
GemStone®

GemBuilder for Smalltalk
User’s Guide

For use with Cincom Smalltalk VisualWorks

Version 7.4

June 2011

GBS User’s Guide

2 VMware, Inc. June 2011

INTELLECTUAL PROPERTY OWNERSHIP
This documentation is furnished for informational use only and is subject to change without notice. VMware, Inc., assumes
no responsibility or liability for any errors or inaccuracies that may appear in this documentation.
This documentation, or any part of it, may not be reproduced, displayed, photocopied, transmitted, or otherwise copied in
any form or by any means now known or later developed, such as electronic, optical, or mechanical means, without express
written authorization from VMware, Inc.
Warning: This computer program and its documentation are protected by copyright law and international treaties. Any
unauthorized copying or distribution of this program, its documentation, or any portion of it, may result in severe civil and
criminal penalties, and will be prosecuted under the maximum extent possible under the law.
The software installed in accordance with this documentation is copyrighted and licensed by VMware, Inc. under separate
license agreement. This software may only be used pursuant to the terms and conditions of such license agreement. Any other
use may be a violation of law.
Use, duplication, or disclosure by the Government is subject to restrictions set forth in the Commercial Software - Restricted
Rights clause at 52.227-19 of the Federal Acquisitions Regulations (48 CFR 52.227-19) except that the government agency shall
not have the right to disclose this software to support service contractors or their subcontractors without the prior written
consent of VMware, Inc.
This software is provided by VMware, Inc. and contributors “as is” and any expressed or implied warranties, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall
VMware, Inc. or any contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages
(including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business
interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence
or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

COPYRIGHTS
This software product, its documentation, and its user interface © 1986-2011 VMware, Inc., and GemStone Systems, Inc. All
rights reserved by VMware, Inc.

PATENTS
GemStone software is covered by U.S. Patent Number 6,256,637 “Transactional virtual machine architecture”, Patent Number
6,360,219 “Object queues with concurrent updating”, Patent Number 6,567,905 “Generational garbage collector with
persistent object cache”, and Patent Number 6,681,226 “Selective pessimistic locking for a concurrently updateable database”.
GemStone software may also be covered by one or more pending United States patent applications.

TRADEMARKS
VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions.
GemStone, GemBuilder, GemConnect, and the GemStone logos are trademarks or registered trademarks of VMware, Inc.,
previously of GemStone Systems, Inc., in the United States and other countries.
UNIX is a registered trademark of The Open Group in the United States and other countries.
Sun, Sun Microsystems, and Solaris are trademarks or registered trademarks of Oracle and/or its affiliates. SPARC is a
registered trademark of SPARC International, Inc.
HP, HP Integrity, and HP-UX are registered trademarks of Hewlett Packard Company.
Intel, Pentium, and Itanium are registered trademarks of Intel Corporation in the United States and other countries.
Microsoft, MS, Windows, Windows XP, Windows 2003, Windows 7 and Windows Vista are registered trademarks of
Microsoft Corporation in the United States and other countries.
Linux is a registered trademark of Linus Torvalds and others.
Red Hat and all Red Hat-based trademarks and logos are trademarks or registered trademarks of Red Hat, Inc. in the United
States and other countries.
SUSE is a registered trademark of Novell, Inc. in the United States and other countries.
AIX, POWER5, and POWER6 are trademarks or registered trademarks of International Business Machines Corporation.
Apple, Mac, Mac OS, Macintosh, and Snow Leopard are trademarks of Apple Inc., in the United States and other countries.
Other company or product names mentioned herein may be trademarks or registered trademarks of their respective owners.
Trademark specifications are subject to change without notice. VMware cannot attest to the accuracy of all trademark
information. Use of a term in this documentation should not be regarded as affecting the validity of any trademark or service
mark.
VMware, Inc.
15220 NW Greenbrier Parkway
Suite 150
Beaverton, OR 97006

Preface

June 2011 VMware, Inc. 3

About This Manual
This manual describes GemBuilder for Smalltalk®, an environment for developing
Gemstone applications using VisualWorks Smalltalk.

GemBuilder for Smalltalk consists of two parts: a programming interface between
your client Smalltalk application code and the GemStone object repository, and a
GemStone programming environment.

The programming interface provides facilities for managing the relationship
between objects on the GemStone server and in client Smalltalk, allowing objects
to be available on the client and updated on the shared GemStone server.

The GemBuilder programming environment provides a set of integrated tools for
programming in GemStone’s version of Smalltalk.

GemBuilder supports both GemStone/S and GemStone/S 64 Bit. There are minor
differences between the features available when using different server products.
Please consult the documentation for the server product and version you are using
for specific details on that product.

GBS User’s Guide

4 VMware, Inc. June 2011

Prerequisites
To make use of the information in this manual, you need to be familiar with the
GemStone object server and with GemStone’s Smalltalk programming language as
described in the GemStone/S Programming Guide. That book explains the basic
concepts behind the language and describes the most important GemStone kernel
classes.

In addition, you should be familiar with the VisualWorks Smalltalk language and
programming environment as described in the VisualWorks Smalltalk product
manuals.

Finally, you should have the GemStone system installed correctly on your host
computer, as described in the GemStone/S 64 Bit Installation Guide for your
platform, and have client Smalltalk and GemBuilder for Smalltalk installed on the
client computer, as described in the GemBuilder for Smalltalk Installation Guide.

How This Manual is Organized
This manual is organized in three parts: basic concepts, the GemStone
programming tools, and appendixes.

Part 1: Concepts and Programmatic Use

Chapter 1, Basic Concepts, describes the overall design of a GemBuilder
application and presents the fundamental concepts required to understand the
interface between client Smalltalk and the GemStone object server.

Chapter 2, Communicating with the GemStone Object Server, explains how to
communicate with the GemStone object server by initiating and managing
GemStone sessions.

Chapter 3, Sharing Objects, describes the various mechanisms GemBuilder can
use to coordinate your application’s local objects with objects in the GemStone
object server, thus making them persistent and sharable.

Chapter 4, Connectors, explains how to connect your application’s local objects to
objects in the GemStone repository in order to implement object sharing and
allow your application to manipulate objects in the server.

Chapter 5, Managing Transactions, discusses the process of committing a
transaction, the kinds of conflicts that can prevent a successful commit, and
how to avoid or resolve such conflicts.

GBS User’s Guide

June 2011 VMware, Inc. 5

Chapter 6, Security and Object Access, describes the security mechanisms that are
available in GemBuilder and explains how to control access to objects in a
multiuser environment.

