection, log in to GemStone and
send your repository the message markForCol lection, as in the following
example:

topaz 1> run
SystemRepository markForCollection
%

If you are performing markForCol lection on alarge production repository,
consider the steps described under “Reducing Impact on Other Sessions” on
page 325.

When markForCol lection completes successfully, the Gem that started it
displays a message such as the one below:

Successful completion of markForCollection.
16482 live objects found.
12 dead objects, occupying 2483 bytes, may be reclaimed.

This method aborts the current transaction and runs markForColl lection
outside of a transaction so that the session doesn’t interfere with ongoing

April 2008

GemStone Systems, Inc. 323

Invoking Garbage Collection System Administration Guide for UNIX

reclamation. When markForColl lection completes, the session reenters a
transaction, if it was in one when this method was invoked.

NOTE
If you have uncommitted changes, this method does not abort, but
returns an error. You must manually commit or abort your changes
before you reattempt to run markForCol lection.

Because it runs outside of a transaction, markForCol lection must respond to
RT_ERR_SIGNAL_ABORT messages from the Stone. To avoid excessive interference
with the marking process, consider temporarily raising the

#StnSignal AbortCrBacklog internal parameter to let markForCol lection run
for about five minutes between such signals; the precise value necessary depends
on the your application’s commit rate.

Only SystemUser can change the #StnSignalAbortCrBacklog parameter. For
information about setting internal parameters, see “To Change Settings at Run
Time” on page 41.

If another garbage collection task is in progress at the time you try to do
markForCol lection, this method may report a conflict error similar to that
shown below.

The Garbage Collection process detected a concurrency
conflict, reason:

#Garbage collection in progress by another session, try
again later.

This concurrency conflict has several possible causes:
< An epoch garbage collection is in progress in a GecGem.

< A markGcCandidates or markForCollection is in progress in another
session.

< A previous epoch, markGcCandidates, or markForCollection
completed the mark phase, but voting on possibly dead objects has not
completed.

NOTE
For voting to complete, either a GcGem or an EpochGem must be
running. Also, long-running sessions that are idle and never abort will
prevent the vote from completing.

Before issuing the error, the markForCol lection method waits up to two
minutes for the other garbage collection to finish. You can try

324 GemStone Systems, Inc. April 2008

Managing Growth Invoking Garbage Collection

markForCol lection again after a few minutes or use
markForCol lectionWait: as described below.

To have the markForCol lection wait longer than two minutes for another
garbage collection to complete, use markForCollectionWait:
waitTimeSeconds. To wait as long as necessary for the other garbage collection to
finish, pass the argument —1. Do so with caution, however; under certain
conditions, the session could appear to wait forever. To avoid this:

< Make sure that other sessions are committing or aborting, which allows voting
on possible dead to complete.

< Make sure that either the generic GcGem (#GC) or the specialized EpochGem
(#EPC) is running to complete processing of dead objects once the vote is
completed.

NOTE
The GcUser parameter deferEpochReclaimThreshold
suppresses promoting possibly dead objects to dead (Step 7 on page 306)
when too many pages need reclaiming, so that the GcGem can
concentrate on reclaiming pages. Therefore, narkForCol lection
will not complete until the GcGem has reclaimed enough pages to bring
the value of deferEpochReclaimThreshold down below the
threshold you have set.

Reducing Impact on Other Sessions

Because markForCol lection can make extensive use of system resources for a
long time, you may need to reduce its impact on other sessions. You can do so in
several ways:

= If the Gem session process performing markForCollection consumes too
much of the available disk 1/0 resources, its 1/0 rate can be limited. Set the
GEM_IO_LIMIT configuration option in a special configuration file read by that
session, or change the #GemlOLimit internal parameter. As a starting point,
determine your system’s maximum disk 1/0 rate and the average rate under
ordinary GemStone operation. Then set the Gem 1/0 limit for that session to
(maximumRate — averageRate).

For example, to set #GemIOLimit to 100, log in as the user whose Gem is
running markForCol lection and execute:

topaz 1> run

UserGlobals at: #GemlOLimit put: 100 .
System commitTransaction

%

April 2008 GemStone Systems, Inc. 325

Invoking Garbage Collection System Administration Guide for UNIX

Have the Gem running markForCol lection use asufficiently large private
page cache so that it does not interfere with use of the shared page cache by
other sessions. Create a special configuration file for that Gem and increase the
setting of GEM_PRIVATE_PAGE_CACHE_KB. As a starting point, determine the
approximate number of objects in your repository. Object audits give this
statistic, or you can estimate it by taking the size of your repository and
allowing 100 bytes per object. Then use (numberOfObjects / 4000) as
GEM_PRIVATE_PAGE_CACHE_KB. The maximum size permitted is 524288 KB.

To increase the speed of garbage collection, you can increase the size of the
mark/sweep buffer for the user running markForCol lection—typically
GcUser or DataCurator. To do so, log in as the appropriate user and evaluate:

UserGlobals at: #mfcGcPageBufSize put: newValue

A value of 3000 while markForCol lection runs is a good place to start.
However, if this large value causes out-of-memory errors, use a lower value.

NOTE
A sigAbort causes markForCol lection to redo its recent work,
which in the worse case can include all work done since the last sigAbort.
Therefore, in an environment where the markForCol lection
session gets sigAborts, increasing the size of the mark/sweep buffer can
degrade session response time to sigAborts, leading to commit record
backlog problems and potential lostOTRoot failures of the
markForCol lection session, as well as significantly degrading
markForCol lection performance. In some cases,
markForCol lection effectively hangs for as long as the process
continues to get sigAborts.

You’ll need to experiment to determine the best value for
mFcGcPageBufSize, given your operational profile, but values above 6000
are seldom required and usually detrimental.

If excessive CPU usage seems to be the problem, you can reduce usage by
using the UNIX nice command with the Gem process or linked application
that is running markForCol lection.

Additional impact on other sessions may occur after the markForCollection
has completed because the results may cause an increase in the number of pages
that are candidates for reclaiming.

326

GemStone Systems, Inc. April 2008

Managing Growth Invoking Garbage Collection

Scheduling markForCollection

To invoke markForCol lection using the cron facility, create a three-line script
file similar to the Topaz example on page 323 by entering everything except the
prompt. Use this script as standard input to topaz, and redirect the standard
output to another file:

topaz < scriptName > logName

Make sure that $GEMSTONE and any other required environment variables are
defined during the cron job. Either create a . topazini file for a user who has
GarbageCollection privilege, or insert those login settings at the beginning of the
script. For information about using cron, refer to your operating system
documentation.

To Run markGcCandidates

The method Repository>>markGcCandidates depends on the application to
provide an array of candidate objects that it believes can be garbage-collected. The
application does that by sending the message
Repository>>addGcCandidates:anArray, which adds the array to the global
gueue GcCandidates. Because markGcCandidates depends on the application to
provide a list of objects as hints to be swept for references, it is useful only if you
have such hints.

By invoking Repository>>markGcCandidates, the administrator can have
GemStone analyze the objects in GcCandidates and garbage collect those that are
otherwise unreferenced. This method requires the GarbageCollection privilege.

Unfortunately, guessing wrong can be both time- and CPU-intensive. In the
context of markGcCandidates, the definition of a dead object is more restrictive
than it is in other contexts: markGcCandidates considers an object dead if it is
referenced by no other object outside the candidates array, even a dead object.
Therefore, if you omit a single one of a network of dead objects, none of the other
dead objects in the network will be garbage-collected, because a single dead object
outside the candidates array references them. Instead, they will all have to wait for
repository-wide garbage collection.

The method performs an optimized linear sweep of the repository to identify any
objects in GcCandidates that still have references. The remaining objects in
GcCandidates become the list of possible dead objects. A transitive closure is
performed only on the live objects found in GcCandidates. As a result, this method
can identify possibly dead objects more efficiently than markForCol lection,
which performs a transitive closure on the entire repository.

April 2008

GemStone Systems, Inc. 327

Invoking Garbage Collection System Administration Guide for UNIX

Recall that all marking only provides a set of possible dead objects for voting and
eventual reclaiming, as described under “What Happens to Garbage?” on
page 305. Marking does not by itself reclaim space or identifiers.

Privileges required: GarbageCollection.

The method Repository>>markGcCandidates marks any otherwise
unreferenced objects in the global queue GcCandidates (garbage collection
candidates). This method is more efficient than markForCol lection ingarbage
collecting specific objects.

An application can add objects to the GcCandidates queue while archiving or
dereferencing objects at the end of their life cycle. The application does that by
sending the message Repository>>addGcCandidates:anArray. After the
transaction has been committed, a user with the GarbageCollection privilege can
then invoke this method to start the collection activity. The reference from
GcCandidates is a weak reference: it does not keep markGcCandidates from
marking the candidates

To check the queue, send the message value to the global object
GcCandidatesCount. For example:

topaz 1> run
GcCandidatesCount value
%

500

To perform markGcCandidates, send that message to the repository:

topaz 1> run
SystemRepository markGcCandidates
%

This method aborts your current transaction and empties GcCandidates into a
temporary, hidden array, then commits the transaction so that there are no
committed references to the objects. The method then performs the garbage
collection analysis while outside of a transaction.

NOTE
If you have uncommitted changes, this method does not abort, but
returns an error. You must manually commit or abort your changes
before you reattempt to run markGcCandidates.

328

GemStone Systems, Inc. April 2008

Managing Growth Invoking Garbage Collection

Because the hints are in a temporary array at this point, ensure that the Gem
process running markGcecCandidates isn’t terminated prematurely, or this work
will have to be repeated.

When the method completes successfully, it returns an array containing the
number of possibly dead objects found, the number of bytes they occupy, and any
entries in GecCandidates that were not eligible for collection. For example:

an Array
#1 500

#2 4010000
#3 first entry not eligible for collection

)

If another garbage collection (epoch or markForCol lection)isin progress at the
time you try to do markGecCandidates, it may report a conflict error similar to
that shown below. Try markGcCandidates again after a few minutes.

The Garbage Collection process detected a concurrency
conflict, reason:

#Garbage collection in progress by another session, try
again later.

NOTE
The GcUser parameter deferEpochReclaimThreshold
suppresses promoting possibly dead objects to dead (Step 7 on page 306)
when too many pages need reclaiming, so that the GcGem can
concentrate on reclaiming pages. Therefore, narkGcCandidates will
not complete until the GcGem has reclaimed enough pages to bring the
value of deferEpochReclaimThreshold down below the
threshold you have set.

GcCandidates Removed from Indexed Collections

If your application adds an object to GcCandidates that was removed from an
indexed collection, part of the indexing structure can retain a reference to that
object, thus preventing its garbage collection. To avoid this, in the Globals symbol
dictionary, set the global #AddSystemOb jectsToGcCandidates equal to true
(the default is false). Commit the transaction to make the value persistent and
visible to others. You can now run markGcCandidates with the intended effect.

NOTE
To prevent GeCandidates from growing excessively when the global
#AddSystemObjectsToGcCandidates is true, you must run
markGcCandidates more often than usual; indexing structures can
be large.

April 2008

GemStone Systems, Inc. 329

Invoking Garbage Collection System Administration Guide for UNIX

GcGems Specialized to Reclaim Pages

GemStone/S provides several specialized GcGems in addition to the original
GceGem:

GcGem
The original GcGem, as described starting on page 313. It reclaims pages with
shadow objects and dead objects repository-wide, and it finalizes voting and
performs other household tasks.

Symbols: #GcGem, #GC

ReclaimGem
A GcGem dedicated to the task of reclaiming shadowed pages and dead
objects repository-wide.

Symbols: #ReclaimGem, #RCL

EpochGem
A GcGem dedicated to the task of performing epoch garbage collection and
finalizing voting on dead objects repository-wide.

Symbols: #EpochGem, #EPC

ParallelShadowReclaim
A GcGem dedicated to the task of reclaiming pages with shadow objects, on a
specified extent. You can run one of these GcGems on every extent, if you have
the hardware to make this an efficient choice.

Symbols: #Paral lelShadowReclaim, #PSR

ParallelIDeadReclaim
A GcGem dedicated to the task of reclaiming pages with dead objects, on a
specified extent. You can run one of these GcGems on every extent, if you have
the hardware to make this an efficient choice.

Symbols: #Paral lelDeadReclaim, #PDR

Together, the ReclaimGem and EpochGem cover the full set of GcGem operations.
However, this is not true for the parallel reclaim processes.

The ParallelIDeadReclaim GecGem does not perform the GcGem'’s tasks of epoch
garbage collection, finalizing the vote and special object processing. Therefore,
markForCol lection and markGcCandidates will be held up in the voting
step of garbage collection. And you still need to run one or both of these methods
periodically, because nothing else will identify objects created in one epoch and
dereferenced in another.

330

GemStone Systems, Inc. April 2008

Managing Growth Invoking Garbage Collection

The ParallelDeadReclaim GcGem has another limitation: while it’s running, other
users on the system can read the repository, but they cannot commit any changes
to it. If they try, the commit fails with the transaction conflict
#CommitsDisabled.

NOTE
Users cannot commit changes to the repository while the
ParallelDeadReclaim GecGem is running. Use it only at times when a
read-only repository can be tolerated.

Table 10.2 shows which kinds of GeGem can run at the same time:

April 2008 GemStone Systems, Inc. 331

Invoking Garbage Collection System Administration Guide for UNIX

Table 10.2 GcGem Compatibility

GcGem Kind Compatible GcGems
Default GecGem None
ReclaimGem EpochGem
EpochGem ReclaimGem

ParallelIShadowReclaim ParallelShadowReclaim on other extents

ParallelDeadReclaim ParallelDeadReclaim on other extents

Because the ReclaimGem / EpochGem pair divides up the work accomplished by
the original GcGem, running these two together can be more effective on a
multiple processor machine.

Multiple ParallelIShadowReclaim or multiple ParallelDeadReclaim GcGems can be
run, one on each extent file in the repository. This can be useful if you have
multiple extents and multiple processors.

Managing Garbage Collection Automatically

When the system configuration option STN_GC_SESSION_ENABLED is set to True,
or when the dynamic configuration option #GcSessionEnabled is set to 1, the
Stone automatically tries to keep GcGems running, according to the value set for
the system configuration option STN_GC_SESSION_CONFIGURATION. Valid
values are:

1 Keep asingle GeGem running (the default).
This configuration is recommended for light garbage collection loads.
2 Keep a ReclaimGem / EpochGem pair running.

This configuration is recommended for moderate or heavy garbage collection
loads. To benefit from this configuration, multiple processors are needed.

If a GeGem fails or is stopped by a message send, the Stone tries to restart it within
two minutes:

e For STN_GC_SESSION_CONFIGURATION = 1:

The GcGem is restarted if no other GeGems are running.

332 GemStone Systems, Inc. April 2008

Managing Growth Invoking Garbage Collection

e For STN_GC_SESSION_CONFIGURATION = 2:

< The ReclaimGem is restarted if no other GcGems are running except the
EpochGem.

= The EpochGem is restarted if no other GeGems are running except the
ReclaimGem.

To prevent the stone from trying to start a GcGem that is not appropriate for a
special configuration, set #GcSessionEnabled to 0. Remember to return
#GcSessionEnabled to 1 when you’'re ready to resume automatic garbage
collection.

To Start or Stop GecGems Individually

Under certain circumstances, it’s desirable to control GeGems individually using
methods on Class System. For instance, when a high number of pages need to be
reclaimed, you may wish to shut down your ordinary GecGems during off hours
and start up ParallelShadowReclaim GcGems on selected extents. For further
information, see “Example GcGem Configurations” on page 336.

This section explains various methods for starting and stopping selected GcGems
and for getting information about those that are running.

Methods that start or stop a GecGem return immediately, but the system action
occurs in the background. Before taking action that requires the presence or
absence of a GecGem, confirm its state by sending:

System class>>gcSession: gcSymbol.

Starting a Repository-Wide Special GcGem
Privileges required: GarbageCollection.

To start a special GecGem to reclaim pages from shadow and dead objects
repository-wide, use;

System startGC: gcSymbol

gcSymbol can be any of the symbols #GcGem, #ReclaimGem, #EpochGem (#GC,
#RCL, #EPC). These start the specified kind of GecGem, as described on page 330.

If gcSymbol is #Paral lelShadowReclaim (#PSR) or #Paral lelDeadReclaim
(#PDR), the specified kind of GcGem starts on each extent.

April 2008

GemStone Systems, Inc. 333

Invoking Garbage Collection System Administration Guide for UNIX

Stopping a Repository-Wide Special GecGem
To stop the special GeGem, use:
System stopGC: gcSymbol

If gcSymbol is #GcGem, #ReclaimGem, or #EpochGem (#GC, #RCL, #EPC), stops
the specified GecGem.

If gcSymbol is #Paral lelShadowReclaim (#PSR) or #Paral lelDeadReclaim
(#PDR), stops GcGems of that type on all extents on which they are running.
Starting Extent-Specific Special GcGems

To start parallel special GeGems on specified extents, use:

System startGC: gcSymbol onExtent: extentld

gcSymbol can be any of the symbols #GcGem, #ReclaimGem, #EpochGem,
#ParallelShadowReclaim, #Paral lelDeadReclaim (#GC, #RCL, #EPC,
#PSR, #PDR). These start the specified kind of GcGem, as described on page 330.

extentld can be any integer specifying a valid extent number.

If gcSymbol is #GcGem, #ReclaimGem, or #EpochGem (#GC, #RCL, #EPC), starts
up the specified kind of GcGem, ignoring extentld.

If gcSymbol is #Paral lelShadowReclaim (#PSR) or #Paral lelDeadReclaim
(#PDR), starts up the specified kind of GcGem on the specified extentld.

You can also use the method:
System startGC: gcSymbol onExtents: extentCollection

gcSymbol can be any of the symbols #GcGem, #ReclaimGem, #EpochGem,
#ParallelShadowReclaim, #Paral lelDeadReclaim (#GC, #RCL, #EPC,
#PSR, #PDR). These start the specified kind of GcGem, as described on page 330.

extentCollection can be a Collection of Smallintegers that are extentlds, or #ALL.

If gcSymbol is #GcGem, #ReclaimGem, or #EpochGem (#GC, #RCL, #EPC), starts
up the specified kind of GcGem, ignoring extentCollection.

If gcSymbol is #Paral lel ShadowReclaim (#PSR) or #Paral lelDeadReclaim
(#PDR), starts up the specified kind of GcGem on the extents specified in
extentCollection.

If extentCollection is #ALL, starts up the specified kind of GcGem on all extents.

334

GemStone Systems, Inc. April 2008

Managing Growth Invoking Garbage Collection

Stopping Extent-Specific Special GcGems
To stop a special GeGem, use:
System stopGC: gcSymbol onExtent: extentld

gcSymbol can be any of the symbols #GcGem, #ReclaimGem, #EpochGem,
#ParallelShadowReclaim, #Paral lelDeadReclaim (#GC, #RCL, #EPC,
#PSR, #PDR). These stop the specified kind of GcGem, as described on page 330.

extentld can be any integer specifying a valid extent number.

If gcSymbol is #GcGem, #ReclaimGem, or #EpochGem (#GC, #RCL, #EPC), stops
the specified GcGem, ignoring extentld.

If gcSymbol is #Paral lelShadowReclaim (#PSR) or #Paral lelDeadReclaim
(#PDR), stops GecGems of the specified kind on the specified extentld. If you specify
an extent on which the specified kind of GecGem is not running, the invalid extent
number is ignored.

You can also specify extents by using a Collection:
System stopGC: gcSymbol onExtents: extentCollection

gcSymbol can be any of the symbols #GcGem, #ReclaimGem, #EpochGem,
#ParallelShadowReclaim, #Paral lelDeadReclaim (#GC, #RCL, #EPC,
#PSR, #PDR). These start the specified kind of GcGem, as described on page 330.

extentCollection can be a Collection of Smallintegers that are extentlds, or #ALL.

If gcSymbol is #GcGem, #ReclaimGem, or #EpochGem (#GC, #RCL, #EPC), stops
the specified GcGem, ignoring extentCollection.

If gcSymbol is #Paral lelShadowReclaim (#PSR) or #Paral lelDeadReclaim
(#PDR), stops all GecGems of the specified kind on the specified extentCollection. If
extentCollection is #ALL, stops GcGems of the specified type on all extents. If you
specify an extent on which the specified kind of GcGem is not running, the invalid
extent number is ignored.

Getting GcGem Session Information

The following methods return the session IDs of the specified GecGems, or 0 if no
GcGem of the specified type is currently running.

System gcSession: gcSymbol

If gcSymbol is #GcGem, #ReclaimGem, or #EpochGem (or #GC, #RCL, #EPC,
respectively), returns the session ID of the specified kind of GcGem, or 0 if none.

April 2008

GemStone Systems, Inc. 335

Invoking Garbage Collection System Administration Guide for UNIX

If gcSymbol is #Paral lelShadowReclaim (#PSR) or #Paral lelDeadReclaim
(#PDR), returns an array of session IDs corresponding to each extent.

If gcSymbol is #ALL, returns an array of session IDs in the following order:
1. GcGem
2. ReclaimGem
3. EpochGem
4

An array of session IDs, one for each extent, starting with extent 0 and
ending with the highest extent number on which a
ParallelShadowReclaim GcGem is running.

5. Anarray of session IDs, one for each extent, starting with extent 0 and
ending with the highest extent number on which a
ParallelShadowReclaim GcGem is running.

To obtain the session information about a specific extent, use:
System gcSession: gcSymbol onExtent: extentld

If gcSymbol is #GcGem, #ReclaimGem, or #EpochGem (or #GC, #RCL, #EPC,
respectively), returns the session ID of the specified kind of GcGem (or 0 if none).
The extentld is ignored.

If gcSymbol is #Paral lelShadowReclaim (#PSR) or #Paral lelDeadReclaim
(#PDR), returns the session ID for the GcGem on the specified extentld.

You can also use:
System gcSession: gcSymbol onExtents: extentArray

If gcSymbol is #GcGem, #ReclaimGem, or #EpochGem (#GC, #RCL, #EPC), returns
the session ID of the specified kind of GcGem (or 0 if none). The extent IDs are
ignored.

If gcSymbol is #Paral lelShadowReclaim (#PSR) or #Paral lelDeadReclaim
(#PDR), returns an array of session IDs for the GcGems corresponding to the
extents in extentArray.

If extentArray is #ALL, returns an array of session IDs for all extents.

Example GcGem Configurations

This section first presents example configurations addressing the need to reclaim
either a high number pages or a high number of objects. Finally, it presents
guidance about other configurations.

336

GemStone Systems, Inc. April 2008

Managing Growth Invoking Garbage Collection

Light Load
Run with a single normal GcGem (STN_GC_SESSION_CONFIGURATION = 1).

Moderate Load

When they become available, run with a ReclaimGem / EpochGem pair
(STN_GC_SESSION_CONFIGURATION = 2).

To benefit from this configuration, you need multiple processors.

High Number of Pages to be Reclaimed

During normal hours, run with the ReclaimGem / EpochGem pair
(STN_GC_SESSION_CONFIGURATION =2). During off-hours, shut down those
GcGems and start up ParallelShadowReclaim GecGems on the extents. For
example:

System stopGC: #ALL.

System sleep: 5. "To give current gems time to logout™
System startGC: #PSR onExtent: O.

System startGC: #PSR onExtent: 1.

System startGC: #PSR onExtent: max_extent id.

To benefit from this configuration, you need multiple processors and multiple
extents.

NOTE
Remember to start the parallel shadow reclaim GcGems within two
minutes of shutting down the current GcGems. Otherwise, the Stone
will restart the ordinary GeGems.

Running with parallel shadow reclaim GcGems on all extents may put too high a
load on the system; it might be preferable to run them on just a small number of
extents at a time. Experiment to determine what works best on your system.

When the number of pages needing reclamation has returned to normal, return to
your ordinary GcGem configuration by simply shutting down the parallel shadow
reclaim GcGems. The Stone will restart the ordinary GecGems within two minutes.

April 2008 GemStone Systems, Inc. 337

Invoking Garbage Collection System Administration Guide for UNIX

High Number of Objects to be Reclaimed

During normal hours, run with the ReclaimGem / EpochGem pair
(STN_GC_SESSION_CONFIGURATION = 2). During off hours, shut down those
GcGems and start up parallel dead reclaim GecGems on the extents. For example:

System stopGC: #ALL.

System sleep: 5. "To give current gems time to logout™
System startGC: #PDR onExtent: O.

System startGC: #PDR onExtent: 1.

System startGC: #PDR onExtent: max_extent id.

To benefit from this configuration, you need multiple processors and multiple
extents.

NOTE
Remember to start the parallel dead reclaim GcGems within two minutes
of shutting down the current GcGems. Otherwise, the Stone will restart
the ordinary GecGems.

Also, commits are not allowed while any parallel dead reclaim GcGems
are running. Other sessions can operate on the repository, but any
commits attempted will fail.

Running with parallel dead reclaim GcGems on all extents may put too high a load
on the system; it might be preferable to run them on just a small number of extents
at a time. Experiment to determine what works best on your system.

Parallel dead reclaim GcGems automatically shut down when they have
completed reclaiming all dead objects on their designated extent. The Stone then
restarts ordinary GecGems within two minutes of the last parallel dead reclaim
GcGem shutdown.

Other Configurations

If you wish to experiment with other configurations, disable automatic GcGem
startup by setting either STN_GC_SESSION_ENABLED to False or
#GcSessionEnabled to 0. Otherwise, the Stone will attempt to restart GcGem
processes that could conflict with your goals.

NOTE
To prevent shadowed pages or dead objects from accumulating, monitor
your system closely.

338

GemStone Systems, Inc. April 2008

Managing Growth Invoking Garbage Collection

General Page Reclaim

When the STN_GC_SESSION_ENABLED configuration option is set to True, the
GcUser session automatically starts to reclaim pages while user sessions are
running. The reclaim task examines pages marked reclaimable because they
contain either dead or shadow objects. It also reclaims fragments of space left by
transactions that did not fill an entire page.

Reclaimed space does not appear as free space in the repository until other sessions
have committed or aborted all transactions concurrent with the reclaim
transaction.

Two actions can hasten this moment:

= If your session is the only one logged in (or yours and the GcGem'’s), you can
invoke page reclamation directly. The procedure to do that is described next.

= If other users are logged in, you can determine which sessions are viewing the
oldest commit record, thereby impeding reclamation. See “To Identify
Sessions Holding Up Page Reclamation™ on page 341.

NOTE
If you need to force page reclamation, we encourage you to use the
specialized GecGems as described starting on page 330 instead of the
generalized mechanism described below. The specialized GcGems are less
error-prone and easier to use than the method
Repository>>reclaimAll described below.

To Invoke Reclamation

Privileges required: GarbageCollection.

Reclaiming objects previously marked as dead can be done explicitly by invoking
Repository>>reclaimAll.

NOTE
To invoke this method, you must be the only user logged in, besides the
GceGem’s session. If a GeGem is running, it must be either the generic

April 2008

GemStone Systems, Inc. 339

Invoking Garbage Collection System Administration Guide for UNIX

GcGem (#GC) or the ReclaimGem / EpochGem pair (#RCL and #EPC).
A backup must not be in process.

Step 1. Make sure you are the only user logged in (other than the GcGem). See
“How to Enter Single-User Mode” on page 178.

Step 2. Before running reclaimAl I, you should abort your current transaction:

topaz 1> run
SystemRepository abortTransaction
%

Step 3. Send the message reclaimAll to the repository:

topaz 1> run
SystemRepository reclaimAll
%

true

When the method returns true, reclaiming will be complete. However, the space
may not appear as free pages until after the next checkpoint.

Be sure to check the return value. False indicates that reclamation did not succeed,
most likely because another user was already logged in.

This method suspends all logins until it completes. It behaves differently,
depending on whether the GecGem is present or not:

= If the GecGem is present, the GcGem responds by reclaiming batches of pages
at a time, the size of the batch being determined by the parameters
reclaimMinPages and reclaimMaxPages. The GcGem commits its
transaction after each batch. Page reclamation proceeds more slowly, but it can
be interrupted if necessary.

= If the GecGem is not present, the Stone reclaims all the pages at once. Page
reclamation occurs more quickly than in the above case, but cannot be
interrupted. If the repository has many pages to reclaim, the process can
nevertheless take quite a while, during which time the system is completely
unresponsive. Interrupting or halting the Stone during this process can
corrupt your repository.

CAUTION
While the Stone is reclaiming pages, it cannot be interrupted. If the
repository has many pages to reclaim, the system will be completely
unresponsive—possibly for a long time. Interrupting or halting the
Stone during this process can corrupt your repository. For this reason,

340

GemStone Systems, Inc. April 2008

Managing Growth Invoking Garbage Collection

we recommend that you use the specialized GecGems to reclaim pages
instead. Instructions for their use start on page 330.

To Identify Sessions Holding Up Page Reclamation

Privileges required: SessionAccess.

Reclaiming pages can proceed only up to those pages currently providing some
session’s transaction view of the repository—that is, only up to the oldest commit
record. When other sessions are logged in, reclamation stops at that point until all
sessions using that commit record either commit or abort their transaction.

Sometimes, therefore, it’s helpful to identify which sessions are holding on to the
oldest commit record. The method System
class>>sessionsReferencingOldestCr returns an array of session IDs,
which can be mapped to GemStone logins through

System class>>currentSessionNames or

System class>>descriptionOfSession:aSessionld. For example:

topaz 1> printit

System sessionsReferencingOldestCr
%

an _Array

#1 1

#2 2

topaz 1> run

System currentSessionNames

%

session number: 1 Userld: GcUser
session number: 2 Userld: DataCurator

The method descriptionOfSession: is particularly useful in that it returns an
array of descriptive information. The second element is the operating system
process ID (pid), and the third element is the name of the node on which the
process is running. For details, see the comment in the image.

To Tune Reclamation

Configuration parameters to control the reclaim task are stored as the following
values in GcUser’s UserGlobals:

#reclaimSleepTime the maximum amount of time in seconds that the
process will sleep when no work is scheduled; must
be > 3; the default is 10 seconds

April 2008

GemStone Systems, Inc. 341

Invoking Garbage Collection System Administration Guide for UNIX

#sleepTimeBetweenReclaim
The minimum amount of time in seconds that the
process will sleep between reclaims, even when work
is scheduled; the default is 0 seconds.

#reclaimMinPages The minimum number of pages to process in a single
reclaim operation (reclaiming does not start until this
threshold is reached); must be > 10; the default is
40 pages.

#reclaimMaxPages The maximum number of pages to process in asingle
reclaim; must be > (reclaimMinPages + 5); the
default is 200 pages.

#deferEpochReclaimThreshold
Causes the GcGem to defer epoch garbage collection
while the reclamation backlog exceeds its value.
Epoch garbage collection task competes with the
reclaim task for GcGem resources and potentially
adds pages to the backlog. The default is 1000 pages.

For an example of how to change these parameters, see page 313.

The method System class>>cacheStatistics: for the Stone’s cache slot
reports several statistics about the reclamation cycle:

DeadNotReclaimedSize
The number of objects known to be dead but not yet
reclaimed.

PagesNeedReclaimSize
The amount of work waiting for the Reclaim task.

PossibleDeadSize The number of objects marked as dereferenced but not yet
declared to be dead.

ReclaimCount The number of times the page scavenge (reclamation)
process has been run.

ReclaimedPagesCount The number of scavenged pages.

For more information about these statistics, see “To Monitor Page Reads and
Writes by a Session” on page 226.

In cases where the backlog PagesNeedReclaimSize is quite large, it may be
desirable to increase #reclaimMaxPages so that more objects are reclaimed in a
single run, if that does not adversely affect users. It may also be desirable to defer

342

GemStone Systems, Inc. April 2008

Managing Growth Invoking Garbage Collection

epoch garbage collection by reducing the #deferEpochReclaimThreshold.
These changes allow more of the GcGem'’s time to be devoted to page reclamation.

To Remove References to Large Objects

If you know you have large objects that are no longer needed, another way to free
space is to explicitly remove references to them. To remove such objects, you must
first identify them. Then you can find all references to them and remove those
references.

To Identify Large Objects in the Repository

Ensure that the Topaz display level is sufficient to show the desired information.
Use the Topaz level command to raise the level to at least 1:

topaz 1> level 1

The next expression causes GemsStone to look through the symbol list for each user
in AllUsers and gather information on any named objects larger than the
Smalllnteger aSize:

topaz 1> run
AllUsers findObjectsLargerThan: aSize limit: aSmallint
%
NOTE
This method aborts your transaction, as do most methods that scan the
repository. If you have uncommitted changes, this method does not abort,
but returns an error.

This method returns an Array of up to aSmallint elements, each of the form:

#[#[aUserld, aKey, anObject 1]

where anObject is an object larger than aSize defined in the symbol list of aUserld,
and aKey is the Symbol associated with that object.

If any references to anObject reside in Segments for which you do not have read
authorization, the last element of the result is the String 'Read Authorization Error
encountered'.

April 2008 GemStone Systems, Inc. 343

Invoking Garbage Collection System Administration Guide for UNIX

If that Array does not provide enough information to track down large repository
objects, you can send the same message to System instead:

topaz 1> run
System findObjectsLargerThan: aSize limit: aSmallint
%
NOTE
This method may take considerable time to complete.

This returns an Array of all objects in the repository larger than the Smalllnteger
aSize, whether they are named in a user’s symbol list or not. As above, the Array is
limited to a maximum of aSmallint elements.

Again, if any references to anObject reside in Segments for which you do not have
read authorization, the last element of the result is the String 'Read Authorization
Error encountered'.

To Search for References to an Object

You can search the repository for multiple references to an object by sending the
following message:

topaz 1> run
anObject FindReferencesWithLimit: aSmallint
%

NOTE
This method aborts your transaction, as do most methods that scan the
repository. If you have uncommitted changes, this method does not abort,
but returns an error.

This returns an Array of objects in the repository that reference anObject. If an
object contains multiple references to anObject, that object will appear only once in
the resulting Array. The Array is limited to a maximum of aSmallint elements.

The resulting Array contains only those references that reside within Segments for
which you have read authorization. If any references to anObject reside in
Segments for which you do not have read authorization, the last element of the
result is the String 'Read Authorization Error encountered'.

344

GemStone Systems, Inc. April 2008

Managing Growth Invoking Garbage Collection

You may find this method helpful in locating all instances of a class:

topaz 1> run
aClassObject findReferencesWithLimit: aSmallint
%
NOTE
The method FindReferencesWithLimit: may take considerable
time to complete. In addition, the resulting Array may consume a large
amount of disk space.

To limit the disk space required for the result, send the message anObject
FfindReferences, which limits the result to a maximum size of 20 elements.

To Remove References to an Object

Complete the process by replacing references to the unneeded object with ni .
This allows the object to be removed during normal garbage collection.
Dereferencing objects must be done through a Smalltalk program.

To Identify Candidates Off-line

On a very large repository—for example, 100 GB—running

markForCol lection might take many days. For such cases, an alternate
mechanism exists: you can find garbage collection candidates in an off-line copy of
the repository, and use the result to run markGcCandidates on the operational
repository, a much quicker operation.

The following procedure outlines the process in general terms. For specifics,
contact GemStone/S Technical Support. You may also find it helpful to examine
the offFl inegc example in the $GEMSTONE/examples directory.

NOTE
If Epoch garbage collection is running, disable it now. Do not run any
other garbage collection while working with an off-line repository.

Step 1. Make an off-line copy of the repository and start it.

Step 2. On the copy, log in as SystemUser (or any user with garbage collection
privileges).

Step 3. Execute SystemRepository >> findDisconnectedObjects. The
method FindDisconnectedObjects uses the same algorithm to find dead

April 2008 GemStone Systems, Inc. 345

Invoking Garbage Collection System Administration Guide for UNIX

objects as markForCol lection does; however, it returns the results as an
array of objects.

Step 4. Determine the object identifiers of the resulting objects and write them to
afile.

Step 5. Transfer the file to the host machine on which your operational repository
resides.

Step 6. Atatime when system activity is relatively low, read the file, reconstitute
each object from its identifier, and place the resulting array of objects into the
GcCandidates set using SystemRepository >> addGcCandidates:,
supplying as an argument the collection of reconstituted objects.

Step 7. Finally, execute:

topaz 1> run
SystemRepository markGcCandidates
%

This scans each object again to ensure that other garbage collection
mechanisms running in the operational repository (such as epoch garbage
collection) have not, in the interim, recycled one of OOPs and reassigned it to
a new, live object. This scan also identifies the dead objects to the operational
repository, which can now dispose of them using any appropriate garbage
collection mechanism.

346

GemStone Systems, Inc. April 2008

Chapter

1 Tuning Performance

This chapter tells you:

how to determine if your system suffers from any of several common
performance bottlenecks, and, if so, how to remedy the situation, and

the salient points of garbage collection, if you have traced a performance
problem to that part of the system.

Diagnosis of these or other problems requires understanding how to use
statmonitor and VSD, the GemStone utility programs for measuring system
performance, to monitor cache statistics. Cache statistics are described in detail in
“Cache Statistics” on page 238. Appendix G, “statmonitor and VSD Reference,”

describes how to use VSD and statmonitor.

11.1 Common Performance Bottlenecks

The following most commonly experienced performance bottlenecks each have an
associated template to help you determine if this is a problem for your application.

= The shared page cache is too small.
= The commit record backlog is too large.

April 2008 GemStone Systems, Inc. 347

Common Performance Bottlenecks System Administration Guide for UNIX

< The page server is swamped.
< The sweep phase of epoch garbage collection is inefficient.
< The garbage collection Gem is overloaded.

< In-Gem garbage collection is excessive.

Shared Page Cache Too Small

Default
Statistic Filter Process Explanation
FreeFrameCount shared page cache See page 245.
monitor
FramesFromFindFree per second all See page 245.
FramesFromFreeList per second all See page 244.

Background

The shared page cache is a representation of part of the repository in RAM,
allowing the Stone and Gem processes to read objects from memory rather than
disk, similar to the way many applications use virtual memory. Because memory
access is significantly faster than disk 1/0, applications can run faster if they find
most of the objects they require already in the shared page cache.

Both on disk and in the cache, objects reside on eight-kilobyte pages. The shared
page cache has a fixed number of 8192 byte (8 KB) frames (the precise number of
frames depending on the cache size); each frame can hold one page.

When a Gem seeks an object, it first looks in the shared page cache; only if the
object is not already there does it search on disk. When it finds the object, it must
obtain a free frame before it can read the page into the shared page cache.

The shared page cache monitor maintains a list of cache frames not currently in
use: the number of frames in this list is reported by the statistic FreeFrameCount.
When the Stone or a Gem uses a frame to hold a page, the frame is taken off the
free frame list. Frames are added to the free list at checkpoints, or when a Gem logs
out. However, when a page server writes a page to disk (perhaps in response to a
committed transaction), it does not always add the frame that contained that page
to the free frame list right away. Instead, it waits until the number of free frames
in the list is less than 12.5% percentage of the frames in the cache. Thus, the free
frame list is not always up-to-date.

348

GemStone Systems, Inc. April 2008

Tuning Performance Common Performance Bottlenecks

A Gem in need of a free frame can get one in either of two ways:

« |t can take a frame from the free frame list. If it finds one, statmonitor
increments the statistic FramesFromFreeList.

< If it doesn’t find one, the Gem scans the cache for a free frame that hasn’t yet
been added to the free list. If it finds one, statmonitor increments the statistic
FramesFromFindFree.