Chapter 7, Exception Handling, discusses errors: how to handle them and how to
recover from them

Chapter 8, Schema Modification and Coordination, explains how GemStone
supports schema modification by maintaining versions of classes in class
histories. It also explains how to synchronize schema modifications between
the client and GemStone.

Chapter 9, Performance Tuning, discusses ways that you can tune your
application to optimize performance and minimize maintenance overhead. It
describes the configuration parameters available for tuning a GemBuilder
application, and it explains how to configure GemBuilder for Smalltalk to
optimize your application’s performance.

Chapter 10, GemBuilder Configuration Parameters, describes the GemBuilder
for Smalltalk configuration options and how to set and use them.

Part 2: GemStone Tools

Chapter 11, The GemStone Tools: an Overview, describes several browser tools
that allow you to manage sessions and transactions; log in and out of
GemStone sessions; examine configuration parameters; and access commonly
used GemStone Smalltalk expressions.

Chapter 12, Using the GemStone Programming Tools, explains how to use the
GemStone browsers and tools to examine, modify, and create classes and
methods in GemStone; execute and debug GemStone Smalltalk code; manage
the connectors that establish relationships between client Smalltalk and
GemStone server objects; and perform other tasks.

Chapter 13, Using the GemStone Administration Tools, describes the tools that
let you manage access to objects, examine and modify GemStone SymbolLists
and associated dictionaries, and administer user accounts.

Part 3: Appendixes

Appendix A, Packaging Runtime Applications, provides brief instructions for
packaging runtime applications.

GBS User’s Guide

6 VMware, Inc. June 2011

Appendix B, Client Smalltalk and GemStone Smalltalk, outlines a few general
and syntactical differences between the client Smalltalk and GemStone
Smalltalk dialects.

Terminology Conventions
The term “GemStone” is used to refer to the server products GemStone/S 64 Bit
and GemStone/S; the GemStone Smalltalk programming language; and may also
be used to refer to the company, previously GemStone Systems, Inc., now a
division of VMware, Inc.

Other GemStone Documentation
You will find it useful to look at documents that describe other GemStone system
components:

 • Programming Guide — a programmer’s guide to GemStone Smalltalk,
GemStone’s object-oriented programming language.

 • Topaz Programming Environment — describes Topaz, a scriptable command-
line interface to GemStone Smalltalk. Topaz is most commonly used for
performing repository maintenance operations.

 • GemBuilder for C — describes GemBuilder for C, a set of C functions that
provide a bridge between your application’s C code and the application’s
database controlled by GemStone.

 • System Administration Guide — describes maintenance and administration of
your GemStone/S system.

In addition, each release of GemBuilder for Smalltalk includes Release Notes,
describing changes in that release, and platform-specific Installation Guides,
providing system requirements and installation and upgrade instructions.

A description of the behavior of each GemStone kernel class is available in the
class comments in the GemStone Smalltalk repository. Method comments include
a description of the behavior of methods.

GBS User’s Guide

June 2011 VMware, Inc. 7

Technical Support

GemStone Website
http://support.gemstone.com

GemStone’s Technical Support website provides a variety of resources to help
you use GemStone products:

 • Documentation for released versions of all GemStone products, in PDF
form.

 • Downloads and Patches, including past and current versions of
GemBuilder for Smalltalk.

 • Bugnotes, identifying performance issues or error conditions you should
be aware of.

 • TechTips, providing information and instructions that are not otherwise
included in the documentation.

 • Compatibility matrices, listing supported platforms for GemStone
product versions.

This material is updated regularly; we recommend checking this site on a regular
basis.

Help Requests
You may need to contact Technical Support directly, if your questions are not
answered in the documentation or by other material on the Technical Support
site. Technical Support is available to customers with current support contracts.

Requests for technical support may be submitted online, or by email or by
telephone. We recommend you use telephone contact only for serious requests
that require immediate attention, such as a production system down. The support
website is the preferred way to contact Technical Support.

Website: http://techsupport.gemstone.com
Email: techsupport@gemstone.com
Telephone: (800) 243-4772 or (503) 533-3503

If you are reporting an emergency by telephone, select the option to transfer your
call to the Technical Support administrator, who will take down your customer
information and immediately contact an engineer. Please also open a ticket on the
website, and include error and log information. Non-emergency requests

GBS User’s Guide

8 VMware, Inc. June 2011

received by telephone will be placed in the normal support queue for evaluation
and response.

When submitting a request, please include the following information:

 • Your name, company name, and GemStone server license number.

 • The versions of all related GemStone products, and of any other related
products, such as client Smalltalk products.

 • The operating system and version you are using.

 • A description of the problem or request.

 • Exact error message(s) received, if any, including log files if appropriate.

GemStone Technical Support is available from 8am to 5pm Pacific Time, Monday
through Friday, excluding VMware/GemStone holidays.

24x7 Emergency Technical Support
GemStone Technical Support offers, at an additional charge, 24x7 emergency
technical support. This support entitles customers to contact us 24 hours a day, 7
days a week, 365 days a year, if they encounter problems that cause their
production application to go down, or that have the potential to bring their
production application down. For more details, contact your GemStone account
manager.

Training and Consulting
Consulting is available to help you succeed with GemStone products. Training for
GemStone software is available at your location, and training courses are offered
periodically at our offices in Beaverton, Oregon. Contact your GemStone account
representative for more details or to obtain consulting services.

Contents

June 2011 VMware, Inc. 9

Chapter 1. Basic Concepts
1.1 The GemStone Object Server . 20
1.2 GemBuilder for Smalltalk . 21

The Programming Interface . 22
Transparent access to GemStone 22

GemStone’s Smalltalk Language . 23
The GemBuilder Tools . 24

1.3 Designing a GemStone Application: an Overview 25
Which objects should be stored and shared? 25
Which objects should be secured? . 26
Which objects should be connected? . 26
How should transactions be handled? 27
How can performance be improved? . 27

1.4 Delivery and Deployment . 27
Public and Private Classes and Methods 28

GBS User’s Guide

10 VMware, Inc. June 2011

Chapter 2. Communicating with the GemStone Object Server
2.1 Client Libraries . 32
2.2 GemStone Sessions . 32

RPC and Linked Sessions . 33
2.3 Session Control in GemBuilder . 34

Session Parameters . 35
Defining Session Parameters Programmatically. 36

2.4 Logging In to and Logging Out of GemStone 38
Logging In to GemStone . 38
The Current Session . 38
Logging Out of GemStone . 40