Which method the Gem uses to get a free frame is determined by the Gem
configuration parameter GEM_FREE_FRAME_LIMIT, set in the Gem’s configuration
file or at runtime. The algorithm is;

if FreeFrameCount > GEM_FREE_FRAME_LIMIT
then take frame from free list
else scan cache for frame

By default, GEM_FREE_FRAME_LIMIT specifies that each Gem is entitled to take
from the free list until the free list falls below 10% of the frames in the shared page
cache. The garbage collection Gem (GcGem) is a special case: it takes frames from
the free list until the number of free frames falls below 5% of the frames in the
shared page cache.

For example, a 100 MB shared page cache contains 12,800 frames (100 MB 7/ 8 KB).
By default, then, each Gem must scan the cache instead of taking from the free list,
when the free list holds fewer than 1280 frames (10% of 12,800 = 1280). The GcGem
won’t have to scan the cache until the free frame list falls below 640 (5% of 1280).

If no free frame can be found with either method, the Gem looks for a dirty page
and writes it to disk itself, thus freeing its frame. This is the only occasion fora Gem
to write a page to disk, and it is expensive.

The Stone always has a free frame limit of 0, meaning the Stone can take frames
from the free list until the last one is gone. The Stone needs free frames to process
a commit; if this slows down, all users suffer slower performance.

Evaluation

Getting a frame from the free list is significantly faster than having to scan the
entire cache for a free frame. Therefore, the ratio of FramesFromFreelList to
FramesFromFindFree can reveal a significant opportunity for increasing
performance for your application.

Another sign that the shared page cache is too small is that FreeFrameCount is
almost always at or near the free frame limit.

April 2008

GemStone Systems, Inc. 349

Common Performance Bottlenecks System Administration Guide for UNIX

Finally, if you see that Gems are doing pageWrites, as described in “To Monitor
Page Reads and Writes by a Session” on page 226, your shared page cache is
almost certainly too small, or the Gem’s free frame limit is too high.

For the Stone, the value of FramesFromFindFree should always be zero. If it is
not, the shared page cache is too small, or not being used appropriately.

Additional helpful statistics:

« LocalPageCacheMisses and LocalPageCacheHits are another way to
determine whether a Gem needs free frames. LocalPageCacheMisses is
incremented when a Gem tries to access an object that it has not yet used, and
finds itis not in its private page cache. Because the object may be in the shared
page cache (if some other process has already accessed it), this statistic can be
somewhat misleading, but, in general, if the Gem experiences more misses
than hits, it is trying to access objects frequently, and has frequent need to find
frames.

= PageReads reports the number of times a Gem has to read a page from disk.
This occurs every time it needs an object not already in its private cache, or in
the shared page cache.

< GlobalDirtyPageCount is the number of dirty pages that the page server
cannot yet write to the repository.

< PageWrites reports the number of times a Gem has to write a page to disk in
order to free a frame, because it was unable to find a free frame either from the
free list or by searching the shared page cache.

Solutions

If a Gem more frequently scans the shared page cache for free frames instead of
finding them on the free list, consider starting one or more free list page servers.
(A description and instructions are available in “Adding Page Servers” on

page 45.) Add one at a time until FramesFromFindFree goes to zero, or near zero.
Increasing the size of the shared page cache may also be helpful.

Worse, if a Gem is writing pages, consider increasing the size of the shared page
cache. For details on setting the page cache size, see “To Set the Page Cache
Options and the Number of Sessions” on page 14.

Another possible remedy could be redesigning your application so that it needs
fewer pages. Clustering objects often used together on a single page, or choosing

350

GemStone Systems, Inc. April 2008

Tuning Performance Common Performance Bottlenecks

different data structures, can under some circumstances significantly reduce the
number of pages the Gem requires.

NOTE
Gems can be configured individually. To do so, see “Naming Executable
Configuration Files” on page 392.

Commit Record Backlog Too Large

Statistic Default Filter Process Explanation

TotalCommits per second Stone See page 266.

CommitRecordCount per second Stone See page 242.

CommitQueueSize per second Stone See page 242.
Background

A commit record is the structure the Stone uses to provide a Gem with its view of
the repository. Every time a Gem commits a transaction, it creates a commit
record—a list of the objects read and written by the Gem that created it, and other
associated information. The Stone maintains a collection of commit records
ordered from oldest to newest; when a Gem commits or aborts a transaction and
gets an updated view of the repository, its view is the state of the persistent objects
as represented by the latest commit record.

At any given time, each Gem is connected to exactly one commit record, but each
commit record can be connected to more than one Gem. That is, if Gem A commits
atransaction and Gem B aborts immediately thereafter, they’ll both share the same
view of the repository: the view represented by the commit record created by
Gem A.

The commit record backlog is the collection of all commit records connected to all
active Gems—that is, all active views of the system. Commit records are kept in the
shared page cache, where they contend for frames along with other resources. A
commit record cannot be removed from the shared page cache until:

= no Gem session is looking at the view it represents, and
= itis the oldest commit record.

Therefore, if a single Gem stays in a transaction for a long time without committing
or aborting (thereby freeing its commit record), newer commit records cannot be
removed, even if no Gem references them. If this situation remains unchanged for
a long time, a significant commit record backlog can build up.

April 2008

GemStone Systems, Inc. 351

Common Performance Bottlenecks System Administration Guide for UNIX

SigAbort signals

The Stone’s only means of correcting this situation is to signal the Gem to abort its
transaction, thereby releasing the commit record, permitting it (and perhaps other
unreferenced commit records) to be removed from the shared page cache.

A Gem will receive this signal, called a SigAbort, if:

= itisoutside a transaction, and

= itrefers to the oldest commit record, and

= the commit record backlog is greater than the specified maximum.
If a Gem is in transactionless mode:

It is never in a transaction and never needs to commit changes. In this case,
GemStone/S handles SigAbort signals for you transparently.

If a Gem is in automatic transaction mode:

It is never outside a transaction and therefore will never receive a SigAbort.
Automatic transaction mode can therefore cause significant performance
problems if Gems do not commit or abort frequently.

If a Gem is in manual transaction mode:

You’ll need to write a handler to catch SigAbort signals and respond
appropriately. (The class GsSession has a generic SigAbort handler method,
which you can customize by writing your own block.)

SigLostOTRoot signals

If a Gem receives a SigAbort and does not respond (by aborting and releasing the
commit record) in the length of time specified by the STN_GEM_ABORT_TIMEOUT
configuration parameter (by default, one minute), then the Stone does the
following:

1. Sends a SigLostOTRoot signal to the Gem.

2. Waits the number of seconds specified in the configuration parameter
STN_GEM_LOSTOT_TIMEOUT for the Gem to acknowledge receiving the signal
and abort.

If the Gem does not acknowledge the SigLostOTRoot signal, and the value of
STN_GEM_LOSTOT_TIMEOUT is zero or greater, the Stone (more precisely, the Page
Manager) poisons the session's shared page cache slot (and the slot of the gem’s
page server, if any) and sets the stopSessionRequested flag. For a remote Gem, the

352

GemStone Systems, Inc. April 2008

Tuning Performance Common Performance Bottlenecks

Page Manager directs the appropriate remote cache page server to poison the
Gem’s slot.

After the Page Manager finishes, the session is logged off. Thereafter, any attempt
by the session or its page server to access the shared cache will raise a fatal error.

In three cases, the Page Manager is unable to set the stopSessionRequested flag:
« The session is doing a reclaimAll.

= The session is nameless.

e STN_GEM_LOSTOT_TIMEOUT =-1.

If the Stone cannot stop the session, it revokes the Gem’s access to the old commit
record, which can then be removed. At the same time, the Stone immediately
retracts the session's commit record and poisons its cache slot (the session will get
a fatal error if it references the shared cache).

Logging out a non-responsive Gem

When a session is first processed for logout, the logout can only be immediately
completed if the Stone received a disconnect on the Gem’s OOB socket. (For
remote Gems, the Gem’s page server process must also have terminated.) If these
conditions are met, the logout is processed as normal. If not, then the Gem’s
commit record view is dereferenced and the session is placed on a logout wait
gueue. The Stone checks sessions in the wait queue every two seconds. A 60-
second timer for the process is also started.

When the Stone checks the sessions in the wait queue and the 60-second timer has
not yet expired, Stone will complete the logout of the session under the following
conditions.

« For local Gems, the Stone has received a disconnect on the Gem’s OOB socket,
or the gem process ID no longer exists.

< For remote Gems, the page server process for the remote Gem on the Stone’s
machine is no longer present, and one of the following is true:

e The Gem’s remote cache has shut down, or
= The Stone has received a disconnect on the Gem’s OOB socket.

If the logout is not completed after the 60-second timeout has expired, the Stone
begins to kill processes.

April 2008

GemStone Systems, Inc. 353

Common Performance Bottlenecks System Administration Guide for UNIX

For local Gems:

The Stone tells the Page Manager to send SIGUSRL1 (kill -USR1) and SIGTERM
(kill -TERM) to the non-responsive Gem process. All processes that receive the
signal should immediately exit cleanly. The kill signal is only sent once. The
SIGUSR1 signal is sent first to cause the Gem to print its C stack to the log file,
to help you determine why the Gem was stuck.

For remote Gems:

The Page Manager sends these signals to the Gem’s local page server process
(if it still exists), and the Stone waits 15 seconds before checking the session
again.

If the Gem’s page server does not exist, and the Gem is not protected against
termination (as discussed below), the Page Manager tells the page server on
the remote host to kill the Gem process.

If the Gem is protected against termination, the Stone merely periodically
checks (via the Page Manager and remote cache page server) to see if it
received the OOB socket disconnect or if the remote Gem process no longer
exists.

Terminating a hung Gem
If a Gem is hung, it cannot respond to either the SigAbort or SigLostOTRoot.

To clean up the Gem, the last fallback is the STN_GEM_TIMEOUT configuration
parameter (by default, set to 0, disabling the timeout). This is the number of
minutes after which lack of Gem interaction causes the Stone to forcibly log out the
errant Gem.

A related configuration parameter, GEM_RPCGCI_TIMEOUT, lets you control the
number of minutes after which lack of communication between a remote Gem and
your application causes the Gem to terminate.

If all else fails, you can send a SIGTERM (kill -TERM) signal to the non-responsive
session, so that it detaches from the shared cache safely and then terminates.

NOTE
Do not use SIGKILL (kill -9) to kill GemStone processes. Attempting to
do so can result in repository crashes due to stuck spin locks.

For detailed information about all these configuration parameters, see
Appendix A.

354

GemStone Systems, Inc. April 2008

Tuning Performance Common Performance Bottlenecks

Protecting individual Gem sessions against termination

There are circumstances in which you might want to protect a long-running Gem
session against forcible termination. You can prevent Stone from killing Gem
processes (but not page server processes) on a per-session basis. To do so, execute
the following method at login time:

System >> disableTerminationSignals

This method prevents Stone from sending SIGTERM (kill -TERM) to the
designated session. You might use this method to preserve background Gems that
should continue running, so that you can issue kill non-responsive user sessions as
needed.

The main recommended usage of this method is with a linked Smalltalk image or
a Topaz login that also has RPC sessions. If the linked session were to become non-
responsive and the Stone killed it (via SIGTERM or kill -TERM), that action would
also (without the benefit of this method) kill the RPC sessions, thus terminating the
entire application. With this method, the RPC sessions are protected against such
termination.

Because this method grants Gems immunity against Kill signals, unkillable
“zombie” gems could accumulate on the system. Such Gems do not cause a
commit record backlog, because their view is retracted during the first phase of the
logout (see “Logging out a non-responsive Gem” on page 353). However, their
allocated OOPs and pages are not freed until the Stone determines it is safe to
recycle these resources or the system shuts down.

Commit record backlog: side effects

The Stone is the process responsible for removing commit records from the shared
page cache. While it is doing so, it is not processing commits from Gems trying to
commit, thereby causing the commit queue to grow and commit performance to
deteriorate for all Gems.

When a commit record causes a large backlog, other problems ensue:

= Shadow pages—pages holding the old, unmodified state of modified
objects—cannot be listed as needing reclaiming.

= Voting cannot complete, thus impeding garbage collection; all logged-in Gems
must be committing or aborting for memory to be reclaimed. (For details of
garbage collection, see Chapter 10, “Managing Growth.”)

= Even though pages can be reclaimed, the old pages cannot be disposed of
while commit records still in the queue might refer to shadow objects on those

pages.

April 2008

GemStone Systems, Inc. 355

Common Performance Bottlenecks System Administration Guide for UNIX

< As the commit record backlog grows, so does the amount of work necessary
for the session with the oldest commit record to compute the read/write set
union to determine commit conflicts.

< Finally, if commit records fill the shared page cache, they are written to disk,
making the repository larger. Temporary objects may also be written to disk,
from where it is much more difficult to reclaim the pages they occupy and the
object identifiers they use.

Evaluation

If CommitRecordCount is greater than twice STN_MAX_SESSIONS, or if the
commit record count is continually growing, application performance is probably
impacted by page swapping. Even if CommitRecordCount is lower than this
maximum, swapping could still be a problem, especially if FreeFrameCount is also
low.

To find the session or sessions connected to the oldest commit record, evaluate:
System sessionsReferencingOldestCr

TotalCommits indicates the transaction load and how fast the commit record
backlog can grow.

CommitQueueSize indicates that the Stone is busy, most likely serving the
commit requests of other Gems. A large commit queue size means that the cost of
doing commits—of reading the read/write set union for all logged-in Gems in
order to determine commit conflicts—is also growing.

Additional helpful statistics:

« SigAbortsSent reports the number of times the Stone has signaled a given
Gem to abort, although the session may be in a sleep or 1/0 wait state and not
yet aware of having received the signal.

« SigAbortsReceived reports the number of times the Stone has signaled a
given Gem to abort, that it has received and recognized.

= LostOtsSent is the number of Lost OT Root signals the Stone has sent to a
given Gem, although the session may be in a sleep or 1/0 wait state and not
yet aware of having received the signal.

= LostOtsReceived is the number of Lost OT Root signals received and
recognized by a given Gem.

e CommitCount and AbortCount are the number of times a Gem has
committed or aborted a transaction, respectively.

356

GemStone Systems, Inc. April 2008

Tuning Performance Common Performance Bottlenecks

Solutions

« TransactionLevel allows you to determine the transaction status of a Gem:

1 = in a transaction
0 = not in a transaction
-1 = in transactionless mode

NOTE
If statmonitor samples are too infrequent, you may miss transitions
between levels.

If appropriate, configure your system with a short value for
STN_GEM_LOSTOT_TIMEOUT, so that unresponsive Gems can be terminated
quickly. For a discussion of the trade-offs involved, see
“STN_GEM_LOSTOT_TIMEOUT” on page A-411.

Alternatively, if appropriate, stop the session(s) connected to the oldest commit
record by evaluating:

System stopSession: aSessionld

You can also lower the value of STN_SIGNAL_ABORT_CR_BACKLOG so that the
Stone does not permit the commit record backlog to grow as large.

Another option, recommended for production systems, is to set the configuration
parameter STN_GEM_TIMEOUT to automatically log off unresponsive sessions.

NOTE
A Gem running a long query will not time out and be logged off if it is
getting pages and object 1Ds from the Stone. Requesting locks will also
count as activity and will not invoke the timeout.

Make sure Gems ordinarily work in manual transaction mode and keep
transactions short. You can also redesign your application so that sleeping Gems
do so in transactionless mode.

When a Gem is sleeping, it will not respond to signals. Therefore, it’s a good idea
to program your sleep method in a loop, so that the Gem sleeps for half the
amount of time specified in STN_GEM_TIMEOUT, then awakens briefly before
returning to sleep. The interpreter activity will detect a signal, if any has been sent.

Finally, for a temporary work-around, you can increase the value of
STN_MAX_SESSIONS, thus allowing the system to better tolerate the problem while
you work on a real solution.

April 2008

GemStone Systems, Inc. 357

Common Performance Bottlenecks System Administration Guide for UNIX

Swamped Page Server

Statistic Default Filter Process Explanation

AioDirtyCount per second page server See page 238.
AioCkptCount per second page server See page 238.
LocalDirtyPageCount per second shared page See page 249.

cache monitor

Background

The asynchronous 1/0 page server (also called the AlO page server and hereafter
called simply page server) is the process responsible for writing dirty pages—pages
with modified objects—from the shared page cache to the repository extents. The
Stone starts one or more page servers as part of its own startup (the number
depends on the value of the STN_NUM_LOCAL_AIO_SERVERS configuration
parameter). Thereafter, the page server scans the shared page cache for dirty pages
and writes them to disk asynchronously, freeing the Gem from having to perform
this 1/0-intensive task.

At a checkpoint, the page server writes all the dirty pages from the shared page
cache to the repository. In full logging mode, checkpoints occur as specified by the
Stone’s configuration parameter STN_CHECKPOINT_INTERVAL. In partial logging
mode, a checkpoint can occur more often, if the size of a transaction exceeds the
value set by the configuration parameter STN_TRAN_LOG_LIMIT.

Checkpoints are most often triggered by a Gem committing a transaction; they also
occur at the start of a new transaction log or repository backup. Checkpoints may
take seconds or minutes, but a checkpoint in progress does not block the system:
transactions can commit as usual. In addition to all dirty pages being written to the
extents, checkpoint records are written to each extent and to the transaction log.

If the page server cannot write dirty pages to disk fast enough to keep up with the
Gems committing transactions, many other system processes will be delayed for
lack of free frames in the shared page cache. Also, the page server will have more
work to perform at each checkpoint, which can slow other processes such as page
reclamation.

Evaluation

The statistics in this template help you determine if the page server can keep up
with the demands created by Gems committing transactions. Compare
AioDirtyCount to AioCkptCount: if a great many more pages are written at

358

GemStone Systems, Inc. April 2008

Tuning Performance Common Performance Bottlenecks

checkpoints (AioCkptCount) than otherwise (AioDirtyCount), the page server is
probably falling behind and having to catch up at each checkpoint.

If both numbers are high, the page server could be operating at maximum.

If LocalDirtyPageCount is high and drops only slowly, if at all, the page server is
probably not operating at peak efficiency.

Page reclamation worsens the problem: a slow page server means too few free
frames in the shared page cache for the GcGem to use for copying live objects.
Thus, it will spend more time scanning the cache and possibly swapping to disk.

Additional helpful statistics:

« GlobalDirtyPageCount (shared page cache monitor only) reports the number
of dirty pages in the shared page cache that are dirty but not yet eligible for
writing to disk because they’re not yet committed. if this value is very large,
then very large transactions may be filling the cache. If the Stone is also using
this shared page cache, another possibility is that the Stone’s private page
cache is too small.

= CheckpointCount (Stone only) reports the number of checkpoints since the
Stone was started. If partial logging is in effect, a rapidly increasing
CheckpointCount indicates that STN_TRAN_LOG_LIMIT may be set too small.

Solutions

If the page server cannot keep up with demand, the obvious remedy is to increase
the number of page servers; however, whether you realize any benefits depends
on other characteristics of your system. Parallelization is of no use without parallel
resources; multiple page servers boost performance only for systems with:

= over four extents (one page server can ordinarily handle up to four extents),
< multiple CPUs (to allow parallel execution), and

= extents on separate spindles or the equivalent (to allow concurrent writes to
disk).

In any case, over four page servers are unlikely to provide additional benefit,
unless your repository is particularly large.

Other options exist for increasing system throughput:

< Ensure that the extents, the system swap file, and the transaction logs are all
on separate disk spindles.

= Consider using raw partitions if you are not already doing so.

April 2008

GemStone Systems, Inc. 359

Common Performance Bottlenecks System Administration Guide for UNIX

Experiment with non-RAID devices, if appropriate, to see if they improve
performance.

If you have spare CPU cycles, increase the 1/0 rate of the page server.