2.5 Session Dependents . 40

Chapter 3. Sharing Objects
3.1 Which Objects to Share? . 46
3.2 Class Mapping . 47

Automatic Class Generation and Mapping 48
Schema Mapping . 49
Behavior Mapping . 49
Mapping and Class Versions . 50

3.3 Forwarders . 50
Sending Messages. 51

Arguments . 52
Results . 52

Defunct Forwarders . 52
3.4 Replicates . 53

Synchronizing State. 54
Faulting. 54
Flushing . 55
Marking Modified Objects Dirty Automatically 55
Marking Modified Objects Dirty Manually 56

Minimizing Replication Cost . 56
Instance Variable Mapping. 57
Stubbing . 59
Replication Specifications . 64

GBS User’s Guide

June 2011 VMware, Inc. 11

Forwarding Messages to Server Objects
Through Replicates and Stubs . 70
Customized Flushing and Faulting . 70

Modifying Instance Variables During Faulting 70
Modifying Instance Variables During Flushing 72
Mapping Classes With Different Formats. 74

Limits on Replication . 74
Replicating Client Smalltalk BlockClosures. 75
Block Callbacks . 78
Replicating Collections with Instance Variables 79

3.5 Precedence of Replication Controls . 80
3.6 Evaluating Smalltalk Code on the GemStone server 80
3.7 Converting Between Forms . 82

Chapter 4. Connectors
4.1 Connecting Root Objects . 88

Scope . 90
Verifying Connections . 91
Initializing . 91

Updating Class Definitions . 92
4.2 Connecting and Disconnecting . 92
4.3 Kinds of Connectors . 93

Connection Order . 94
Lookup . 94

Connecting by Name . 94
Connecting by Identity: Fast Connectors 95

4.4 Making and Managing Connectors . 96
Making Connectors Programmatically 96

Creating Connectors. 97
Setting the Postconnect Action 97
Adding Connectors to a Connector List 98
Session Control. 99

Chapter 5. Managing Transactions
5.1 Transaction Management: an Overview . 104
5.2 Operating Inside a Transaction . 105

GBS User’s Guide

12 VMware, Inc. June 2011

Committing a Transaction . 106
Aborting a Transaction . 107
Avoiding or Handling Commit Failures 107

5.3 Operating Outside a Transaction . 108
Being Signaled to Abort . 109

5.4 Transaction Modes . 110
Automatic Transaction Mode . 110
Manual Transaction Mode . 111
Choosing Which Mode to Use . 111
Switching Between Modes . 112

5.5 Managing Concurrent Transactions . 112
Setting Locks . 113
Releasing Locks Upon Aborting or Committing 115

5.6 Reduced-Conflict Classes . 116
5.7 Changed Object Notification . 116
5.8 Gem-to-Gem Notification . 117
5.9 Asynchronous Event Error Handling . 119

Chapter 6. Security and Object Access
6.1 GemStone Security . 121

Login Authorization . 122
The UserProfile . 122

Controlling Visibility of Objects with SymbolLists 122
System Privileges . 123
Protecting Methods . 123
Object-level Security . 123

Object Security Policies . 123

Chapter 7. Exception Handling
7.1 GemStone Errors and Exception Classes. 125
7.2 Handling Exceptions . 127

User-Defined Errors . 128
7.3 Interrupting GemStone Execution . 131

GBS User’s Guide

June 2011 VMware, Inc. 13

Chapter 8. Schema Modification and Coordination
8.1 Schema Modification . 134
8.2 Schema Coordination. 134

Chapter 9. Performance Tuning
9.1 Profiling . 138

Profiling Client Smalltalk Execution 138
Main Statistics . 138
Cache Inventory Statistics . 141
VSD . 141

9.2 Selecting the Locus of Control . 142
Locus of Execution . 142

Relative Platform Speeds . 142
Cost of Data Management . 142
GemStone Optimization . 143

9.3 Replication Tuning . 143
Controlling the Fault Level. 144
Preventing Transient Stubs. 144
Setting the Traversal Buffer Size . 145

9.4 Optimizing Space Management . 145
Explicit Stubbing . 145
Using Forwarders . 146

9.5 Using Primitives . 147
9.6 Multiprocess Applications . 147

Blocking and Nonblocking Protocol 147
One Process per Session . 148
Multiple Processes per Session . 148

Coordinating Transaction Boundaries. 149
Coordinating Flushing . 149
Coordinating Faulting. 149

Chapter 10. GemBuilder Configuration Parameters
10.1 Setting Configuration Parameters . 151
10.2 GemBuilder Configuration Parameters . 153

alwaysUseGemCursor . 155

GBS User’s Guide

14 VMware, Inc. June 2011

assertionChecks . 155
autoMarkDirty. 155
blockingProtocolRpc . 155
blockReplicationEnabled . 156
blockReplicationPolicy . 156
bulkLoad . 156
clientMapCapacity . 156
clientMapFinalizerPriority . 157
confirm . 158
connectorNilling. 158
connectVerification . 158
defaultFaultPolicy . 159
deprecationWarnings . 159
eventPollingFrequency . 159
eventPriority . 160
faultLevelLnk . 160
faultLevelRpc . 160
forwarderDebugging . 161
freeSlotsOnStubbing . 161
fullCompression . 161
gcedObjBufferSize. 162
generateClassConnectors . 162
generateClientClasses. 162
generateServerClasses . 163
InitialDirtyPoolSize . 163
libraryName . 164
pollForAsynchronousEvents 164
pollForRpcResponse . 165
removeInvalidConnectors . 165
replicateExceptions . 165
rpcSocketWaitTimeoutMs . 166
serverMapLeafCapacity . 166
stubDebugging . 167
traversalBufferSize . 167
verbose . 168

Chapter 11. The GemStone Tools: an Overview
11.1 GemStone Menu. 170
11.2 The GemStone Session Browser . 172

Starting the Session Browser. 172

GBS User’s Guide

June 2011 VMware, Inc. 15

Opening the Session Parameters Editor 173
Managing Session Parameters . 175

11.3 Logging In to and Logging Out of GemStone 176
Logging In to GemStone . 176
Setting the Current Session . 177
Logging Out of GemStone . 177

11.4 The Settings Browser . 178
Opening the Settings Browser 178
The Settings Browser . 178
Parameter Categorization. 179

11.5 The System Workspace . 181

Chapter 12. Using the GemStone Programming Tools
12.1 Browsing Code. 184

Symbol List Pane . 187
Class Pane . 187
Pop-up Text Pane Menu . 189

12.2 Coding . 190
About GemStone Smalltalk Classes . 190
Defining a New Class . 191

Subclass Creation Methods . 193
Private Instance Variables . 193

Modifying an Existing Class . 193
Defining Methods . 195

Public and Private Methods 195
Reserved and Optimized Selectors 195

Saving Class and Method Definitions in Files 195
Handling Errors While Filing In 197

12.3 The Connector Browser . 198
The Group Pane . 199
The Connector Pane . 200
The Control Panel . 201
Postconnect Action . 202

12.4 The Class Version Browser . 203
Menus in the Class Version Browser 204

12.5 Debugging Overview . 206
12.6 Inspectors. 207
12.7 Breakpoints. 210

GBS User’s Guide

16 VMware, Inc. June 2011

Breakpoints for Primitive Methods . 212
Breakpoints for Optimized Methods 212
The Breakpoint Browser . 212

12.8 Debugger. 213
Disabling the Debugger . 214

12.9 Stack Traces . 215

Chapter 13. Using the GemStone Administration Tools
13.1 The Security Policy Tool . 218

Security Policy Definition Area . 219
Group Definition Area . 221
Security Policy Tool Menus . 221

The File Menu . 222
Security Policy Menu . 222
Group Menu . 223
Member Menu . 223
Reports Menu . 224
Help Menu . 224

Using the Security Policy Tool. 224
Checking Security Policy Authorization 225
Changing Security Policy Authorization 225
Controlling Group Access to a Security Policy. 225

13.2 The Symbol List Browser . 226
The Clipboard . 227
Symbol List Browser Menus . 228

File Menu. 228
Mode Menu . 228
Edit Menu . 229
Object Menu . 229
Help Menu . 229

13.3 User Account Management Tools . 230
GemStone User List. 230
GemStone User Dialog . 233
Privileges Dialog . 236

GBS User’s Guide

June 2011 VMware, Inc. 17

Appendix A. Packaging Runtime Applications
A.1 Prerequisites . 237

Names . 237
Replicating Blocks . 238
Defunct Stubs and Forwarders . 238
Shared Libraries . 238

A.2 Packaging . 238

Appendix B. Client Smalltalk and GemStone Smalltalk
B.1 Language Differences . 239

Selection Blocks . 240
Array Constructors . 240

B.2 TimeZone handling . 240

GBS User’s Guide

18 VMware, Inc. June 2011

Chapter

June 2011 VMware, Inc. 19

1 Basic Concepts

This chapter describes the overall design of a GemBuilder application and presents
the fundamental concepts required to understand the interface between client
Smalltalk and the GemStone object server.

The GemStone Object Server
introduces GemStone and its architecture and explains the part each
component plays in the system.

GemBuilder for Smalltalk
outlines the basic features of GemBuilder that allow you to access GemStone
objects from your Smalltalk application, and describes the basic programming
functions that GemBuilder provides.

Designing a GemStone Application: an Overview
outlines the basic steps involved in producing a client/server application with
GemBuilder.

The GemStone Object Server GBS User’s Guide

20 VMware, Inc. June 2011

1.1 The GemStone Object Server
The GemStone object server supports multiple concurrent users of a large
repository of objects. GemStone provides efficient storage and retrieval of large
sets of objects, resiliency to hardware and software failures, protection for object
integrity, and a rich set of security mechanisms.

The GemStone object server consists of three main components: a repository for
storing persistent, shared objects; a monitor process called the Stone, and one or
more user processes, called Gems.

Figure 1.1 shows how the object server supports clients in a Smalltalk application
environment.

Figure 1.1 The GemStone Object Server

 Application B

Gem Process A
GemStone

classes and objects

Object Repository

Client Smalltalk
classes and objects

GemStone
classes and objects

Stone monitor
 process

GemStone Object Server

Relational Data

Gem Process B

 Application A
Client Smalltalk

classes and objects

The object repository is a multiuser, disk-based Smalltalk image containing shared
application objects and GemStone kernel classes. It is composed of files

Basic Concepts GemBuilder for Smalltalk

June 2011 VMware, Inc. 21

(known to GemStone as extents) that can reside on a single machine or can be
distributed among several networked hosts. The repository can also include
GemConnect objects representing data stored in third-party relational
databases.

Your Smalltalk application program treats the repository as a single unit,
regardless of where its elements physically reside.

A Gem is an executable process that your application creates when it begins a
GemStone session. A Gem acts as an object server for one session, providing a
single-user view of the multiuser GemStone repository. A Gem reads objects
from the repository, executes GemStone Smalltalk methods, and updates the
repository.

Each Gem represents a single session. An application can create more than one
session, each representing an internally-consistent single view of the
repository. When a Gem commits a transaction, it modifies the shared
repository and updates its own view of the repository.

The Stone monitor process handles locking and controls concurrent access to
objects in the repository, ensuring integrity of the stored objects. Each
repository is monitored by a single Stone.

Despite its central role in coordinating the work of all individual Gems, the
Stone is surprisingly unintrusive. To optimize throughput for all users, most
processing is handled by the Gems, which often interact directly with the
repository. The Stone intervenes only when required to ensure the integrity of
the multiuser repository.

1.2 GemBuilder for Smalltalk
GemBuilder for Smalltalk is a set of classes and primitives that can be installed in
a client Smalltalk image. With the functionality provided by GemBuilder, you can:

 • store your client Smalltalk application objects in the GemStone server;

 • import GemStone objects into client Smalltalk as client Smalltalk objects;

 • allow your application objects to be transparently replicated and maintained
both in the client and in the server, or allow some objects to reside only in the
server but be accessible on the client;

 • arrange for messages sent to client Smalltalk objects to be forwarded and
executed in the GemStone server by corresponding server objects;

GemBuilder for Smalltalk GBS User’s Guide

22 VMware, Inc. June 2011

 • use GemStone’s programming tools to develop GemStone server classes and
methods to operate on your application objects; and

 • perform certain system functions, such as committing transactions and
starting or ending GemStone sessions.

The Programming Interface
Your client Smalltalk application creates a GemStone session by using GemBuilder
to log in to GemStone, creating a Gem process to serve your application. Many
Gem processes can actively communicate with a single repository at the same time.

As Figure 1.1 illustrates, several applications can work concurrently with a single
repository, with each application viewing the repository as its own. GemStone
coordinates transactions between each of the applications and the repository.