Consider redesigning your application to make more efficient use of I/0
operations. For example, traversing sequentially through an
OrderedCollection or Array can cause an application to perform a large
number of 1/0 operations if the referenced objects are not already in the
shared page cache.

If GlobalDirtyPageCount is high, redesign your application to use smaller
transactions, if possible.

If the shared page cache in question is used by the Stone and
GlobalDirtyPageCount is high, it may help to increase the size of the Stone’s
private page cache.

If partial logging is in effect and CheckpointCount is rapidly increasing, it may
help to increase the value of the Stone’s STN_TRAN_LOG_LIMIT configuration
parameter.

Inefficient Epoch Sweep

Statistic Default Filter Process Explanation

EpochGcCount per second Stone See page 243.

PossibleDeadSize Stone See page 258.

ProgressCount GcGem See page 259.
Background

Garbage collection is the reclamation of pages on disk and object identifiers. The first
phase of garbage collection, called mark/sweep, identifies objects that might be
dead.

Epoch garbage collection identifies the possibly dead objects from a finite set of recent
transactions, called the epoch, instead of the entire repository. It checks all objects
created from the start time to the end time of the epoch, looking for objects that
have been dereferenced. Epoch garbage collection is efficient because, for many
applications, the vast majority of objects are short-lived, created to service
temporary application needs and not intended to persist in the database. This is

360

GemStone Systems, Inc. April 2008

Tuning Performance Common Performance Bottlenecks

especially true of applications in which numerous small transactions mostly
update a few previously committed objects.

NOTE
For a more complete description of garbage collection, see Chapter 10,
especially the section entitled “Epoch Garbage Collection” on page 312.

Epoch garbage collection supplements markForCol lection; it does not replace
it. It does not find:

= objects created before the beginning of the epoch that have been dereferenced
during the epoch, nor

= objects created during the epoch and not dereferenced until after the epoch has
ended.

Mark/sweep actually encompasses two operations on the set of all objects created
during the epoch:

1. The mark phase identifies all live objects—objects that can be reached through
references starting with the AllUsers root object.

2. The sweep phase identifies possibly dead objects—all objects created in the epoch
that were not identified as live objects in the first sweep, minus any unused
object identifiers.

The reason these objects are considered “possibly” instead of “definitely” dead is
that mark/sweep can take a significant period of time, during which a Gem may
somehow commit one of the objects previously identified as possibly dead. These
operations use considerable CPU cycles and disk 1/0: to identify live objects, all
pages containing objects created during the epoch are copied from disk into the
shared page cache, if they are not already there. And the object table must be swept
for unused object identifiers, so a great many object table pages are read into the
GcGem'’s private page cache. Either or both of these operations can cause
swapping, and hence be time-consuming.

Epoch garbage collection is one of several responsibilities of the GcGem. While it
is running, the GcGem is not available to perform its other functions.

You can disable epoch garbage collection or change how often it runs. Assuming
it’s enabled, these GcGem configuration parameters control the length of an epoch:

e epochGcTimeLimit
The maximum frequency of epoch garbage collection—by default, 15 minutes.

April 2008

GemStone Systems, Inc. 361

Common Performance Bottlenecks System Administration Guide for UNIX

e epochGcTransLimit
The number of transactions required to trigger epoch garbage collection—by
default, 5000.

e epochGceByteLimit
The number of bytes of new or modified committed objects required to trigger
epoch garbage collection—by default, 5 million.

« deferEpochReclaimThreshold
The number of pages needing to be reclaimed (another responsibility of the
GcGem’s) that will cause the GecGem to defer epoch garbage collection in favor
of reclaiming pages—by default, 1000.

Epoch garbage collection occurs when:

(pages that need reclaiming < deferEpochReclaimThreshold) AND
(the time since last epoch > epochGcTimeLimit) AND

((transactions since last epoch > epochGcTransLimit) OR
(bytes committed since last epoch > epochGcByteLimit))

Evaluation

EpochGcCount per second should reveal that the GcGem is performing epoch
garbage collection regularly, not deferring it because of a backlog of pages needing
to be reclaimed.

PossibleDeadSize should also show a fairly regular graph. It should reveal that
each epoch garbage collection is finding enough possibly dead objects to make it
worth doing.

ProgressCount should show a fairly regular graph as well. During epoch garbage
collection, ProgressCount increases as GcGem marks and sweeps the objects

created during the epoch. First, it shows the number of objects marked. It then goes
to zero, then up again as it shows the number of objects identified as possibly dead.

If too many objects must be swept, performance may slow because a large number
of pages may have to be read into the shared page cache.

Additional helpful statistics:

< PagesNeedReclaimSize reports the approximate number of pages that need
to be reclaimed. This statistic is updated only every 15 seconds, and includes
only pages on the Stone’s list. It is always an overestimate, and larger values
are less accurate than smaller values.

e GcDeferEpochThreshold is the value of the GeGem’s configuration
parameter deferEpochReclaimThreshold.

362

GemStone Systems, Inc. April 2008

Tuning Performance Common Performance Bottlenecks

Solutions

Problems caused by epoch garbage collection are typically either:
= the epoch is the wrong length (too frequent or too infrequent), or
= the application is creating too many short-lived objects.

You can tune the GecGem parameters to change the epoch length. The default
period of 15 minutes tends to work better for applications that commit one or more
transactions per second. To be helpful, epochs should last longer than the average
lifetime of short-lived objects; for details, see “Epoch Garbage Collection” on
page 312. In general, the longer the epoch, the greater the need for additional
storage during the epoch. Also, bursts of garbage collection activity will be less
frequent but longer. However, you’ll be able to run markForCollection less
frequently.

If statistics reveal that few objects are garbage-collected, consider disabling epoch
garbage collection or running it less frequently, when relatively few users are on
the system.

Another approach is to monitor system usage and adjust epoch garbage collection
to match—for example, by running it on shift boundaries, if users work in shifts.

Instructions for changing epoch length and other GcGem parameters while the
system is running are provided in “Epoch Garbage Collection” on page 312. You
can also change these parameters in a configuration file specific to the GecGem, so
that the changes remain in effect if the system is stopped and restarted.
Instructions for doing so are provided in “The GcGem” on page 392.

If PossibleDeadSize and slow performance indicate too many short-lived objects
are being read during the sweep, you can:

= enlarge the shared page cache to handle the extra pages,
= shorten the epoch length, or
= redesign your application to create less garbage.

If application developers haven’t explicitly addressed the issue of garbage
creation, it’s not unusual for to discover that the application puts unnecessary
demands on the garbage collection.

To see what kinds of objects are created when executing a GemStone method, use
ProfMonitor with object tracing turned on.

April 2008

GemStone Systems, Inc. 363

Common Performance Bottlenecks System Administration Guide for UNIX

Overloaded GcGem

Statistic Default Filter Process Explanation

PagesNeedReclaimSize Stone See page 257.

EpochGcCount per second Stone See page 243.

CommitCount per second GeGem See page 242.
Background

In addition to epoch garbage collection, the GcGem has several responsibilities:
= It finalizes voting among the Gems during repository-wide garbage collection.

= It reads the list of possible dead objects looking for special cases: indexed
collections and compiled methods, both of which require extra processing.

= It reclaims pages with shadow objects and dead objects.

These tasks all must contend for the GcGem; see the previous discussion starting
on page 360 for details, and Chapter 10 for an in-depth discussion. However, of
them all, page reclamation takes longest—that’s why GemStone 6.3 provides
GcGems specialized for page reclaim (page 330.)

When a page is reclaimed, all the still-living objects on that page are copied to a
new page, topped off with other live objects from other pages until nothing is left
but shadow objects, dead objects, or free space. This is an expensive operation,
particularly in terms of disk 1/0: for example, the GcGem typically copies most of
the object table into its private page cache, so that it can reclaim object identifiers.
During page reclaim, the GecGem performs a great many pages reads from the
repository.

The GcGem places the new pages in its private page cache and therefore needs a
high number of cache frames. The GcGem moves new pages into the shared page
cache when it completes a batch and commits the transaction.

Evaluation

PagesNeedReclaimSize reports the approximate number of pages that need to be
reclaimed. This statistic is updated only every 15 seconds, and includes only pages
on the Stone’s list.

EpochGcCount per second should reveal that the GecGem is performing epoch
garbage collection regularly, not deferring it because of a backlog of pages needing
to be reclaimed.

364

GemStone Systems, Inc. April 2008

Tuning Performance Common Performance Bottlenecks

The GecGem’s CommitCount per second should reveal that it is able to process
batches of pages and commit the new pages, thus permitting the Stone to dispose
of old commit records and return pages and object identifiers to their respective
free pools.

Additional helpful statistics:

< ReclaimCount reports the number of times the GcGem has reclaimed pages
since the Stone was started.

< ReclaimedPagesCount reports the number of pages the GcGem has reclaimed
since the Stone was started.

< GcReclaimMaxPages reports the current value of the GeGem’s
reclaimMaxPages parameter—by default, 200. This means that the GcGem
will reclaim 200 empty, shadow, or dead pages in a batch before making itself
available for other work, if any.

< Asin the discussion of “Shared Page Cache Too Small” on page 348, the ratio
of FramesFromFindFree to FramesFromFreeList can tell you if the GcGem has
to spend too much time scanning the shared page cache for free frames.

Solutions

If you find that the GcGem is not keeping up with page reclamation, consider
using one of the GcGems specialized for reclaiming pages; descriptions and
instructions are available in “GcGems Specialized to Reclaim Pages” on page 330.
To run one or more of these GcGems, you will have to temporarily halt the generic
GcGem, which you can then restart after the page-reclaim backlog has been
resolved. If this is an ongoing problem, you may wish to regularly schedule one or
more page-reclaim GcGems.

If these specialized GcGems are impractical for you, consider increasing the
GcGem'’s private page cache from its default size—a larger private page cache can
hold more object table pages without disk swapping. Consider increasing the
GcGem'’s private page cache to at least 20 MB. Use the procedure described
starting on page 363 to increase this value in a customized configuration file.

(You may also wish to change the GcGem’s GEM_FREE_FRAME_LIMIT parameter
as well. For details, see the discussion beginning on page 348.)

You may also wish to tune the reclaim parameters—for example, the maximum

and minimum batch sizes, to make batches either smaller (so that the GcGem isn’t
busy as long) or larger (so that the GcGem can get more pages reclaimed at once),
depending on whether the statistics reveal a backlog of pages that need reclaiming.

April 2008

GemStone Systems, Inc. 365

Common Performance Bottlenecks System Administration Guide for UNIX

Finally, if the ratio of FramesFromFindFree to FramesFromFreeList indicates that
the GecGem has to spend too much time scanning the shared page cache for free
frames, consider reducing the GecGem’s FreeFrameLimit (for more details, see
“Shared Page Cache Too Small” on page 348), or starting additional free list page
servers (for instructions, see “To Add Free List Page Servers” on page 47).

Excessive In-Gem Garbage Collection

Statistic Default Filter Process Explanation

ScavengeCount per second Gem See page 261.

TimelnScavenges per second Gem See page 265.

MakeRoomInOldSpaceCount per second Gem See page 251.

NotConnectedObjsSetSize per second Gem See page 253.
Background

In addition to access to the shared page cache, each Gem has private memory.
Much of this memory—the local object memory—is intended to serve as the Gem'’s
private scratch space and is therefore organized by objects. However, some of
it—the Gem’s private page cache—is organized in 8 KB pages like the shared page
cache.

To aid memory reclamation, local object memory is divided into generation
spaces. For the most part, generation spaces are inaccessible to application
developers and cannot be configured; however, the longest-lived generation space
is a special case. Known as temporary object space or simply old space, the size of this
portion of local object memory is configurable. For an object, old space is the last
stop before being placed on a page.

NOTE
For additional background and basic guidelines, as well as specific
tuning instructions, see “How to Tune Session Performance” on
page 62.

Figure 11.1 shows the structure of a Gem’s private memory:

366

GemStone Systems, Inc. April 2008

Tuning Performance Common Performance Bottlenecks

Figure 11.1 In-Gem Memory

local object memory (LOM)
(not configurable)

temporary object space = “old space”
GEM_TEMPOBJ_CACHE_SIZE

private page cache
GEM_PRIVATE_PAGE_CACHE_KB

The Gem creates new objects smaller than 8 KB in local object memory, assigning
each an object identifier. If the object is destined for persistence, it moves through
local object memory generation by generation, at last ending in old space. Upon
commit, the object is assigned a page in the private page cache and, from there,
moves into the shared page cache.

New objects 8 KB or larger are created in the private page cache to start with.

When the Gem searches for already extant persistent objects, it searches first in its
private page cache, then the shared page cache, and last in the extents. The Gem
uses its private page cache to modify existing persistent objects; if the object is not
already there, the Gem copies it to its private page cache and then modifies it.

The Gem performs three kinds of garbage-collection, corresponding to its three
kinds of memory:

< Each generation space in local object memory is automatically garbage-
collected by a process called generation-scavenging. A new object survives
progressive generation-scavenges if it continues to be referenced.

< When old space is full, it’s garbage-collected by a special generation-scavenge
called makeRoomInOldSpace.

< |fold space is still full, temporary objects overflow into the private page cache,
where they become known as not-connected objects, and form part of the
notConnectedSet. Here they are eligible for not-connected garbage collection,

Tuning the notConnectedSet

When an application executes, it inevitably makes temporary objects. It is best if
these objects are garbage-collected while still in local object memory;

April 2008 GemStone Systems, Inc. 367

Common Performance Bottlenecks System Administration Guide for UNIX

complications ensue when temporaries overflow into the private page cache and
become part of the notConnectedSet.

Objects become part of the notConnectedSet in one of four ways:

< Old space filled and the temporary object overflowed into the private page
cache.

< The temporary object was 8 KB or larger when created and therefore began in
the private page cache.

< The object was smaller than 8 KB but was referenced by a temporary larger
than 8 KB. All such objects are moved into the private page cache upon a
commit, where they join the large temporary in the notConnectedSet.

< A commit failed. When a Gem starts a commit operation, it moves the objects
intended to become persistent into the private page cache. If the commit fails,
these objects join the notConnectedSet.

The notConnectedSet is garbage-collected automatically after a generation-
scavenge if the following two parameters are exceeded:

= notConnectedThreshold
The minimum number of objects in the notConnectedSet required to trigger
notConnectedSet garbage collection—by default, 2000.

= notConnectedDelta
The minimum number of objects by which the notConnectedSet is required to
grow since the last notConnectedSet garbage collection, in order to trigger the
next notConnectedSet garbage collection—by default, 300.

Garbage collection of the notConnectedSet is the most expensive form of in-Gem
garbage collection. The Gem has to sweep the contents of the notConnectedSet
from a known root, searching for permanent references, a CPU-intensive
operation. If the private page cache pages have been swapped to disk, the
operation becomes I/0-intensive as well.

Objects in the notConnectedSet are uncommitted until a successful commit. Upon
commit, some objects in the notConnectedSet become committed objects, eligible
to be written to the extents by the page server.

If an object in the notConnectedSet is unreferenced when not-connected garbage
collection runs, the Gem can remove the object from the notConnectedSet and
delete it. After an object has been committed, however, the Gem cannot safely
delete it. Instead, the object must be removed by one of the two forms of
repository-wide garbage collection: epoch garbage collection, or
markForCollection.

368

GemStone Systems, Inc. April 2008

Tuning Performance Common Performance Bottlenecks

Evaluation

ScavengeCount reports the number of times generation-scavenging has run since
the Gem was started. TimelnScavenges reports the cumulative CPU time, in
milliseconds, spent in generation-scavenging. Objects collected during generation-
scavenging are objects that don’t enter the notConnectedSet, never become
committed and written to disk, Together, these two statistics can be an indication
of how efficiently your application is coping with temporaries.

If MakeRoomInOldSpaceCount increments frequently, local object memory may
be overflowing and adding to the notConnectedSet.

NotConnectedObjsSetSize reports the size of the notConnectedSet. If its value
grows consistently, temporary object space may be too small, or your application
may be creating too many large temporaries. Compare the
NotConnectedObjsSetSize with MakeRoomInOldSpaceCount to determine if
frequent overflows from temporary object space are causing the notConnectedSet
to grow.

If the NotConnectedObjsSetSize grows after each commit, one or more large
temporaries is probably referring to other, smaller temporaries which are being
pulled into the notConnectedSet upon commit. Further diagnostic tools:

= To determine if an object is committed, send it the message isCommitted.
= To determine if an object is connected, send it the message isConnected.

= To determine the size of an object in bytes, send it the message
physicalSize.

Additional helpful statistics:
= DeadObjCount reports the number of dead objects collected in the Gem.

« FailedCommitCount is useful for determining if the Gem has suffered a great
many failed attempts to commit. Such attempts could grow the
notConnectedSet significantly. Compare this statistic with CommitCount to
see the ratio of successful to failed commits.

= GcNotConnectedCount measures how many times the Gem has garbage-
collected the notConnectedSet since the Gem was started. Compare this with
NotConnectedObjsSetSize to determine if garbage collection is decreasing the
notConnectedSet.

= GcNotConnectedDeadCount measures the total number of dead objects that
the Gem found during all garbage-collections of the notConnectedSet since the
Gem started. Apply a per-second filter to view how many dead objects the
Gem found during the last garbage-collection cycle of the notConnectedSet.

April 2008

GemStone Systems, Inc. 369

Garbage Collection for Tuners System Administration Guide for UNIX

Solutions

If MakeRoomInOIldSpaceCount increments frequently, increasing the size of old
space may improve performance.

If your application makes many new persistent objects, you may instead wish to
commit more frequently. This will cause new persistent objects to move out of old
space and into the shared page cache more often, thus making more room in old
space.

Finally, redesign your application to make more efficient use of temporaries. For
example, reuse large temporary objects such as collections. Collections are
dynamically resizable in GemStone Smalltalk; instead of making a new one, resize
and old one to 0 and reuse it.

If the NotConnectedObjsSetSize keeps growing, collect notConnectedSet garbage
before committing. To do so, evaluate:

System markNotConnectedForCollection
This operation is also useful after a failed commit.

Or, if statistics indicate that notConnectedSet garbage-collection should happen
more often on a regular basis, lower the values of the parameters
notConnectedThreshold and notConnectedDelta.

11.2 Garbage Collection for Tuners

This section is for those who have identified garbage collection as a serious
performance bottleneck. Below is a capsule summary of a long and complex
process: for complete details, see Chapter 10, “Managing Growth.”

Following this is a discussion of problems you might encounter during these
various steps, their symptoms, and potential remedies. Following that discussion
are three examples on an actual database with default and new values for modified
parameters.

You’ll get more out of this section if you take the time now to consider these
guestions:

= What problems are you experiencing? Host problems such as CPU
availability, 1/0 bandwidth, disk swapping, network bandwidth are best
diagnosed with host operating system tools. When you have characterized the
problem to this level, it can be helpful to look further.

370

GemStone Systems, Inc. April 2008

Tuning Performance Garbage Collection for Tuners

What system behavior is causing the problem? Slow commits? Repository
growth? System login delays?

In tuning garbage collection, what is your goal? Do you wish it to run as fast
as possible, or to disturb other users as little as possible? Or perhaps you’d like
a balance between these two goals?

Example Garbage Collection Cycle

GemStone/S has several kinds of garbage collection: the automatically run epoch
garbage collection and in-Gem garbage collection of several kinds, as well as the
explicitly run markForCol lection, markGcCandidates, and various kinds of
startGC:. This particular example starts with a run of markForCol lection:

1.

The Gem running markForCol lection finds all the live objects by
traversing references, starting at the system root AllUsers.

It computes the set of possible dead objects as follows:

— Subtract the live objects from the universe of possible objects: objects whose
IDs range from zero to the highest object ID in the system.

— Also, subtract all the unassigned object IDs in that range.

The object table is a key data structure for this step.

The Gem running markForCol lection sends the Stone the list of possibly
dead and returns.

The Stone now holds the possible dead set in RAM until the next checkpoint.
If the system should fail at this point, you’ll have to run
markForCol lection again.

NOTE
Discussion of the rest of these steps applies also to epoch and special-
candidate garbage collection.

Now every Gem currently logged in the system must search the possible dead
set for any objects to which it holds references. Then it must commit or abort,
at which time it votes to either keep an object in the set, or remove it (if it holds
a reference).

Here’s where Gems that sleep in transactions cause trouble. Without
committing or aborting, they do not vote. The vote cannot be finalized,
garbage collection halts at this point, and commit records accumulate.

But what about Gems that aren’t on the system now, but were when garbage
collection started? Their modified objects are in the commit record backlog, in

April 2008

GemStone Systems, Inc. 371

Garbage Collection for Tuners

System Administration Guide for UNIX

the write sets of each commit record, which the GecGem reads in order to vote

on their behalf.

While doing so, the GcGem is unavailable for its other functions.

6. The resulting set now holds nothing but unreferenced objects. If some of those
objects are compiled methods or indexed collections, however, additional
work must be done. The GcGem now hunts through the set of possible dead

looking for those special cases.

7. The resulting objects are now deemed dead.

8. Pages are reclaimed. Repository shrinkage is now visible.

9. Page identifiers and object identifiers are returned to the free pools.

Step-by-Step Tuning

Each step in garbage collection presents a different opportunity for optimization.

Step 1. Identify live objects.

Step 1, identifying all the live objects—the mark phase—is where

markForCol lection takes most of its time.

Factors affecting duration
size of markForCollection Gem’s
mark/sweep buffer
number of objects in repository
maximum disk 1/0 speed
shared page cache size
ratio of object table size to shared page cache
size
number of other Gems sharing the shared
page cache

markForCollection Gem’s private page
cache size

markForCollection Gem’s GEM_IO_LIMIT

larger is faster

fewer is faster

faster is faster (surprise!)
larger is faster

faster if entire object table fits

in shared page cache
fewer is faster

larger is faster

larger is faster

372

GemStone Systems, Inc.

April 2008

Tuning Performance

Garbage Collection for Tuners

Statistics

ProgressCount

During this step, progress count displays the number of objects marked as live.
The final value, at this step, is the total number of live objects.

Tunable parameters
size of markForCollection Gem’s
mark/sweep buffer
shared page cache size
ratio of object table size to shared page cache
size

markForCol lection Gem’s private page
cache size

markForCollection Gem’s GEM_IO_LIMIT
System’s STN_GEM_ABORT_TIMEOUT

System’s DBF_ALLOCATION_MODE

Step 2. Compute possible dead set.

Factors affecting duration

number of possible dead objects in repository

the largest object identifier, known as the
OOP high water mark

ratio of object table size to shared page cache

size

markForCollection Gem’s GEM_IO_LIMIT
Statistics

ProgressCount

increase this
larger is faster

faster if entire object table fits
in shared page cache

increase this

depends on system goals

increase this if you increase
GEM_IO_LIMIT

equally weighted for multiple
extents

fewer is faster

lower is faster

faster if entire object table fits
in shared page cache

larger is faster

During this step, progress count displays the number of objects identified as
possibly dead. The final value, at this step, is the total number of possibly dead

objects.

April 2008 GemStone Systems, Inc.

373

Garbage Collection for Tuners System Administration Guide for UNIX

Tunable parameters

shared page cache size
This step goes faster if the entire object table fits into the shared page cache. To
compute the approximate size of the object table, evaluate:

(System _oopHighWaterMark // 4) * 6

Step 3. Return possible dead set to Stone.
This step happens quickly and needs no tuning.

Statistics

PossibleDeadSize
The Stone’s set of possible dead objects. This value is only approximate.

Step 4. Logged-in Gems vote.

Factors affecting duration

average transaction length shorter is faster
the size of the possible dead set smaller is faster
number of Gems logged in during vote fewer is faster
network bandwidth between Stone’s host more is faster

and remote Gems’ host

number of objects in notConnectedSet fewer is faster
written to disk

Statistics

VoteNotDead
The number of objects in the possible dead set for which a given Gem holds a
reference.

374 GemStone Systems, Inc. April 2008

Tuning Performance Garbage Collection for Tuners

Tunable parameters

Transaction length—voting completes faster if Gems run short transactions, as
they vote upon commit or abort.

Step 5. GecGem votes for logged-out Gems.

Factors affecting duration

number of objects in the commit record

backlog fewer is faster
the size of the possible dead set smaller is faster
maximum disk 1/0 rate faster is faster
size of the shared page cache larger is faster
the GecGem’s GEM_IO_LIMIT faster is faster
Statistics
ProgressCount

In this step, how far through the write-set union the GcGem has swept.
This value peaks at GcPossibleDeadWsUnionSize and falls back to 0.

GcPossibleDeadWsUnionSize
The size of the write-set union the Stone holds, which the GcGem must search on
behalf of Gems no longer logged in.

GcPossibleDeadSize
The exact number of possible dead objects after voting.

GcSweepCount
The number of times this GcGem has performed this step since it was started.

Tunable parameters

None.
Step 6. GcGem hunts for special cases.

Factors affecting duration

number of dead UnorderedCollections
(nonsequenceable collections) with indexes fewer is faster

the size of the possible dead set smaller is faster

April 2008 GemStone Systems, Inc. 375

Garbage Collection for Tuners System Administration Guide for UNIX

maximum disk 170 rate faster is faster
size of the shared page cache larger is faster
GcGem’s GEM_IO_LIMIT faster is faster
Statistics
ProgressCount

In this step, how far through the possible dead set the GcGem has swept.
This value peaks at GcPossibleDeadSize.

Tunable parameters

= Shared page cache size
This step goes faster if the entire object table fits into the shared page cache. To
compute the approximate size of the object table, evaluate:

(System _oopHighWaterMark // 4) * 6

e The GecGem’s GEM_IO_LIMIT
Reduce this only if evaluation reveals that the GcGem is degrading system-
wide performance due to disk 1/0. Other functions of the GcGem will also be
affected.

Step 7. The possibly dead are now dead.

This step happens quickly and needs no tuning.

Statistics

PossibleDeadSize and GcPossibleDeadSize
These values fall to zero during this step.

DeadNotReclaimedSize
The number of objects finally in the possible dead set.

Step 8. Pages and object IDs are reclaimed.

This can be the most time-consuming step. Furthermore, the GcGem performs this
while in a transaction, because reclaimed pages and object identifiers must be
committed.

Factors affecting duration

376

GemStone Systems, Inc. April 2008

Tuning Performance

Garbage Collection for Tuners

presence and number of
dedicated page-reclaim GecGems

GcGem'’s reclaimMaxPages and
reclaimMinPages settings

GcGem’s epochGceEnabled setting
GcGem'’s epochTimeLimit setting

GcGem’s FREE_FRAME_LIMIT
GcGem’s GEM_IO_LIMIT
GcGem'’s private page cache size
size of the shared page cache

ratio of object table size to shared
page cache size

number of shadow objects

number of free frames on free
frame list

size of commit record backlog

Though they cannot be run with the
generic GecGem, scheduling dedicated
page-reclaim GecGems to run
intermittently can significantly reduce the
number of pages needing to be reclaimed,

Controls number of pages reclaimed per
commit; larger batches mean longer
transactions, more pages reclaimed, less
other work done.

If the GcGem has to spend time running
epochs, it can spend less time reclaiming

pages.
lower is faster
faster is faster
larger is faster
larger is faster

faster if entire object table fits in shared
page cache

GcGem reclaims shadow pages before
reclaiming pages with dead objects.

more is faster

smaller is faster

April 2008

GemStone Systems, Inc.

377

Garbage Collection for Tuners System Administration Guide for UNIX

Statistics

DeadNotReclaimedSize
The number of objects in the Stone’s list of objects ready to be reclaimed.
This value should decrease as dead objects are reclaimed.

PagesNotReclaimedSize
The number of pages in the Stone’s list of pages ready to be reclaimed.
This value should decrease as pages with dead objects are reclaimed.

GcReclaimNewDataPagesCount
The number of pages the GcGem has reclaimed so far during this step.

FreeFrameCount
The number of free frames on the free frame list. This value should increase.

Tunable parameters

= The number of dedicated page-reclaim GcGems
Consider scheduling these regularly if page reclamation is consistently
behind. See “GcGems Specialized to Reclaim Pages” on page 330 for details.

= STN_DEAD_X_LOCKING_ENABLED
This system configuration parameter is by default set to true, meaning that all
objects identified as dead in the previous step are added to the Stone’s
exclusive lock set. This prevents any other Gem from committing a transaction
that modifies them. If the set is large—for example, tens of millions of
objects—this can degrade performance for all Gems, as they must search the
set before committing any transaction.

If you trace a performance problem to a large number of deadNotReclaimed
objects, and you are certain that your application never locates objects directly
by object identifier, then set this parameter to false and see if performance
improves.

CAUTION
With STN_DEAD_X_LOCKING_ENABLED set to false, it becomes
possible to commit a reference to a dead object, thus corrupting your
database. Modify this setting only if you are sure your application
never locates objects directly by object identifier.

= GcGem’s reclaimMaxPages setting (in GeUser’s UserGlobals)
The GcGem commits its page reclamation transaction when it has reclaimed
reclaimMaxPages, or when no more pages need reclaiming. The GcGem must
perform a lot of work before the transaction can be committed; therefore, large
values can slow the system for other Gems. However, a small value could

378

GemStone Systems, Inc. April 2008

Tuning Performance Garbage Collection for Tuners

mean that the GcGem falls behind in page reclamation and the repository
grows. Typical values for large databases are between 500 and 3000.

e GcGem’s GEM_FREE_FRAME_LIMIT (in GecGem'’s configuration file)
Gems have free frame limits to ensure that the Stone never runs out of free
frames, because if it does, performance suffers throughout the system. If
evaluation indicates that performance is slow because the GcGem has to scan
the cache for free frames, consider adjusting this value downward cautiously,
monitoring to ensure that the free frame list never falls to zero.

e GcGem’s epochGceEnabled and epochTimeLimit settings
If page reclamation is falling behind, consider temporarily disabling epoch
garbage collection, or running it less often.

e The GcGem’s GEM_IO_LIMIT
Consider loosening the limit, or giving the GcGem access to unlimited 1/0
operations, if page reclaim is falling behind. You may wish to tighten the limit
if page reclamation is slowing other Gem’s unacceptably.

= The size of the GcGem'’s private page cache
Consider enlarging it if the GcGem is spending a lot of time hunting for free
frames.

Step 9. Page IDs and object IDs are returned to free pools.

For the most part, this step happens quickly and needs no tuning; however,
difficulties can occur if a large commit record backlog builds up.

Statistics

DeadObjsCount
The number of object identifiers returned to the free pool since the Stone was
started. This value should increase.

FreePages
The number of free pages in the repository. This value increases when the page
reclaim commit record is disposed of.

ReclaimCount
The number of page reclaim transactions the GcGem has performed since it was
started.

ReclaimedPagesCount
The number of pages the GcGem has reclaimed since it was started. This value
should increase.

April 2008

GemStone Systems, Inc. 379

Garbage Collection for Tuners System Administration Guide for UNIX

Three Examples

Three examples below tune a database for:

= the fastest garbage collection,

= the least disruptive garbage collection, and

= the best compromise between these two somewhat conflicting goals.

All refer to the system described in Table 11.1:

380 GemStone Systems, Inc. April 2008

Tuning Performance

Garbage Collection for Tuners

Table 11.1 Example Database for Garbage Collection Tuning

GemStone version:
OOP high water mark:
CPUs:

RAM (physical):
repository size:

disk drives:

extents:

maximum extent:
shared page cache:

average free frames:
minimum free frames:
free frame limit (Gems)
free frame limit (GcGem)

object table:
object table / shared page cache:

6.3
300,000,000
4

2GB
9.5GB

6

6, one per dedicated disk
even extent allocation

2GB

768,000 KB
750 MB
96,000 pages

4800
3,000
default; 9600

default: 4800
new: 2160 = 120% of (average — minimum)

450 MB
1.667

NOTE

All three examples use a free frame limit for the GcGem that is lower than

the default.

LEGEND

mfcGem = the Gem running markForCollection.

April 2008

GemStone Systems, Inc. 381

Garbage Collection for Tuners System Administration Guide for UNIX

Example 1. Faster

The following example tunes the example database for the fastest possible garbage
collection cycle.

Table 11.2 Tuned for Fast Garbage Collection

Where to
Parameter change it Setting Comments
#mFcGcPageBufSize mfcGem 3000 Increase size of mark/sweep
UserGlobals buffer
GEM_PRIVATE_PAGE_CACHE_KB mfcGem 65536 maximum
config file
GEM_IO_LIMIT mfcGem 5000 limited only by host file
config file system performance

STN_GEM_ABORT_TIMEOUT system config 15 Increase to long enough to

or runtime accommodate
markForCollection.
GEM_IO_LIMIT GcUser 5000 limited only by host file
UserGlobals system performance
epochGcEnabled GcUser false Disable epochs while
UserGlobals running
markForCol lection
reclaimMaxPages GcUser 1000 Increase to reclaim more
UserGlobals pages.
GEM_PRIVATE_PAGE_CACHE_KB GcGem config 65535 Increase to make page
file reclaim go faster.
GEM_FREE_FRAME_LIMIT GcGem config 2160 Decrease to make page

file

reclaim go faster.

382

GemStone Systems, Inc.

April 2008

Tuning Performance

Garbage Collection for Tuners

Example 2. Nicer

The following example tunes the example database for the least possible
disruption to other system users.

Table 11.3 Tuned for Least Disruptive Garbage Collection

Parameter

#mFcGcPageBufSize
GEM_PRIVATE_PAGE_CACHE_KB

GEM_IO_LIMIT

STN_GEM_ABORT_TIMEOUT

GEM_IO_LIMIT

epochGcEnabled
reclaimMaxPages

GEM_PRIVATE_PAGE_CACHE_KB

GEM_FREE_FRAME_LIMIT

FREE_FRAME_LIMIT

Where to

change it
mfcGem
UserGlobals

mfcGem
config file

mfcGem
config file

system config
or runtime

GcUser
UserGlobals

GcUser
UserGlobals

GcUser
UserGlobals

GcGem config
file

System config
file

GcGem config
file

Setting
3000

65536

50

60

100

true

300

200

2160

9600

Comments

Increase size of mark/sweep
buffer

maximum

Limit the number of I/0
operations per second so
that other users can access
the file system.

Increase to compensate for
low GEM_IO_LIMIT.

Limit the number of I/0
operations per second so
that other users can access
the file system.

Default. Allow epochs to
run as usual.

Decrease due to low I/0
limit.
default

Allow other Gems to take
more free frames from free
frame list.

GcGem must scan cache for
free frames more often than
other Gems.

April 2008

GemStone Systems, Inc.

383

Garbage Collection for Tuners

System Administration Guide for UNIX

Example 3. Fast enough, nice enough

The following example is a compromise between the goals of fast garbage

collection and minimal disruption to system users.

Table 11.4 Compromise Tuning for Garbage Collection

Parameter

#mFcGcPageBufSize

GEM_PRIVATE_PAGE_CACHE_KB

GEM_IO_LIMIT

STN_GEM_ABORT_TIMEOUT

GEM_IO_LIMIT

epochGcEnabled

reclaimMaxPages

GEM_PRIVATE_PAGE_CACHE_KB

GEM_FREE_FRAME_LIMIT

Where to

change it
mfcGem
UserGlobals

mfcGem
config file

mfcGem
config file

system config
or runtime

GcUser
UserGlobals

GcUser
UserGlobals

GcUser
UserGlobals

GcGem config
file

GcGem config
file

Setting
3000

65536

5000

15

5000

true

500

65535

2160

Comments

Increase size of mark/sweep
buffer

maximum

limited only by host file
system performance

Increase to long enough to
accommodate
markForCol lection.

limited only by host file
system performance

Default. Allow epochs to
run as usual.

Intermediate value is a
compromise between page
reclaim and other Gems’
work.

Increase to make page
reclaim go faster.

Decrease to make page
reclaim go faster.

384

GemStone Systems, Inc.

April 2008

Tuning Performance Garbage Collection for Tuners

Discussion

Two things are always true:

The Gem running markForCol lection always wants a larger mark/sweep
buffer. To change it, for the Gem running markForCol lection, evaluate:

UserGlobals at: #mfcGcPageBufSize put: newValue

The Gem running markForCol lection always wants the largest possible
private page cache.

These patterns emerge:

The markForCol lection Gem’s GEM_IO_RATE can be a bottleneck. If disk
waits are a problem during markForCol lection, increase it. Allow it to
perform as many I/0 operations per second as necessary.

If you give the markForCollection Gem an unlimited GEM_IO_RATE,
increase STN_GEM_ABORT_TIMEOUT to accommodate
markForCollection, or a SigAbort and the following
ABORT_LOST_OT_ROOT errormay cause the markForCollection to fail,
possibly wasting a great deal of time.

The GecGem’s GEM_IO_RATE can also be a bottleneck. If disk waits are a
problem during voting or epoch garbage collection, increase it.

Increasing the size of the GcGem'’s private page cache allows it to reclaim
pages faster.

So does decreasing the size of the GecGem'’s free frame limit.

The GecGem'’s configuration parameter reclaimMaxPages is most sensitive to
speed vs. system impact. The default is 200; in practice, for this example
system, values of 300-1000 provide a wide range of behavior from fast but
disruptive to users, to slower but with less impact to users.

Disabling epoch garbage collection while running markForCol lection is
not necessary.

April 2008

GemStone Systems, Inc. 385

Garbage Collection for Tuners System Administration Guide for UNIX

386 GemStone Systems, Inc. April 2008

Appendix

A GemSone
Configuration
Options

A GemStone configuration file is a file containing information that, when read at
start-up time, can control the configuration, behavior, and functionality of the
system at run time. Some of these configuration settings can be modified
dynamically by using GemStone Smalltalk to change their internal representation.

The Stone, Gem, and linked applications (collectively, the repository executables)
are able to read two different types of configuration files: system-wide
configuration files and executable-dependent configuration files.

= System-wide configuration files allow the GemStone system administrator to
set options pertaining to all GemStone executables on a system- or network-
wide basis. This file is required for a Stone to start.

= Executable-dependent configuration files can be used by individual users to
control their own running copy of the GemStone system. Options contained in
executable-dependent configuration files override the options specified in a
system-wide configuration file.

System-wide configuration files are located by a GEMSTONE_SYS_CONF
environment variable, and executable-dependent configuration files are located by
a GEMSTONE_EXE_CONF environment variable.

April 2008 GemStone Systems, Inc. 387

How GemStone Uses Configuration Files System Administration Guide for UNIX

These environment variables can be set in the usual way. For example, for C shell:
% setenv GEMSTONE_EXE_CONF $HOME/myFile.conf
or, for Bourne or Korn shell,

$ GEMSTONE_EXE_CONF=$HOME/myFile.conf
$ export GEMSTONE_EXE_CONF

Both GEMSTONE_SYS_CONF and GEMSTONE_EXE_CONF can be defined to point to
either a file or a directory.

In addition, the GemStone executables startstone, gemsetup, pageaudit and topaz
accept command line arguments to point to configuration files.

« the -z option sets the system configuration file

= the -e option sets the executable-dependent configuration file

A.1 How GemStone Uses Configuration Files

At start-up time, GemStone repository executables attempt to find and read both a
system-wide and an executable-dependent configuration file, searching for these
files in the following manner.

Search for a System-Wide Configuration File

GemsStone repository executables begin by attempting to find a system-wide
configuration file.

1. Asshown in Figure A.1, GemStone first checks to see if there is an
environment variable defined for GEMSTONE_EXE_CONF.