Transparent access to GemStone

The interface between your client Smalltalk application and GemStone can be
relatively seamless.

Many of the classes in the base client Smalltalk image are mapped to comparable
GemStone server classes, and additional class mappings can be created either
automatically or explicitly. GemBuilder is also able to automatically generate
GemStone server classes from client classes, and vice versa, as necessary. Your
client objects can be replicated in the GemStone server, and GemStone server
objects can be replicated in client Smalltalk.

Only server objects can become persistent in the GemStone object repository. To
make a client Smalltalk object persistent, it must be mapped to a server object. This
mapping is a relationship between a client object and a server object, whereby each
represents the other. Once objects are mapped, GemBuilder maintains the
relationship between the shared GemStone server object and the private client
Smalltalk object, updating values from the repository to your application and vice
versa, as necessary, as well as forwarding messages between the objects. Chapter 3
describes the replication of state and forwarding of messages between client and
server objects.

Your client Smalltalk application updates shared objects in the repository by
sending a commitTransaction message to a session. With a successful commit,
changes to objects in the current session are propagated to the shared object
repository in GemStone. Once you have committed a transaction, your
application objects are updated with the most recently saved state of the
repository, incorporating changes made by other users.

Basic Concepts GemBuilder for Smalltalk

June 2011 VMware, Inc. 23

While, for the most part, GemBuilder will automatically manage objects in both the
client Smalltalk and in the GemStone server, you can exert as much control as you
want over how objects are stored and used. GemBuilder provides tools that let
you specify customized policies for translating between your client Smalltalk and
GemStone server objects.

Chapter 4 describes GemBuilder’s mechanisms for making your client Smalltalk
objects persistent, and Chapter 9 explains how to tune the system to minimize
maintenance overhead and optimize performance.

GemStone’s Smalltalk Language
GemStone provides a version of Smalltalk that supports multiple concurrent users
of the shared object repository through such features as session management,
reduced-conflict collection classes, querying, transaction management, and
persistence.

GemStone Smalltalk is like single-user client Smalltalk in both its organization and
syntax. Objects are defined by classes based on common structure and protocol
and classes are organized into an is-a hierarchy, rooted at class Object. The class
hierarchy is extensible; new classes can be added as required to model an
application. The behavior of common classes conforms to the ANSI standard for
Smalltalk. GemStone’s class hierarchy is discussed in the introductory chapter to
the GemStone Programming Guide.

The most significant difference between GemStone Smalltalk and client Smalltalk
lies in GemStone’s support for a multiuser environment in which persistent objects
can be shared among many users.

As an object server, GemStone must address the same key issues as conventional
information storage systems that support multiple concurrent users. For this
reason, GemStone’s Smalltalk includes classes for:

 • managing concurrent access to information,

 • protecting information from unauthorized access, and

 • keeping stored information secure and restoring it in the event of a failure.

You should be aware of a few differences between GemStone Smalltalk and client
Smalltalk in syntax and in the behavior of some of the classes. A summary of these
differences can be found in Appendix B.

GemBuilder for Smalltalk GBS User’s Guide

24 VMware, Inc. June 2011

The GemBuilder Tools
GemBuilder’s programming environment provides tools for programming in
GemStone Smalltalk. The following tools are described in detail in Part 2 of this
manual:

 • A GemStone System Browser lets you examine, modify, and create GemStone
classes and methods.

 • A GemStone System Workspace provides easy access to commonly used
GemStone Smalltalk expressions.

 • GemStone Inspectors let you examine and modify the state of GemStone objects.

 • A GemStone Breakpoint Browser and a Debugger let you examine and
dynamically modify the state of a running GemStone application.

 • A Session Browser allows you to manage sessions and transactions.

 • A Connector Browser allows you to manage the connectors that establish
relationships between client Smalltalk and GemStone server objects.

 • A Class Version Browser can be used for examining a class history, inspecting
instances, migrating instances, deleting versions, and moving versions to
another class history.

 • A Symbol List Browser allows you to examine the GemStone Symbol Lists
associated with UserProfiles, add and delete dictionaries from these lists, and
manipulate the entries in those dictionaries.

 • A User Account Management Tool allows you to create new user accounts,
change account passwords, and assign group membership.

 • A Security Policy Tool facilitates managing GemStone authorization at the
object level by controlling how objects are governed by security policies.

Basic Concepts Designing a GemStone Application: an Overview

June 2011 VMware, Inc. 25

1.3 Designing a GemStone Application: an Overview
Many GemStone users start with an application they have already written in
Smalltalk. Their mission is to transform that application into one that makes
meaningful use of GemStone’s features: persistence, multiuser access, security,
integrity, and the ability to store and manage large quantities of information.

As a GemStone programmer, your application design and porting efforts involve
the following tasks:

 • choosing the objects that should be stored and shared,

 • deciding which objects need to be secured,

 • establishing connections between root objects in the client and the server,

 • deciding when to commit transactions and how to handle concurrency
control, and

 • tuning your application for optimal performance.

This section gives you an overview of these steps and points you to the chapters
that discuss these topics in detail.

Which objects should be stored and shared?
Your application will typically have two kinds of objects: those that must persist
between sessions and be shared among users, and those that represent a transient
state. Your first task is to identify the objects that make up your application and
decide which ones need to be stored and shared. Making objects persistent
unnecessarily can degrade performance and complicate programming.

Use the GemStone server to store those objects that need to exist between sessions
and must be shared with other users. For example, objects representing
information in your application such as financial statements, employee health
records, or library book cards would certainly require storage in the server. Some
methods for manipulating the persistent data can also be usefully coded in
GemStone Smalltalk and stored in GemStone for improved efficiency.

You don’t need to store transient session objects that no one else will ever need on
the server; such objects can remain in the client. For example, suppose you
generate a report from the financial statements stored in GemStone. Once you
view or print the report it has served its purpose; the next time you need a report
you will generate a new one. The report and its component objects can exist
simply as client Smalltalk objects; they don’t need to be stored in GemStone.

Designing a GemStone Application: an Overview GBS User’s Guide

26 VMware, Inc. June 2011

However, you might want the classes and methods used to build the report to be
stored in GemStone so that others can use them.

Certain objects can be considered your organization’s business objects. Business
objects contain the data that give your organization its strategic, competitive
advantage; their instance variables contain information about the business process
that they model, and their methods represent actions involved in conducting
business. Keeping your business objects centralized and stored separately from the
applications that access them allows your organization to serve the needs of all
users, while still enforcing consistency and maintaining control of critical
information.