2. If GEMSTONE_EXE_CONF is not defined, GemStone looks for a file named
hostName.conf in $GEMSTONE/data and uses that file. hostName must match
the results of executing the hostname command on the machine on which the
executables are running.

3. If no such file exists, it looks for a file named system.conf in
$GEMSTONE/data and uses that.

4. If neither of those files exist, the system defaults are used, unless the
executable is Stone, in which case an error is generated.

If GEMSTONE_EXE_CONF is defined, GemStone checks to see if it points to a
directory.

388

GemStone Systems, Inc. April 2008

How GemStone Uses Configuration Files

« |f GEMSTONE_SYS_CONF points to a directory, GemStone looks for a file
named hostName.conf in that directory. If it finds such a file, it uses it; if not,
it looks in that directory for a file named system.conf and uses that. If
neither of those files exist, the system defaults are used, unless the executable
is Stone, in which case an error is generated.

< |fthe GEMSTONE_SYS_CONF environment variable points to a file instead of a
directory, GemStone just uses that file.

Within each file, if an option is listed more than once, then the value it is given the
last time it is specified is used as its true value at executable run time. This rule also
applies between the two types of configuration files. If the same option is given a
value in both the system-wide and the executable-dependent configuration files,
the value in the executable-dependent configuration file overrides the system-
wide configuration file’s value.

Figure A.1 Search Path for a System-Wide Configuration File

Is there a definition for GEMSTONE_SYS CONF?

Is GEMSTONE_SYS_ CONF Is there a file named hostName . conf
a directory? in the $GEMSTONE/data directory?
yes no
Is there a Is Is there a file named
hostName . conT file GEMSTONE_SYS CONF system.conf inthe
in that directory? afile? $GEMSTONE/data

directory?

Is there a
system.conf
file in that directory?

Error, if a Stone.
Else, use defaults.

Error, if a Stone.
Else, use defaults.

Error, if a Stone.
Else, use defaults.

April 2008 GemStone Systems, Inc. 389

How GemStone Uses Configuration Files System Administration Guide for UNIX

Search for an Executable Configuration File

Ordinarily, GemStone repository executables next try to find an executable-
dependent configuration file. (The exception is a Stone repository monitor that
failed to find its system-wide configuration file—it exits with an error.)

1. Asshown in Figure A.2, GemStone begins by checking to see if there is an
environment variable defined for GEMSTONE_EXE_CONF.

2. If GEMSTONE_EXE_CONF is not defined, GemStone tries to find a file called
exeName.conf in the current working directory. (For information about the
naming conventions, see “Naming Executable Configuration Files” on
page 392.)

3. Ifitsucceeds at finding such a file, it uses that file. If such a file does not exist,
it generates a warning and relies solely on the system-wide configuration file
for configuration parameters.

Figure A.2 Search Path for an Executable-Dependent Configuration File

Is there a definition for GEMSTONE_EXE_CONF?

yes no

Is GEMSTONE_EXE_CONF

di , Is there a file named
a directory?

exeName.conf in the
current directory?

yes no
yes no
Does that directory Is GEMSTONE_EXE_CONF
contain a file named afile?
exeName.conf? Use it Warning
yes no

yes no

Use it Warning Use it Warning

If GEMSTONE_EXE_CONF is defined, GemStone first looks to see if it points to a
directory.

e |f GEMSTONE_EXE_CONF points to a directory, then GemStone looks for a file
named exeName.conf in that directory. If such a file exists, it uses it; if not, a

390 GemStone Systems, Inc. April 2008

How GemStone Uses Configuration Files

warning is generated and GemStone relies on the system-wide configuration
file for configuration parameters.

< |f GEMSTONE_EXE_CONF points to a file, rather than to a directory, GemStone
simply uses that file.

« |f GEMSTONE_EXE_CONF points to a directory or file that doesn’t exist, a
warning is generated and GemStone defaults to using the system-wide
configuration file for configuration parameters.

Creating or Using a System Configuration File

If you are satisfied with the standard options and the defaults, the simplest thing
to do is to just use the configuration file provided in
$GEMSTONE/data/system.conf. You can either copy this file and set the
GEMSTONE_SYS_CONF environment variable to point to your new file, or you can
do nothing and let GemStone use $GEMSTONE/data/system.conf itself.

Creating an Executable Configuration File

There are two ways to create a configuration file for a specific executable:

= You can copy the entire system-wide configuration file to a new file, name it
appropriately, and change selected parameters.

= You can create a new file, give it an appropriate name, and include only those
parameters that you want to differ from the default.

To make sure that GemStone is able to find and use your executable-dependent
configuration file, you can set the GEMSTONE_EXE_CONF environment variable to
point to your file. GEMSTONE_EXE_CONF can be either a file name or a directory
name. If you set the environment variable to a directory name, be sure to name
the configuration file exeName.conf so GemStone can find it at start up.
(Information about the naming conventions for configuration files is just ahead.)

If you don’t set the GEMSTONE_EXE_CONF environment variable, GemStone looks
for a file named exeName.conT in the current working directory at startup. If it
doesn’t find one, it uses the configuration parameters set in the system-wide
configuration file, or it uses the system defaults.

NOTE
Make sure your executable-dependent file is both readable and writable
by the Stone process, which will update options by writing to it if you
make certain configuration changes at run time.

April 2008

GemStone Systems, Inc. 391

How GemStone Uses Configuration Files System Administration Guide for UNIX

Naming Executable Configuration Files

The default name of an executable configuration file generally is determined from
the name of the executable itself.
Gems

Stand-alone (RPC) Gems look for a file named gem. conf in the current working
directory unless GEMSTONE_EXE_CONF is defined.The working directory by
default is the user’s home directory, unless the gemnetobject script has been
customized. The files $SGEMSTONE/sys/gemnetobject (Bourne shell) and
$GEMSTONE/sys/gemnetobjcsh (C shell) are scripts that a NetLDI invokes to
start a GemStone session process. These scripts can be edited to define the name of
the Gem to execute, the directory where the Gem resides, and the
GEMSTONE_SYS_CONF and GEMSTONE_EXE_CONF environment variables.

The GcGem

It is sometimes useful to change GcGem parameters in a configuration file specific
to the GecGem, so that the changes remain in effect if the system is stopped and
restarted. To do so:

Step 1. Copy $GEMSTONE/data/system.conf.
Step 2. Edit the copy, setting the values you want.

Step 3. Save your changes, renaming the file gcgem. conf. Place it in GemStone’s
bin directory.

Step 4. Edit the GecGem scripts in the $GEMSTONE/sys directory to use the new
configuration file. Change the line:

exeConfig="" # GEMSTONE_EXE_CONF
to read:
exeConfig="$GEMSTONE/bin/gcgem.conf"

The GeGem scripts are rungc (for the stand-alone GecGem), and rungcepc,
rungcpdr, rungcpsr, and rungcrcl for the specialized GcGems.

Stones

Stones look for a file named stoneName . con¥ in the current working directory.

392 GemStone Systems, Inc. April 2008

Configuration File Syntax

Linked Topaz

The linked version of Topaz looks for the configuration file gem.conT; so, by
default, Gem and Topaz can share the same options. The default location of the file
is the user’s home directory ($HOME).

Linkable GemBuilder Applications

Linkable GemBuilder applications look for a file named gci . conf in the current
working directory unless the application has provided a different name by calling
GcilnitAppName().

Naming Conventions for Configuration Options

The prefix “GEM_" indicates that the option is processed directly by Gems. Unless
indicated otherwise by the phrase “used by all executables,” most other options
are processed only by the Stone, which passes the information to executables as
needed through network connections. Exceptions are the shared page cache
configuration options (“SHR_"). The first Gem session process on a node remote
from the Stone and extents reads these options, which determine the configuration
of the shared page cache on that node.

All executables (that is, the Stone and Gems) understand the standard options
used in the file $GEMSTONE/data/system.conT as shipped. The GemStone
executables will generate a warning message whenever they encounter an option
that is not in the standard list.

NOTE:
If the DUMP_OPTIONS option is set to True, once both the system-wide
and executable-dependent configuration files have been processed, the
values of all the options that the executable understands are displayed.
You can access the configuration parameters from Smalltalk by using the
methods described starting on page 40.

A.2 Configuration File Syntax

The following section describes the rules of grammar to be used in editing
configuration files.

White space Leading white space is ignored in the parsing of configuration
files. Trailing white space is ignored if it follows the statement
termination symbol (;).

April 2008

GemStone Systems, Inc. 393

Configuration File Syntax

System Administration Guide for UNIX

New lines

Comments

Lists

Strings

To generate:
backslash (\)

quote (")

New lines within a statement are allowed only after an equal
sign or after a comma within a list of values.

The comment symbol for GemStone configuration files is the
pound sign (#).

To embed comments in a configuration file, do either of the
following:

e Start a line with the comment symbol.
e Place any text after the statement termination symbol (;).

Lists are separated by commas; list elements can be empty, for
example:

DBF_REPLICATE_NAMES = ,,foo.dbf;

Within lists of values, leading and trailing white space is
ignored.

Strings are encased in quotes. An empty string is acceptable in
the grammar, and may be expressed by either two double
quotes (") or by no value at all (for instance, OPTION =).

Within strings, the escape character is the backslash (\). It can
be used as follows:

Use the sequence:

\\

statement termination symbol (;) \;

list separation character (,) \,

control characters \ followed by decimal representation of

Case Sensitivity

Maximum Sizes

the character as a zero-padded 3-digit
decimal number. For example, the string
control-N would read \014, because
control-N is ASCII 14.

String option values are case-sensitive; boolean option names
are not case-sensitive.

The maximum number of characters allowed for a GemStone
configuration option name is 64. The maximum length of a

394

GemStone Systems, Inc. April 2008

Configuration File Syntax

string option is 1024 characters. There is no limit on the
number of elements within a list.

Use of Environment Variables In Options
Options that are either file names or directories may have
environment variables as the first part of their value or the
entire value. For instance,
$GEMSTONE/data/extent0.dbf.

Errors in Configuration Files

At startup, each GemStone executable reads the configuration files. If any error is
detected, then information about the error is written to standard output. This
information includes the file and line containing the error and the error’s severity.

Two kinds of errors can be generated by the processing of configuration files:
syntax errors and option value errors.

Syntax Errors

Syntax errors are generated whenever a grammatical error is detected in the
configuration file. All syntax errors are warnings; they do not cause execution to
terminate. These errors include:

= End-of-line or end-of-file detected before expected

= Invalid starting character for an option name or invalid character within an
option name

= Equals or semicolon sign expected
= Invalid three-digit escape sequence
< Invalid escape character

= Terminating quote missing in a quoted string

Option Value Errors

Option value errors are generated when the value assigned to an option has no
meaning or is of the wrong type. For example, an option value error is generated
when an option defined to need a boolean for its value has been set to an integer.

Option value errors vary in severity. Some options, such as not specifying the list
of files that make up a logical repository, will necessarily terminate execution.
Other option value errors, such as a invalid cache size, might only generate

April 2008

GemStone Systems, Inc. 395

Configuration Options System Administration Guide for UNIX

warnings. When a warning is issued, the executable will ignore the given value
and use the option’s default value.

NOTE
After modifying any parameter in a configuration file, and after
GemStone system upgrades, check for warnings both in the stone log and
inagem log (for GEM_* configuration options). Unnoticed option value
errors that result in using the default value may strongly affect
application performance.

A.3 Configuration Options

The system-wide configuration file contains the following standard configuration
options. In this discussion, default refers to the value that results when an option is
not explicitly set by a statement in the configuration file. Initial setting refers to an
explicit setting in the initial system.conf file that differs from the default.

Some configuration options have an internal parameter that can be changed while
GemsStone is running. Where such a parameter exists, its name is given at the end
of the entry. For more information, see “To Change Settings at Run Time” on
page 41.

Note that $GEMSTONE/bin directory contains a write-protected file named
initial _configthatisanexactreplicate of $5GEMSTONE/data/system.conf
as it was originally shipped, so even if you change the system. conf file, you can
always recover its original condition.

The following configuration options are listed in alphabetical order.

CONCURRENCY_MODE

Internal parameter: #ConcurrencyMode

CONCURRENCY_MODE is used to control concurrency conflict checking.
Permissible values are FULL_CHECKS (default) and NO_RW_CHECKS.
These are defined as follows:

FULL _CHECKS Both read/write and write/write conflicts are detected.
NO_RW_CHECKS Only write/write conflicts are detected.

Internal settings: 0 = FULL_CHECKS, 1 = NO_RW_CHECKS.

396

GemStone Systems, Inc. April 2008

Configuration Options

Changing the internal parameter requires the SessionAccess privilege, and the
session making the change must be the only one logged in (other than GcUser).

Default: FULL_CHECKS

DBF_ALLOCATION_MODE

DBF_ALLOCATION_MODE describes the space allocation heuristic to be used when
filling repository extents.

Permissible values are either Sequential or a series of allocation weights, separated
by commas. Under sequential allocation, each extent has its full resources used
before the next extent’s resources are used. Under weighted allocation, those
extents with a larger weight will have proportionally more of their disk resources
allocated than those with smaller weights. Each weight applies to the
corresponding extent in the series of extents specified in DBF_EXTENT_NAMES,
and the number of elements must match.

Default: Sequential

DBF_EXTENT_NAMES

DBF_EXTENT_NAMES is a list of all repository extents in order, primary extent first,
separated by commas. Taken together, all of the listed file resources make up the
logical repository. This option is required, and must contain at least one entry, the
name of the primary extent. The maximum number of extents is 255.

An extent name must be a file name or the device name for a raw disk partition.
The name can have an environment variable as its first component.

Default;: EMPTY. The system will not run if an extent list is not defined.
Initial setting: $GEMSTONE/data/extent0.dbf

DBF_EXTENT_SIZES

DBF_EXTENT_SIZES sets the maximum sizes (in MB) of all repository extents, in
order, primary extent first, separated by commas. Each size applies to the
corresponding extent in the series of extents specified in DBF_EXTENT_NAMES.

A size entry may be null, which indicates that the corresponding extent has no
fixed maximum size. This setting allows the extent to grow until it fills the disk
containing it or until it reaches the maximum size for an extent, which is 16 GB.

April 2008

GemStone Systems, Inc. 397

Configuration Options System Administration Guide for UNIX

For optimal performance using a raw partition, DBF_EXTENT_SIZES should be
slightly smaller than the size of the partition so that GemStone can avoid having to
handle system errors. For example, set it to about 1995 MB for a 2 GB partition.

You can modify the size of an existing extent under these conditions:

< |f the original maximum size was unlimited, the new maximum size must be
larger than the current physical size of the extent.

< |f the original maximum size was limited, the new maximum size must be
larger than the original maximum size.

The Stone repository monitor is the only executable allowed to change
DBF_EXTENT_SIZES. At GemStone system startup, the maximum size of each
extent is written to the system log file.

Default: EMPTY (no maximum sizes)
Minimum: 1 (MB)
Maximum: 16384

DBF_PRE_GROW

If DBF_PRE_GROW is set to True, then when a new extent is created, it is grown to
its maximum size. If the new extent cannot be grown to the maximum size because
of disk capacity problems, then the creation will fail.

Moreover, when DBF_PRE_GROW is set to True, existing extents are affected at

startup. If an existing extent has a maximum size and that extent is physically not
at that maximum size, it is grown to that size and the added portion is initialized.
If the grow fails, the extent is reset to its original size and the startup attempt fails.

An extent without a maximum size is not pregrown to any size; it is allocated a
minimum size determined internally by the GemStone system.

Default: False (extents will grow only when new space is needed by the logical
repository)

DBF_REPLICATE_NAMES

DBF_REPLICATE_NAMES lists the replicates of all repository extents, in order
corresponding to DBF_EXTENT_NAMES, separated by commas. A replicate name
may be omitted to indicate that the replicate is not to be used.

Default;: Empty

398 GemStone Systems, Inc. April 2008

Configuration Options

DBF_SCRATCH_DIR

DBF_SCRATCH_DIR specifies a scratch directory that the Stone process can use to
create “scratch” repositories for use during pageaudit. The file name is appended
to the directory name without an intervening delimiter, so a trailing delimiter is
necessary here.

Default: $GEMSTONE/data/

DUMP_OPTIONS

If DUMP_OPTIONS is set to True, dumps a summary of all configuration options.

Default: True

GEM_ATTACHED_PAGE_LIMIT

GEM_ATTACHED_PAGE_LIMIT specifies the maximum number of pages that can
be attached by a single Gem while free frames are available in the shared page
cache.

The default setting of -1 causes this value to be set to 5% of the frames in the shared
cache, the minimum allowed value. The maximum value allowed is 70% of the
frames in the shared cache.

Out-of-range values do not generate warnings; in such cases, the default value is
(silently) used.

This parameter should only be changed if the cache statistic
AttachDeltaPagesSatisfiedCount for a given Gem is a non-zero value.
Otherwise, it will have no effect.

Units: cache frames

Default: -1

Minimum: 5% of the frames in the shared page cache.
Maximum: 70% of the frames in the shared page cache.

GEM_DBF_FILE_LOCK

When GEM_DBF_FILE_LOCK is True, the Gem does advisory locking of repository
extents when opening the DBF file during login.

Default: False

April 2008 GemStone Systems, Inc. 399

Configuration Options System Administration Guide for UNIX

GEM_FREE_FRAME_LIMIT

Internal parameter: #GemFreeFrameLimit

When the number of free frames in the shared page cache is less than
GEM_FREE_FRAME_LIMIT, the Gem session process scans the cache for a free frame
rather than using one from the free frame list. This action is desirable for
performance reasons so that the remaining frames in the list are available for use
by the Stone repository monitor.

Default: Set at login to 10% of the actual cache size; for example, 125 frames
when using the default cache size of 10 MB (1250 frames)

Minimum: 1

Maximum: 65536

GEM_FREE_PAGEIDS CACHE

Internal parameter: #GemFreePageldsCache (read-only access)

Specifies the maximum number of free pagelds to be cached in gem. Larger values
reduce number of calls to stone, at the cost of needing more free space within the
extents.

Default: 200
Minimum: 40
Maximum: 1000

GEM_GCI_LOG_ENABLED

This option has no effect in customer executables.

Default: False

GEM_HALT_ON_ERROR

GEM_HALT_ON_ERROR causes a Gem to halt and dump core if an error with the
specified GemStone error number occurs. The value 0 means “never halt”.
Ordinarily this option is used only to assist Technical Support in diagnosing
problems.

Default: 0

GEM_IO_LIMIT

Internal parameter: #GemIOLimit

400 GemStone Systems, Inc. April 2008

Configuration Options

GEM_IO_LIMIT limits the 1/0 rate to this number of 1/0s per second (this limit also
applies to linked Gems). Values greater than 10000 result in the 170 rate being
limited only by the performance of the underlying file system or disk partitions.

Default: 10000
Minimum: 1
Maximum: 65536

GEM_MAX_SMALLTALK_STACK_DEPTH

GEM_MAX_SMALLTALK_STACK_DEPTH determines the size of the GemStone
Smalltalk execution stack space that is allocated when the Gem logs in. The unit is
the approximate number of method activations in the stack. This setting causes
heap memory allocation of approximately 64 bytes per activation. Exceeding the
stack depth results in generation of the error RT_ERR_STACK_LIMIT.

Default: 1000
Minimum: 100
Maximum: 1000000

GEM_NATIVE_CODE_MAX

Internal parameter: #GemNativeCodeMax
NOTE
Some architectures may not support native code.

GEM_NATIVE_CODE_MAX determines the maximum size of a native code method,
in words. Native methods are inherently less compact than portable methods. This
parameter may be useful in memory-limited environments to prevent extremely
large methods from being converted to native.

The settings have these meanings:
<0 No limit on the native code size.