Which objects should be secured?
What security challenges does the application pose? Determine the strategy you
will use to handle those challenges. Does access to certain objects need to be
restricted to only certain authorized users? Many of your business objects may fall
into this category. If so, who should be authorized to access them, and how? Do
your users fall into groups with different access needs? Will anyone need to
execute privileged methods? The earlier you lay the groundwork for your security
needs, the easier they will be to implement. Security is discussed in detail in
Chapter 6.

Which objects should be connected?
Once you’ve decided how to partition your application objects, you will want to
set up connections between the objects that will reside on the client and those that
will reside on the server so that GemBuilder can automatically manage changes to
them and understand how to update them properly. This connection is established
by making sure a connector is defined for those objects.

A connector connects not only the immediate object but also all those objects that
it references, so you don’t need to define a connector for every object in your
application that you want to store in the GemStone server. Instead, you should
begin by identifying the subsystems in your application that define persistent
objects, and then identifying a root object in each subsystem to target with a
connector. You can find further discussion of connectors in Chapter 4.

Basic Concepts Delivery and Deployment

June 2011 VMware, Inc. 27

How should transactions be handled?
Another decision you need to make involves transactions: when to commit and
how to handle the occasional failure to commit. Do you want to use locks to
ensure a successful commit? If so, identify the places in your application where
you must acquire the locks. Concurrency control and locking are discussed in
more detail in Chapter 5.

How can performance be improved?
If— after you have built your application— you find that its performance does not
meet your expectations, you have a variety of ways to improve matters.

One of the most powerful single things you can do to improve performance is to
move some of the behavior from the client to the GemStone server and let the
GemStone Smalltalk execution engine do the work. This approach reduces
network traffic, which is a prime cause of slow performance.

Which methods might best be executed on the GemStone server? GemStone
already contains behavior for many of the common Smalltalk kernel classes and,
as mentioned earlier, the syntax and class hierarchy of GemStone’s Smalltalk
language are so similar to those of other Smalltalks that the porting effort is likely
to be relatively simple. Performance issues in general are discussed in Chapter 9.
Moving execution to the GemStone server is discussed in the section entitled
“Locus of Execution” on page 142.

Finally, you can configure the GemStone object server for maximum performance,
given the details of your application and environment. GemStone server
configuration parameters are discussed in detail in the GemStone System
Administration Guide. In addition, the GemStone Programming Guide gives a variety
of tips in the chapter entitled “Tuning Performance.”

1.4 Delivery and Deployment
GemBuilder is provided in the form of parcels or ENVY applications named
GbsRuntime, GbsTools, and CstMessengerSupport.

 • GbsRuntime and CstMessengerSupport are required for all uses of
GemBuilder. Part 1 of this manual documents the functionality provided by
GbsRuntime.

 • GbsTools contains development and administration tools that are normally
used only during development. It is almost always desirable to have GbsTools

Delivery and Deployment GBS User’s Guide

28 VMware, Inc. June 2011

present during development, but GbsTools can be omitted from most
deployed applications. Part 2 of this manual documents the use of tools
provided by GbsTools.

Public and Private Classes and Methods
GemBuilder adds many classes and methods to your client Smalltalk image. Some
of these we consider public, which means that they are designed to be referenced
directly from your applications. GemStone avoids changing public classes and
methods from release to release. Most GemBuilder classes and methods we
consider private; they are used to implement the internal workings of GemBuilder
and are not designed to be referenced directly from applications. Avoid using
private classes and methods because they may have undocumented side effects,
and because they are subject to change from release to release.

A GemBuilder class is private if its name begins with the prefix Gbx.

A GemBuilder method can be marked private in any of several ways:

 • Any method defined in a private class is private unless the class comment
indicates otherwise.

 • The selectors of private methods in base class extensions begin with the prefix
gbx.

 • Some methods specify they are private in the method comment.

 • Other methods are categorized as private in a method category marked
“private”.

In general, we encourage you to use in your applications only GemBuilder classes
and methods that are documented in this User's Guide. This User's Guide
documents the preferred way to accomplish tasks. Other public classes or methods
may be obsolete but kept for backward compatibility.

Reserved prefix

In your code, do not define methods starting the “gb”. Methods with this prefix are
reserved for GBS.

Deprecated features

GemBuilder may include features that are deprecated in the current release. This
indicates that although the feature is still functional, it may be removed in a future
release. In your applications, you should eliminate any dependencies on
deprecated GemBuilder features.

Basic Concepts Delivery and Deployment

June 2011 VMware, Inc. 29

You can find all deprecated features of GemBuilder by browsing the senders of
#deprecated:.

To help you determine whether your application uses any deprecated features,
GemBuilder by default raises a GemStone.Gbs.GbsInterfaceError
whenever a deprecated feature is used. The description of the
GbsInterfaceError gives information about the deprecated feature that was
being used.

If your application does not have an active handler for GbsInterfaceError when a
deprecated feature is used, a walkback dialog will open. Once you've noted
information about your application's use of the deprecated feature, you may
proceed from the walkback or debugger, and your application will continue. This
is a useful technique for a developer testing for use of deprecated features.

Once you've noted a particular use of a deprecated feature, you can avoid further
walkbacks from that use until you are able to remove that use from your
application. You can do this by adding a handler for the GbsInterfaceError
that resumes the exception, at the point in your application that the deprecated
feature is used.

You may also set the GemBuilder configuration parameter
deprecationWarnings to false, as described in Chapter 10. When
deprecationWarnings is false, any code in the client image may use any
deprecated GemBuilder feature without raising a GbsInterfaceError.

Delivery and Deployment GBS User’s Guide

30 VMware, Inc. June 2011

Chapter

June 2011 VMware, Inc. 31

2 Communicating with
the GemStone Object
Server

When you install GemBuilder, your Smalltalk image becomes “GemStone-
enabled,” meaning that your image is equipped with additional classes and
methods that allow it to work with shared, persistent objects through a multi-user
GemStone object server. Your Smalltalk image remains a single-user application,
however, until you connect to the object server. To do so, your application must
log in to a GemStone object server in much the same way that you log in to a user
account in order to work on a networked computer system.

This chapter explains how to communicate with the GemStone object server by
initiating and managing GemStone sessions.

Client Libraries
explains how to setup to use the correct client shared libraries.

GemStone Sessions
introduces sessions and explains the difference between RPC and linked
sessions.