0 Native code generation is disabled. Note: it is more efficient to disable native
code by setting GEM_NATIVE_CODE_THRESHOLD to -1.

>0 The maximum size (in words) of a native code method. Larger positive values
permit larger methods to be converted.

Default: architecture-specific

April 2008 GemStone Systems, Inc. 401

Configuration Options System Administration Guide for UNIX

GEM_NATIVE_CODE_THRESHOLD

Internal parameter: #GemNativeCodeThreshold
NOTE
Some architectures may not support native code.
GEM_NATIVE_CODE_THRESHOLD is the invocation count at which a GsMethod
will be converted to native code. The settings have these meanings:

-1 Native code generation is disabled. This is the preferred way to disable native
code.

0 Native code generation is always performed, even for one-time execution from
a workspace.

>0 Native code generation is performed if and when the invocation count for the
method exceeds the given value. Larger positive values cause less aggressive
conversion.

Default: architecture-specific

GEM_NOT_CONNECTED DELTA

Internal parameter: #NotConnectedDelta

GEM_NOT_CONNECTED_DELTA specifies the minimum number of objects by
which the notConnectedSet is required to grow since the last notConnectedSet
garbage collection, in order to trigger the next notConnectedSet garbage collection.
For information, see “Collecting the NotConnectedSet” on page 312.

Default: 300

GEM_NOT_CONNECTED_THRESHOLD

Internal parameter: #NotConnectedThreshold

GEM_NOT_CONNECTED_THRESHOLD specifies the minimum number of objects in
the notConnectedSet required to trigger garbage collection of the
notConnectedSet. For information, see “Collecting the NotConnectedSet” on

page 312.
Default: 2000

GEM_PGSVR_COMPRESS_PAGE_TRANSFERS

Internal parameter: #GemPgsvrCompressPageTransfers

402 GemStone Systems, Inc. April 2008

Configuration Options

If GEM_PGSVR_COMPRESS _PAGE_TRANSFERS is TRUE, use compress2() from
zlib library with default compression level to compress page transfers between
pgsvr on the Stone's machine and the Gem or mid-level cache pgsvr.

For the first gem to login on a remote machine, that Gem's configuration file value
of this parameter is propagated to the Page Manager and used to configure the
Page Manager’s communication to Page Manager’s pgsvr on the new remote
cache.

When a gem triggers creation of a mid-level cache, via the method
midLevelCacheConnect:cacheSizeKB:maxSessions:, that Gem's current
runtime value of this parameter is propagated to the Page Manager and used to
configure the Page Manager’s communication to Page Manager’s pgsvr on the
new mid-level cache.

Default: False

GEM_PGSVR_FREE_FRAME_LIMIT

GEM_PGSVR_FREE_FRAME_LIMIT determines the free frame limit used by the
Gem’s remote page server. It has no effect for Gems local to the repository extents
(which do not have a page server). For a description of free frames, see the
GEM_FREE_FRAME_LIMIT configuration option (page 400).

If the value of GEM_PGSVR_FREE_FRAME_LIMIT is -1, the free frame limit is set to
10% of the shared cache size used by the page server.

To tune the free frame limit of a page server at runtime, use the method System
class>>changeCacheSlotFreeFrameLimit: aSlot to: aValue.

Default: -1 (10% of cache size)
Minimum: -1
Maximum: 65536

GEM_PGSVR_UPDATE_CACHE_ON_READ

Internal parameter: #GemPgsvrUpdateCacheOnRead

GEM_PGSVR_UPDATE_CACHE_ON_READ determines the read behavior of the
Gem's remote page server when pages are read from disk. If this option is set to
True, pages read from disk are also added to the shared page cache on the page
server's host. If this option is False, pages read are not added to the page server's
shared cache.

This option has no effect for Gems that are local to the repository extents (that is,
Gems that are running on the Stone's machine).

April 2008

GemStone Systems, Inc. 403

Configuration Options System Administration Guide for UNIX

This option has no effect on a mid-level cache. On a mid-level cache, a cache miss
always updates the mid-level cache with the result obtained from reading the page
from Stone's cache or disk.

Default: False

GEM_PRIVATE_PAGE_CACHE_KB

GEM_PRIVATE_PAGE_CACHE_KB sets the size (in KB) of the Gem’s private page
cache. (This setting also applies to linked Gems.).

Default: 200
Minimum: 64
Maximum: 524288 (see note)

NOTE
The actual maximum for this parameter is dependent on the operating
system memory mapping protocol and the sizes of other GemStone
caches. See the note in SHR_PAGE_CACHE_SIZE_KB (page 406) for
details.

GEM_RPCGCI_TIMEOUT

GEM_RPCGCI_TIMEOUT specifies the time (in minutes) after which the lack of an
Rpc command will cause a Gem to terminate. Negative timeouts are not allowed.
Resolution of timeouts is one-half the specified timeout interval.

Default: 0 (Gem waits forever)
Minimum: 0

GEM_TEMPOBJ_CACHE_SIZE

Internal parameter: #GemTempObjCacheSize.

GEM_TEMPOBJ_CACHE_SIZE sets the size (in KB) of the Gem’s temporary object
space. (This limit also applies to linked Topaz sessions and linked GemBuilder
applications). The total memory allocation (in KB) for managing temporary objects
is (400 + GEM_TEMPOBJ_CACHE_SIZE) for GEM_TEMPOBJ_CACHE_SIZE >400, or
(200 + GEM_TEMPOBJ_CACHE_SIZE) for GEM_TEMPOBJ_CACHE_SIZE <400.

If you increase the internal parameter at run time, it is most efficient (in terms of
memory usage) to do so as soon as possible after logging in, preferably soon
enough that no garbage collection has occurred in the temporary object space.
Attempting to set the size smaller than its current size generates an error.

404 GemStone Systems, Inc. April 2008

Configuration Options

Default: 600
Minimum: 200
Maximum: 20000 (see note)

NOTE
The actual maximum for this parameter is dependent on the operating
system memory mapping protocol and the sizes of other GemStone
caches. See the note in SHR_PAGE_CACHE_SIZE_KB for details.

KEYFILE

KEYFILE sets the location of the GemStone licensing key file.
Default: $GEMSTONE/sys/gemstone . key

LOG_WARNINGS

If LOG_WARNINGS is set to True, warnings are printed for invalid configuration
options.

Default: True

SHR_NUM_FREE_FRAME_SERVERS

SHR_NUM_FREE_FRAME_SERVERS specifies the number of free frame page server
processes that will be started when the shared page cache is created.

Default: 1
Minimum: 0
Maximum: 30

SHR_PAGE_CACHE_LOCKED

SHR_PAGE_CACHE_LOCKED specifies whether the shared page cache should be
locked in memory. On systems that permit a portion of memory to be dedicated to
GemsStone, this option may provide higher performance. Specific operating
systems may restrict this action to processes running as root or may require special
privileges for this option to take effect. For further information, check the shared
page cache monitor log for error messages and consult your operating system
documentation.

Default: False

April 2008 GemStone Systems, Inc. 405

Configuration Options System Administration Guide for UNIX

SHR_PAGE_CACHE_NUM_PROCS

SHR_PAGE_CACHE_NUM_PROCS sets the maximum number of processes allowed
to attach to the shared page cache. This parameter is used to allocate space in the
shared page cache for session information and cache statistics. This cache space is
in addition to extent page space allocated by SHR_PAGE_CACHE_SIZE_KB.

The value for SHR_PAGE_CACHE_NUM_PROCS must accommodate the GecGems
and various background GemsStone processes, as well as user Gem and Topaz
session processes. If the value is too small, sessions might be unable to log in
because they can’t attach to the cache. If the value is too large, space in the cache
may be wasted.

When the default setting of -1 is specified, the system calculates a value for this
parameter based on:

STN_MAX_SESSIONS (for user sessions)

+ number of extents in repository (for GeGems)

+ SHR_NUM_FREE_FRAME_SERVERS (for free frame page servers)

+ STN_NUM_LOCAL_AIO_SERVERS (for AlO page servers)

+ 2 (for stone and pcmon processes)

Default: -1
Minimum: number of extents (for startup page servers)
+ SHR_NUM_FREE_FRAME_SERVERS
+ STN_NUM_LOCAL_AIO_SERVERS
+ 2 (for stone and pcmon processes)
Maximum: STN_MAX_SESSIONS
+ 256 (maximum possible number of extents/GcGems)
+ 30 (maximum possible value for SHR_NUM_FREE_FRAME_SERVERS)
+ 30 (maximum possible value for STN_NUM_LOCAL_AIO_SERVERS)
+ 2 (for stone and pcmon processes)

SHR_PAGE_CACHE_SIZE_KB

SHR_PAGE_CACHE_SIZE_KB sets the size (in KB) of the shared page cache.
(Additional shared memory is used for overhead.)

Default: 10000

Minimum: 512

Maximum: Limited by system memory, kernel configurations, and cache
space allocated by SHR_PAGE_CACHE_NUM_PROCS

NOTE
For information about platform-specific limitations on the size of the

406

GemStone Systems, Inc. April 2008

Configuration Options

shared page cache, refer to Chapter 1 of your GemStone/S Installation
Guide.

Note that the platform-specific limitations assume default configuration sizes for
the other caches (STN_PRIVATE_PAGE_CACHE_KB for the Stone,
GEM_PRIVATE_PAGE_CACHE_KB and GEM_TEMPOBJ_CACHE_SIZE for the Gem).
As all the caches must share a limited memory address space, and operating
system memory mapping protocols may constrain available memory resources
available to the caches, increasing the size of one cache may require reducing the
size of another to avoid getting memory allocation failures.

SHR_SPIN_LOCK_COUNT

Internal parameter: #SpinLockCount

SHR_SPIN_LOCK_COUNT specifies the number of tries to get a spin lock before the
process sleeps on a semaphore. Semaphores involve a relatively time-consuming
call to the operating system. Spin locks involve busy-wait loops. Efficient locking
may require a combination of these methods.

In single-processor architectures, this value should always be 1, since there is no
value in spinning (the lock won’t change until the process holding the lock gets
scheduled). On multi-CPU architectures, a value of 4000 is recommended.

We recommend that you leave this option set to the default value of -1, which
causes GemsStone to use a value of either 1 or 4000, based upon the number of
CPUs detected.

The internal parameter can be changed only by SystemUser.
Default: -1 (use either 1 or 4000, based on the number of CPUs detected)

SHR_TARGET _FREE_FRAME_COUNT

SHR_TARGET_FREE_FRAME_COUNT specifies the target number of free frames to
keep in the shared cache at all times. The free frame page server process(es) will
attempt to keep the number of free frames in the cache equal to or greater than this
value.

If SHR_TARGET_FREE_FRAME_COUNT is -1, the target free frame count is set to a
percentage of the total frames in the shared cache. For the main shared cache (the
cache to which the Stone attaches), the default is 1/8 the number of frames in the
cache. For remote caches, the default is 1/100 the frames in the cache.

For best performance, keep this setting greater than GEM_FREE_FRAME_LIMIT.

April 2008

GemStone Systems, Inc. 407

Configuration Options System Administration Guide for UNIX

Default: -1 (target is a percentage of total frames in cache; see above)
Minimum: -1
Maximum: 65536

STN_CHECKPOINT_INTERVAL

Internal parameter: #StnCheckpointinterval

STN_CHECKPOINT_INTERVAL sets the maximum interval (in seconds) between
checkpoints. Checkpoints may be written more often, depending on other factors.

The internal parameter can be changed only by SystemUser.

Default: 300
Minimum: 5
Maximum: 1800

STN_DEAD_X_LOCKING_ENABLED

When set to False, STN_DEAD_X_LOCKING_ENABLED disables exclusive locking of
dead objects that have not yet been reclaimed. This can be useful for applications
that experience degraded commit performance when there is a large dead-not-
reclaimed set.

CAUTION
To avoid the risk of corrupting your database, leave this parameter at its
default value (TRUE) if your application ever uses object IDs to create
committed structures.

Default: True

STN_DISABLE_LOGIN_FAILURE_LIMIT
STN_DISABLE_LOGIN_FAILURE_TIME_LIMIT

Internal parameters: #StnDisableLoginFailureLimit,
#StnDisableLoginFailureTimeLimit

These options control when a user account is disabled because the user exceeded
the STN_DISABLE_LOGIN_FAILURE_LIMIT of failed login attempts within the time
in minutes specified by STN_DISABLE_LOGIN_FAILURE_TIME_LIMIT. When a user
account exceeds these limits, the account is disabled (the system changes the
password on the account to one that is invalid) and a record of the event is written
to the Stone log file. The user account can only be restored by another user with
OtherPassword privileges.

408 GemStone Systems, Inc. April 2008

Configuration Options

Changes to the internal parameters require the OtherPassword privilege.

STN_LOG_LOGIN_FAILURE_LIMIT:
Default: 15
Minimum: 0
Maximum: 65536
STN_LOG_LOGIN_FAILURE_TIME_LIMIT:
Default: 15
Minimum: 1
Maximum: 1440 (24 hours)

STN_DISKFULL_TERMINATION_INTERVAL

Internal parameter: #StnDiskfullTerminationinterval

STN_DISKFULL_TERMINATION_INTERVAL specifies how soon (in minutes) the
Stone should start terminating sessions holding on to the oldest commit record
when the repository free space is below the value set for
STN_FREE_SPACE_THRESHOLD. Such sessions are sent the fatal diskfull error.

The internal parameter can be changed only by SystemUser.

Default: 3
Minimum: 0 (no sessions are terminated)
Maximum: 1440 (24 hours)

STN_FREE_FRAME_CACHE_SIZE

STN_FREE_FRAME_CACHE_SIZE specifies the size of the Stone’s free frame cache.
When using the free frame cache, the Stone removes enough frames from the free
frame list to refill the cache in a single operation.

Units: frames.

Default; 1 (disables the free frame cache; Stone acquires frames one at a time)
Minimum: 1
Maximum: 1% of the frames in the cache

STN_FREE_SPACE_THRESHOLD

Internal parameter: #StnFreeSpaceThreshold

STN_FREE_SPACE_THRESHOLD sets the minimum amount of free space (in MB) to
be available in the repository. If the Stone cannot maintain this level by growing

April 2008 GemStone Systems, Inc. 409

Configuration Options System Administration Guide for UNIX

an extent, it begins actions to prevent shutdown of the system; for information, see
“Repository Full” on page 193.

The internal parameter can be changed only by SystemUser.

Default: 1
Minimum: 0 (no threshold)
Maximum: 65536

STN_GC_SESSION_CONFIGURATION

STN_GC_SESSION_CONFIGURATION determines the GcGem configuration for the
system when STN_GC_SESSION_ENABLED is set to True. The valid settings have

these meanings:
1=Keep a single GcGem running.
2=Keep a Reclaim GcGem/Epoch G¢cGem pair running.

Default: 1

STN_GC_SESSION_ENABLED

Internal parameter: #GcSessionEnabled

If STN_GC_SESSION_ENABLED is set to True, then during startup, the Stone creates
one or more Gem processes (GcGems) configured to reclaim unused space in disk
pages and perform epoch garbage collection. The GcGem configuration is
determined by the STN_GC_SESSION_CONFIGURATION configuration option.

The internal parameter can be changed only by SystemUser.
Default: True

Internal settings: 0 = False, 1 = True

STN_GEM_ABORT_TIMEOUT

Internal parameter: #StnGemAbortTimeout

STN_GEM_ABORT_TIMEOUT sets the time (in minutes) that the Stone will wait for
a Gem running outside of a transaction to abort (in order to release a commit
record), after Stone has signaled that Gem to do so. If the time expires before the
Gem aborts, the Stone forcibly aborts the Gem, sending it the error
ABORT_ERR_LOST_OT_ROOT and then terminating it. (For more about LostOT
behavior, see the following discussion of STN_GEM_LOSTOT_TIMEOUT.)

410 GemStone Systems, Inc. April 2008

Configuration Options

Negative timeouts are not allowed. Resolution of timeouts is one-half the specified
timeout interval.

For more about how you might use STN_GEM_ABORT_TIMEOUT and
STN_GEM_LOSTOT_TIMEOUT to handle non-responsive sessions, see “Commit
Record Backlog Too Large” on page 351.

The internal parameter can be changed only by SystemUser.

Default: 1
Minimum: 1
Maximum: 1440

STN_GEM_LOSTOT_TIMEOUT

Internal parameter: #StnGemLostOtTimeout

STN_GEM_LOSTOT_TIMEOUT sets the time (in seconds) that the Stone will wait for
a Gem running outside of a transaction to respond to an
ABORT_ERR_LOST_OT_ROOQOT error before taking further action(s) to terminate the
session.

If STN_GEM_LOSTOT_TIMEOUT is greater than or equal to zero, the Stone (more
specifically, the Page Manager) poisons the session's shared page cache slot (and
the slot used by the session's page server process, if any) and forcibly logs off the
session. Thereafter, any attempt by the session or its page server to access the
shared cache will raise a fatal error.

If STN_GEM_LOSTOT_TIMEOUT = -1, the Stone performs the above actions and also
kills the session, by sending the session a SIGTERM signal. The SIGTERM signal is
handled by the process and causes it to detach from the shared page cache and exit.

Negative timeouts other than -1 are not allowed. Resolution of timeouts is one-half
the specified timeout interval.

GemsStone never sends a SIGKILL (kill -9) signal to any process.

NOTE
Do not use SIGKILL to kill GemStone processes. Attempting to do so can
result in repository crashes due to stuck spin locks.

For the reasons described here, you should avoid getting LostOT signals if at all
possible, regardless of how you configure this parameter.

All actions described here are performed for any session, including sessions that
use a remote shared page cache.

April 2008

GemStone Systems, Inc. 411

Configuration Options System Administration Guide for UNIX

For more about how you might use STN_GEM_ABORT_TIMEOUT and
STN_GEM_LOSTOT_TIMEOUT to handle non-responsive sessions, see “Commit
Record Backlog Too Large” on page 351.

The internal parameter can be changed only by SystemUser.

Default: 60
Minimum: -1
Maximum: 5000000

STN_GEM_TIMEOUT

Internal parameter: #StnGemTimeout

STN_GEM_TIMEOUT sets the time (in minutes) after which lack of interaction with
the Gem will cause the Stone to terminate the session. Negative timeouts are not
allowed. Resolution of timeouts is one-half the specified timeout interval.

If STN_GEM_TIMEOUT is non-zero, this timeout is also the maximum time allowed
for a Gem to complete processing of its login to the Stone. If this timeout is 0, the
maximum time for login processing is set to one minute.

The internal parameter can be changed only by SystemUser.

Default: 0 (Stone waits forever)
Minimum: 0

STN_HALT ON_FATAL_ERR

Internal parameter: #StnHaltOnFatalErr

If STN_HALT _ON_FATAL_ERR is set to True, the Stone will haltand dump core if it
receives notification from a Gem that the Gem died with a fatal error that would
cause Gem to dump core. By stopping the Stone at this point, the possibility of
repository corruption is minimized. True is the recommended setting for systems

during development.

If STN_HALT_ON_FATAL_ERR is set to False, the Stone will attempt to keep
running if a Gem encounters a fatal error. False is the recommended setting for
systems in production use.

The internal parameter can be changed only by SystemUser.
Default: True

Internal settings: 0 = False, 1 = True

412

GemStone Systems, Inc. April 2008

Configuration Options

STN_LOG_LOGIN_FAILURE_LIMIT
STN_LOG_LOGIN_FAILURE_TIME_LIMIT

Internal parameters: #StnLogLoginFailureLimit,
#StnLogLoginFailureTimeLimit

If a user has a number of login failures greater than or equal to
STN_LOG_LOGIN_FAILURE_LIMIT within the time in minutes specified by
STN_LOG_LOGIN_FAILURE_TIME_LIMIT, a message is written to the Stone log file.

Changes to the internal parameters require the OtherPassword privilege.