Session Control in GemBuilder
explains how to use the classes GbsSession, GbsSessionManager, and
GbsSessionParameters to manage GemBuilder sessions.

Logging In to and Logging Out of GemStone
describes how to log in and out of GemStone sessions programmatically.

Client Libraries GBS User’s Guide

32 VMware, Inc. June 2011

Session Dependents
explains how to use the Smalltalk dependency mechanism to coordinate the
effects of session management actions on multiple application components.

2.1 Client Libraries
Before you can log in to a GemStone object server, in addition to having GBS
loaded in your image, you must have the client libraries available for loading into
your image. The client libraries are provided with the GemStone object server
product release. You must use the correct client libraries for the particular version
of the object server you wish to connect to, and for the platform that the client
Smalltalk image is running on. If you update to a new version of GBS, but continue
to use the same version of the GemStone server, the same clientLibraries will be
used. The client libraries must be on the platform-dependent search path.

To set the client library, use the GbsConfiguration setting “libraryName”. You
may also execute:

GbsConfiguration current libraryName: ‘libraryName’

For more information on this setting, see Chapter 10, “GemBuilder Configuration
Parameters.” To determine the correct client library name to use for your
GemStone/S server product and version, see the GemBuilder for Smalltalk
Installation Guide.

2.2 GemStone Sessions
An application connects to the GemStone object server by logging in to the server
and disconnects by logging out. Each logged-in connection is known as a session
and is supported by one Gem process. The Gem reads objects from the repository,
executes GemStone Smalltalk methods, and propagates changes from the
application to the repository.

Each session presents a single-user view of a multiuser GemStone repository. Most
applications use a single session per client; but an application can create multiple
sessions from the same client, one of which is the current session at any given time.
You can manage GemStone sessions either through your application code or
through the Session Browser.

Communicating with the GemStone Object Server GemStone Sessions

June 2011 VMware, Inc. 33

RPC and Linked Sessions
A Gem can run as a separate operating system process and respond to Remote
Procedure Calls (RPCs) from its client, in which case the session it supports is
called an RPC session.

On platforms that host the GemStone object server and its runtime libraries, one
Gem can be integrated with the application into a single operating system process.
That Gem is called a linked session. When running linked, an application and its
Gem must run on the same machine and the runtime code requires additional
memory.

An RPC session offers more flexibility because the application and its Gem are
separate processes that can run on different hosts in a network. Any GemBuilder
client can create RPC sessions. Where a linked session is supported, an application
can create multiple sessions, but only one can be linked. To suppress linked
sessions, forcing all Gems to run as RPC processes, you can load the RPC-only
version of the shared libraries.

Figure 2.1 shows an application with two logged-in sessions. Gem A is a linked
session, sharing the client Smalltalk application's process space, while Gem B is an
RPC session running as a separate process.

Session Control in GemBuilder GBS User’s Guide

34 VMware, Inc. June 2011

Figure 2.1 RPC and Linked Gem Processes

 Application

Gem Process B

Object Repository

Stone monitor
 process

GemStone Object Server

Gem Process A

(RPC session)(linked session)

 Smalltalk
Client

2.3 Session Control in GemBuilder
Managing GemStone sessions involves many of the same activities required to
manage user sessions on a multi-user computer network. To manage GemStone
sessions, you need to do various operations:

 • Identify the object server to which you wish to connect.

 • Identify the user account to which you wish to connect.

 • Log in and log out.

 • List active sessions.

 • Designate a current session.

 • Send messages to specific sessions.

Three GemBuilder classes provide these session control capabilities: GbsSession,
GbsSessionParameters, and GbsSessionManager.

Communicating with the GemStone Object Server Session Control in GemBuilder

June 2011 VMware, Inc. 35

GbsSession
An instance of GbsSession represents a GemStone session connection. A
successful login returns a new instance of GbsSession. You can send
messages to an active GbsSession to execute GemStone code, control
GemStone transactions, compile GemStone methods, and access named
server objects.

GbsSessionParameters
Instances of GbsSessionParameters store information needed to log in to
GemStone. This information includes the Stone name, your user name,
passwords, and the set of connectors to be connected at login.

GbsSessionManager
There is a single instance of GbsSessionManager, named GBSM. Its job is
to manage all GbsSessions logged in from this client, support the notion of
a current session (explained in the following section), and handle other
miscellaneous GemBuilder matters. Whenever a new GbsSession is
created, it is registered with GBSM. GBSM shuts down any server
connections before the client Smalltalk quits.

Session Parameters
To initiate a GemStone session, you must first identify the object server and user
account to which you wish to connect. This information is stored in an instance of
GbsSessionParameters and added to a list maintained by GBSM. You can provide
the information through window-based tools or programmatically. Both methods
are described in later sections. In either case, you must supply these items:

 • The name of the GemStone repository
For a Stone running on a host other than the Gem host (described below), you
must include the server’s hostname in Network Resource String (NRS) format.
(NRS format is described in an appendix to the System Administration Guide for
GemStone/S 64 Bit.) For instance, for a Stone named “gs64stone” on a host
named “pelican”, specify an NRS string of the form:

!@pelican!gs64stone

 • GemStone user name and GemStone password
This user name and password combination must already have been defined in
GemStone by your GemStone data curator or system administrator.
(GemBuilder provides a set of tools for managing user accounts—see “User
Account Management Tools” on page 230.) Because GemStone comes
equipped with a data curator account, we show the DataCurator user name in
many of our examples.

Session Control in GemBuilder GBS User’s Guide

36 VMware, Inc. June 2011

 • Host username and Host password (not required for a linked session, or if
netldi is run in guest mode)
This user name and password combination specifies a valid login on the Gem’s
host machine (the network node specified in the Gem service name, described
below). Do not confuse these values with your GemStone username and
password. You do not need to supply a host user name and host password if
you are starting a linked Gem process. However, an application that must
control more than one GemStone session can use a linked interface for only
one session. Other sessions must use the RPC interface.

 • Gem service (not required for a linked session)
The name of the Gem service on the host computer (that is, the Gem process to
which your GemBuilder session will be connected). For most installations, the
Gem service name is gemnetobject.

You can specify that the gem is to run on a remote host by using an NRS for
the Gem service name For example:

!@pelican!gemnetobject

You do not need to supply a Gem Service name if you are starting a linked
Gem process.

Once defined, an instance of GbsSessionParameters can be used for more than one
session. Thus, a session description that includes the RPC-required parameters can
be used for both linked and RPC logins.