STN_LOG_LOGIN_FAILURE_LIMIT:
Default: 10
Minimum: 0
Maximum: 65536
STN_LOG_LOGIN_FAILURE_TIME_LIMIT:
Default: 10
Minimum: 1
Maximum: 1440 (24 hours)

STN_MAX_AIO_RATE

Internal parameters: #StnMaxAioRate

STN_MAX_AIO_RATE specifies the maximum I/0 rate that each AlO page server is
allowed when performing asynchronous writes. Since the 1/0 rate specified is
applied to each page server, the total maximum 1/0 rate on the disk system is this
value multiplied by STN_NUM_LOCAL_AIO_SERVERS.

The page servers use this maximum 1/0 rate for both dirty page and checkpoint
writes.

Default: 300

Minimum: 20

Maximum: 2000

STN_MAX_REMOTE_CACHES

The maximum number of remote shared page caches that the system may have.
This limit includes both midlevel caches and "leaf" caches.

Default: 255
minimum: 0
maximum: 65535

April 2008 GemStone Systems, Inc. 413

Configuration Options System Administration Guide for UNIX

STN_MAX_SESSIONS

STN_MAX_SESSIONS limits the number of simultaneous sessions (number of Gem
logins to Stone). The actual value used by Stone is the value of this parameter or
the number of sessions specified by the software license key file, whichever is less.
This parameter is provided so that the number of users can be restricted to avoid
overloading the host computer. The maximum number of file descriptors per
process (imposed by the operating system kernel) can also limit the maximum
number of sessions.

If you increase STN_MAX_SESSIONS beyond 40, you may need to increase
SHR_PAGE_CACHE_NUM_PROCS.

Recommended: 40, unless you are really using more sessions
Default: 40

Minimum: 1

Maximum: 8192

STN_NUM_LOCAL_AIO_SERVERS

STN_NUM_LOCAL_AIO_SERVERS is the approximate number of page server
processes to start as local asynchronous 170 servers for the shared page cache on
the node where the Stone runs. The number of extents plus the number of extent
replicates known to the Stone at startup is divided by the value of
STN_NUM_LOCAL_AIO_SERVERS to compute the internal configuration parameter
StnRDbfMaxFi lesPerServer. The latter parameter is the approximate number
of extent files to be serviced by each AlO page server.

For instance, if your configuration has four extents and two are replicated, setting
STN_NUM_LOCAL_AIO_SERVERS to 3 causes each AlO page server to service (4 +
2) + 3 =2 extents.

NOTE
If STN_NUM_LOCAL_AIO_SERVERS is greater than the number of
extents plus the number of extent replicates, then by default, one AlO
page server process is spawned for each extent or replicate.

Under certain circumstances, multiple AlO page servers can help you achieve the
maximum possible commit rate. A value greater than 1 is recommended only if
there are two or more extents, the host has multiple CPUs (to allow parallel

414

GemStone Systems, Inc. April 2008

Configuration Options

execution), and the disk drive hardware allows concurrent writes to disk (the
extents are on separate spindles, or the equivalent).

Default: 1
Minimum: 1
Maximum: 30

STN_PAGE_REMOVAL_THRESHOLD

Internal parameter: #StnPageRemovalThreshold

STN_PAGE_REMOVAL_THRESHOLD sets the minimum batch size for the Page
Manager Gem. When the number of pages waiting to be processed by the Page
Manager is greater than this value, the Page Manager requests the pages from the
Stone and processes them. Otherwise, the Page Manager waits until this threshold
is exceeded before requesting pages from the Stone.

The Stone cache statistic PagesNeedRemovingThreshold reflects the current
value of this parameter.

Default: 40
Minimum: 0
Maximum: 1792

STN_PRIVATE_PAGE_CACHE_KB

STN_PRIVATE_PAGE_CACHE_KB sets the default size (in KB) of the Stone page
cache.

Default: 1000
Minimum: 64
Maximum: 524288 (see note)
NOTE
The actual maximum for this parameter is dependent on the operating
system memory mapping protocol and the sizes of other GemStone
caches. See the note in SHR_PAGE_CACHE_SIZE_KB for details.

STN_RECOVERY_PAGE_RECLAIM_LIMIT

Internal parameter: #StnRecoveryPageReclaimLimit

STN_RECOVERY_PAGE_RECLAIM_LIMIT sets the maximum number of pages to
reclaim when the Stone is playing a single transaction log record during system
recovery or restoring from transaction logs. This value also determines the number

April 2008 GemStone Systems, Inc. 415

Configuration Options System Administration Guide for UNIX

of pages reclaimed during execution of Repository>>restoreReclaimPages.
Decreasing this value postpones some page reclaiming, which can improve system
recovery and restore performance, but at the expense of repository growth and
heavier GcGem activity after the system is again operational.

Default: 2000
Minimum: 0
Maximum: 65536

STN_REMOTE_CACHE_PGSVR_TIMEOUT

STN_REMOTE_CACHE_PGSVR_TIMEOUT sets the time (in seconds) to wait for a
response from a page server on a remote shared page cache. If no response is
received within the timeout period, all Gems attached to that cache are logged off
and a message is written to the Stone log.

Negative timeouts are not allowed. A timeout value of zero causes the Stone to
wait forever.

Default: 15
Minimum: 0
Maximum: 3600

STN_REMOTE_CACHE_TIMEOUT

Internal parameter: #StnRemoteCacheTimeout

STN_REMOTE_CACHE_TIMEOUT sets the time (in minutes) after the last active
process on a remote node logs out before the Stone shuts down the shared page
cache on that node.

Negative timeouts are not allowed. A timeout value of 0 causes the Stone to shut
down the remote cache as soon as possible.

The internal parameter can be changed only by SystemUser.

Default: 5
Minimum: 0
Maximum: 5000000

STN_REPL_TRAN_LOG_DIRECTORIES

STN_REPL_TRAN_LOG_DIRECTORIES lists the directories or raw disk partitions
used for replicates of the transaction logs specified by
STN_TRAN_LOG_DIRECTORIES. This list must either be empty, in which case logs

416 GemStone Systems, Inc. April 2008

Configuration Options

are not replicated, or must have the same number of elements as
STN_TRAN_LOG_DIRECTORIES. If the directory is on a remote host, the host name
must be a network resource string. The size of the replicate log files is controlled
by STN_TRAN_LOG_SIZES.

Default: Empty (logs are not replicated)

STN_REPL_TRAN_LOG_PREFIX

STN_REPL_TRAN_LOG_PREFIX sets file name prefix for transaction log file
replicates, if any. A sequence number and . dbf suffix are added to the prefix; for
example, the prefix “repltranlog” produces files named repltranlogO. dbf,
repltranlogl.dbf,.... You can set this configuration option to permit multiple
repository monitors to share a log directory without conflict.

Default: repltranlog

STN_SHR_TARGET PERCENT_DIRTY

Internal parameter: #StnMntShrPcTargetPercentDirty

STN_SHR_TARGET_PERCENT_DIRTY specifies the maximum percentage of the
Stone’s shared page cache that can contain dirty pages without AlO page servers
increasing their 170 rates.

Default: 33
Minimum: 5
Maximum: 90

STN_SIGNAL_ABORT_CR_BACKLOG

Internal parameter: #StnSignal AbortCrBacklog

STN_SIGNAL_ABORT_CR_BACKLOG sets the number of old transactions (commit
records) above which the Stone will start to generate Signal Abort messages to a
Gem that is running outside of a transaction. You may need to tune this option
according to your application’s commit rate and your system’s tolerance for the
possible swapping activity caused by awakening sleeping session processes.

The internal parameter can be changed only by SystemUser.

Default: 20
Minimum: 0
Maximum: 65536

April 2008

GemStone Systems, Inc. 417

Configuration Options System Administration Guide for UNIX

STN_TRAN_FULL_LOGGING

If STN_TRAN_FULL_LOGGING is set to True, all transactions are logged, and log
files are not deleted by the system. In this mode, the transaction logs are providing
real-time incremental backup of the repository. If no disk space is available for
logs, Gem session processes may appear to “hang” until space becomes available.

If STN_TRAN_FULL_LOGGING is set to False, only transactions smaller than
STN_TRAN_LOG_LIMIT are logged; larger transactions cause a checkpoint, which
updates the extent files. Log files are deleted by the system when the circular list
of log directories wraps around. This setting allows a simple installation to run
unattended for extended periods of time, but it does not provide real-time backup.
See also STN_TRAN_LOG_DEBUG_LEVEL, which can cause old log files to be
retained under partial logging.

For further information, see Chapter 7, “Managing Transaction Logs.”

Default: None. The system will not run unless a value is provided.
Initial setting: False

STN_TRAN_LOG_DEBUG_LEVEL

This option is only for GemStone internal use. Customers should not change the
default setting. Values > 2 inhibit removal of old transaction logs when in partial
logging mode.

Default: 0

STN_TRAN_LOG_DIRECTORIES

STN_TRAN_LOG_DIRECTORIES lists the directories or raw disk partitions to be
used for transaction logging. This list defines the maximum number of log files
that will be online at once. Each entry must be a directory or a raw disk partition.
Directories may appear multiple times in the list. A given raw disk partition may
appear only once.

Default: Empty (the system will not run without at least two entries)
Minimum: 2 entries

Maximum: 100 entries

Initial setting: $GEMSTONE/data/, $GEMSTONE/data/

STN_TRAN_LOG_LIMIT

Internal parameter: #StnTranLogLimit

418 GemStone Systems, Inc. April 2008

Miscellaneous Internal Parameters

STN_TRAN_LOG_LIMIT sets the maximum transaction log entry size limit (in KB).
Successful commits of transactions consuming more than this amount of log file
space when STN_TRAN_FULL_LOGGING is set to False will cause a checkpoint.
This option has no effect when STN_TRAN_FULL_LOGGING is set to True.

The internal parameter can be changed only by SystemUser.

Default: 1000
Minimum: 25
Maximum: 1000

STN_TRAN_LOG_PREFIX

STN_TRAN_LOG_PREFIX sets file name prefix for transaction log files. A sequence
number and . db¥ suffix are added to the prefix; for example, the prefix
“tranlog” produces files named tranlog0.dbf, tranlogl.dbf, ... Youcan
set this configuration option to permit multiple repository monitors to share a log
directory without conflict.

Default; tranlog

STN_TRAN_LOG_SIZES

STN_TRAN_LOG_SIZES sets the maximum sizes (in MB) of all log files, in order and
separated by commas. Each size applies to a corresponding log file specified in
STN_TRAN_LOG_DIRECTORIES, and the number of entries must match. The sizes
also apply to the corresponding entries in STN_REPL_TRAN_LOG_DIRECTORIES
when that list is not empty.

Default: Empty (the system will not run unless sizes are specified)
Minimum: 3

Maximum: 2147

Initial setting: 10, 10

A.4 Miscellaneous Internal Parameters

The internal parameters described in this section can by read by using the method
System class>>configurationAt: . These parameters can be changed only
by SystemUser.

The parameter #StnLoginsSuspended requires the SystemControl privilege.
All other parameters can be changed only by SystemUser.

April 2008

GemStone Systems, Inc. 419

Miscellaneous Internal Parameters System Administration Guide for UNIX

#LogOriginTime

#LogOriginTime is the time the current sequence of Stone logs was started. It is
the same value returned by Repository>>logOriginTime. For information
about when a new sequence is started, see the method comment for
Repository>>commitRestore in the image.

#SessionIinBackup

#SessionlInBackup is the GemStone session number of the session performing
a full backup, or -1 if a backup is not in progress.

#StnCurrentTranLogDirld

#StnCurrentTranLogDirld is the one-based offset of the current transaction
log into the list of log directory names, STN_TRAN_LOG_DIRECTORIES. It is the
same value returned by Repository>>currentLogDirectoryld.

#StnCurrentTranLogNames

#StnCurrentTranLogNames is an Array containing up to two Strings: the name
of the transaction log to which records currently are being appended, and the
name of the current replicated log. These are the same values returned by
Repository>>currentLogFile and currentLogReplicate, respectively.

#StnLogGemErrors

#StnLogGemErrors is intended for internal debugging use. When it is set to 1,
the Stone logs error messages it sends to Gems.

#StnLoginsSuspended

#StnLoginsSuspended ordinarily has the values 0 (False) and 1 (True) as set by
System class>>suspendLogins and resumelLogins. Changing this
parameter requires the SystemControl privilege.

#StnTranLogOriginTime

#StnTranLogOriginTime is the time when the current transaction log was
started.

420 GemStone Systems, Inc. April 2008

Appendix

B Gem3one Utility
Commands

The GemStone utility commands in this appendix are provided in the
$GEMSTONE/bin directory. All but one (waitstone) can be executed with the -h
option to display the usage information. For example:

% copydbf -h

Usages: copydbf srcNRS dstNRS [-h]-1]-m]-P] [-C] [-F filePrefix]
[-n netldi] [-p pgsvrid] [-s Mbytes]

copydbf srcNRS [-i]-171 [-n netldi] [-p pgsvrid]

UNIX man pages are available for more detailed information on each command.

April 2008 GemStone Systems, Inc. 421

copydbf System Administration Guide for UNIX

B.1 copydbf

copydbf [-1 | -m | -P] [-C] [-ffilePrefix] [-nnetLdiName] [-ppgsvrid]
[-sMbytes] [-h] sourceNRS destinationNRS

copydbf -i [-nnetLdiName] [-ppgsvrid] sourceNRS
copydbf -1 [-nnetLdiName] [-ppgsvrid] sourceNRS

-1 Least-significant-byte ordering for the destinationNRS. This
ordering is the native byte ordering for Intel x86 processors.

-m Most-significant-byte ordering for the destinationNRS. This
ordering is the default and is the native byte ordering for
SPARC, IBM RS/6000, and HP PA-RISC machines.

-P Preserve byte ordering. This option creates the destination file
using the byte ordering found in the source file. The default is
to write the file using the host’s native byte ordering.

-C Compress output. The output must be a filesystem file. Write
the output compressed, in gzip format. The output file name
will have the suffix .gz appended to it, if it does not end in

.gz.

-ffilePrefix If destinationNRS is a file system directory, then filePrefix
overrides the file name prefix that would be generated based
on the contents of sourceNRS. If destinationNRS is other than a
file system directory, this option has no effect.

-nnetLdiName The name of the GemStone network server; the default is
“netldi63”.

-ppgsvrid The name of a specific runpgsvr (similar to gemnetid)

-sMB The size to pre-allocate the destination file, in MBs. For

instance, -s10 allocates at least 10 MBs to the created file. If the
-s option is not specified, the output file is made as short as
possible.

-h Displays a usage line and exits.

-i Information only. When this option is present without
destinationNRS, information about sourceNRS is printed

422 GemStone Systems, Inc. April 2008

copydbf

without performing a file copy. If both -i and destinationNRS
are present, this option is ignored and a copy is performed.

-1 Full information. The same information is printed as for -i. In
addition, if the file is a transaction log, all checkpoint times
found are listed instead of only the last one.

sourceNRS The source file or raw partition (containing an extent, a
transaction log, or a full backup) as a GemStone network
resource string. Use of a tape device as the source is supported
only for a GemStone full backup.

destinationNRS The destination file, directory, or raw partition as a GemStone
network resource string. If the destination is a file system
directory (the trailing / is optional), a file name is generated
and appended to destinationNRS based on the type and
internal fileld of the source. Use of /dev/null as the
destination is supported only for files as a means of verifying
that the file is readable. Use of a tape device as the destination
is not supported.

The copydbf utility requires exclusive write access to repository files in order to
copy them without corruption. You must shut down the Stone repository monitor
before copying an extent. You may copy any transaction log that is not the active

log.

GemStone repository files on the UNIX file system can usually be copied using the
ordinary cp command. You can use the first form of copydbf for disk-to-disk
copies between machines (without NFS), or copies that change byte ordering, or
copies to and from raw disk partitions. GemStone repository files can be written in
any byte ordering, but non-native byte ordering will make GemStone run more
slowly. You must give an NRS (network resource string) for both the source file
and the destination. (A local machine filespec is a subset of an NRS.)

If the destination is a directory in a file system, copydbf generates a file name
based on the type of file. The generated name includes a prefix (extent, tranlog,
or backup), a fileld representing an internal sequence number that starts at 0, and
the extension .db¥. The prefix can be changed through the -f option.

April 2008 GemStone Systems, Inc. 423

copydbf

System Administration Guide for UNIX

A message describing the source and destination files is printed to standard error
prior to starting the copy. The size of the destination file is printed to standard
error after the copy is completed. For example:

% copydbf $GEMSTONE/data/extentO.dbf .
Source file: /users/GemStone6.3/data/extentO.dbf
file type: extent fileld: O
Last checkpoint written at: 02/05/08 15:43:52 PST.
Destination file: _/extentO.dbf
Clean shutdown, no tranlog needed for recovery,
last tranlog written to had fileld 21 (tranlog2l.dbf).
File size is 17.8 MBytes (2176 records).

The same source file information (but not the size) can be obtained without making
a copy by using the second form of the command, copydbf -i sourceNRS. In this
usage, destinationNRS must be omitted. The information for an extent also shows
the oldest transaction log that would be need to recover from a system crash, and
for a backup, to restore subsequent transaction. The first example is applied to an
extent, and the second, to a backup:

c:\> copydbf -1 extentO.dbf
Source file: extentO.dbf
file type: extent fileld: O
Last checkpoint written at: 02/05/08 11:07:54 PST.
Oldest tranlog needed for recovery is fileld 5
(tranlog5.dbf).

c:\> copydbf -1 back4.dat
Source fTile: back4.dat
file type: backup fileld: O
The previous file last recordld is -1.
Destination file: /dev/null
Full backup started from checkpoint at: 02/05/08
11:21:20 PST.
Oldest tranlog needed for restore is fileld 5
(tranlog5.dbf).

To obtain the size of a repository file in a raw partition, use copydbf sourceNRS
destinationNRS.

424

GemStone Systems, Inc. April 2008

copydbf

A listing of all checkpoints recorded in a transaction log can be obtained by using
copydbf -1 sourceNRS. This information is helpful in restoring a GemStone backup
to a particular point in time. For example

c:\> copydbf -1 tranlog6.dbf

Source file: tranlog6.dbf
file type: tranlog Tfileld: 6
The file was created at: 02/05/08 10:56:25 PST.
The previous file last recordld is 65.
Scanning file to find last checkpoint...

Destination file: /dev/null
Checkpoint 1 started at: 02/05/08 10:56:29 PST.
oldest transaction references fileld 5 (tranlog5.dbf).
Checkpoint 2 started at: 02/05/08 10:56:37 PST.
oldest transaction references fileld 5 (tranlog5.dbf).
Checkpoint 3 started at: 02/05/08 11:07:49 PST.
oldest transaction references fileld 5 (tranlog5.dbf).
Checkpoint 4 started at: 02/05/08 11:21:20 PST.
oldest transaction references fileld 5 (tranlog5.dbf).
File size is 10240 bytes (20 records).

You can pre-allocate disk space in the destination file by using the -s option. For
instance, -s10 would allocate at least 10 megabytes to the created file. The output
file is made as short as possible by default.

In the following example, the local GemStone repository file “extent0.dbf” is
copied to a remote machine using a full destinationNRS. In this example, the
repository file is copied to a remote machine named “node,” using remote user
account “username” and “password,” with a remote filespec of
“C:/path/extent0.dbf _copy,” via the standard GemStone network server
“netldi63” using TCP protocol:

Bourne shell:

$ copydbf $GEMSTONE/data/extentO.dbf \
I'tcp@node#auth:username@password#dbf!/users/extent0.dbf_copy

or C shell:

% copydbf $GEMSTONE/data/extentO.dbf \
\Iltcp@node#auth:username@password#dbf\1/users/extent0.dbf_copy

April 2008 GemStone Systems, Inc. 425

copydbf

System Administration Guide for UNI