Defining Session Parameters Programmatically
The instance creation method for a full set of RPC parameters is:

GbsSessionParameters newWithGemStoneName: aGemStoneName
 username: aUsername
 password: aPassword
 hostUsername: aHostUsername
 hostPassword: aHostPassword
 gemService: aGemServiceName

For a shorter set of parameters that supports only linked logins, you can use a
shorter creation method:

GbsSessionParameters newWithGemStoneName: aGemStoneName
 username: aUsername
 password: aPassword

Communicating with the GemStone Object Server Session Control in GemBuilder

June 2011 VMware, Inc. 37

Storing Session Parameters for Later Use

If you want the GemBuilder session manager to retain a copy of your newly-
created session description for future use, you must register it with GBSM:

GBSM addParameters: aGbsSessionParameters

Once registered with GBSM and saved with the image, the parameters are
available for use in future invocations of the image. In addition, the Session
Browser and other login prompters make use of GBSM’s list of session parameters.

Executing the expression GBSM knownParameters returns an array of all
GbsSessionParameters instances registered with GBSM.

To delete a registered session parameters object, send removeParameters: to
GBSM:

GBSM removeParameters: aGbsSessionParameters

Password Security

You can control the degree of security that GemBuilder applies to the passwords
in a session parameters object. For example, when you create the parameters
object, you can specify the passwords as empty strings. When the parameters
object is subsequently used in a login message, GemBuilder will prompt the user
for the passwords.

For example:

mySessionParameters := GbsSessionParameters
newWithGemStoneName: '!@pelican!gs64stone'
username: 'DataCurator'
password: ''
hostUsername: 'lisam'
hostPassword: ''
gemService: '!@pelican!gemnetobject'

If convenience is more important than security, you can fill in the passwords and
then instruct the parameters object to retain the password information for future
use:

mySessionParameters rememberPassword: true;
 rememberHostPassword: true

The default “remember” setting for both passwords is false, which causes the
stored passwords to be erased after login.

Logging In to and Logging Out of GemStone GBS User’s Guide

38 VMware, Inc. June 2011

2.4 Logging In to and Logging Out of GemStone
Before you can start a GemStone session, you need to have a Stone process and, for
an RPC session, a NetLDI (network long distance information) process running.

Depending on the terms of your GemStone license, you can have many sessions
logged in at once from the same GemBuilder client. These sessions can all be
attached to the same GemStone repository, or they can be attached to different
repositories.

Logging In to GemStone
The protocol for logging in is understood both by GBSM and by instances of
GbsSessionParameters. To log in using a specific session parameters object, send a
login message to the parameters object itself:

mySession := aGbsSessionParameters login

To start multiple sessions with the same parameters, simply repeat these login
messages.

An application can also send a generic login message to GBSM:

mySession := GBSM login

This message invokes an interactive utility that allows you to select among known
GbsSessionParameters or to create a new session parameters object using the
Session Parameters Editor.

A successful login returns a unique instance of GbsSession. (An unsuccessful login
attempt returns nil.) Each instance of GbsSession maintains a reference to that
session’s parameters, which you can retrieve by sending:

myGbsSessionParameters := aGbsSession parameters

GBSM maintains a collection of currently logged in GbsSessions. You can
determine if any sessions are logged in with GBSM isLoggedIn and you can
execute GBSM loggedInSessions to return an array of currently logged in
GbsSessions.

The Current Session
When a new GbsSession is created, it is registered with GBSM, which maintains a
variable that represents the current session. When a session logs in, it becomes the
current session. If you execute code in a GemStone tool, the code is evaluated in
the current session, or in the session that was current when you opened that

Communicating with the GemStone Object Server Logging In to and Logging Out of GemStone

June 2011 VMware, Inc. 39

tool. If you send a message to GBSM that is intended for a session, the message is
forwarded to the current session.

You can send a message directly to any logged-in GbsSession, even when it is not
the current session. If you send a specific session a message that executes code,
that code is evaluated in the receiving session, regardless of whether it is the
current session.

Most applications have only one session logged in at a time. In this case, that
session will always be the current session, and it is safe to send messages to GBSM
for forwarding to the session.

However, if your application concurrently logs in more than one session, your
application should send messages directly to each session. If your application
client uses multiple Smalltalk processes it is very difficult to accurately coordinate
the changing of the current session.

Sending the message GBSM currentSession returns the current
GbsSession. You can change the current session in a workspace by executing an
expression of the following form:

GBSM currentSession: aGbsSession.

Your application can make another session the current session by executing code
like that shown in Example 2.1:

Example 2.1

|s1 s2|
 s1 := GBSM login.
 s2 := GBSM login.
GBSM currentSession: s1. "Make s1 current"
 .
 . "Do some work"
 .
GBSM currentSession: s2. "Make s2 current"

Each GemStone browser, inspector, debugger, and breakpoint browser is attached
to the instance of GbsSession that was the current session when it opened. For
example, you can have two browsers open in two different sessions, such that
operations performed in each browser are applied only to the session to which that
browser is attached.

Workspaces, however, are not session-specific. Executing a GS-Do it in a
workspace will execute in the current session.

Session Dependents GBS User’s Guide

40 VMware, Inc. June 2011

Logging Out of GemStone
To instruct a session to log itself out, send logout to the session object:

aGbsSession logout

Or, you can execute the more generic instruction:

GBSM logout

This message prompts you with a list of currently logged-in sessions from which
to choose.

Before logging out, GemBuilder prompts you to commit your changes, if the
GbsConfiguration setting confirm is true (it is true by default). If you log out after
performing work and do not commit it to the permanent repository, the
uncommitted work you have done will be lost.

If you have been working in several sessions, be sure to commit only those sessions
whose changes you wish to save.

2.5 Session Dependents
An application can create several related components during a single GemBuilder
session. When one of the components commits, aborts, or logs out, the other
components can be affected and so may need to coordinate their responses with
each other. In the GemBuilder development environment, for example, you can
commit by clicking on a button in the Session Browser. But before the commit takes
place, all other session-dependent components are notified that a commit is about
to occur. So a related application component, such as an open browser containing
modified text, prompts you for permission to discard its changes before allowing
the commit to proceed.

Through the Smalltalk dependency mechanism, any object can be registered as a
dependent of a session. In practice, a session dependent is often a user-visible
application component, such as a browser or a workspace. When one application
component asks to abort, commit, or log out, the session asks all of its registered
dependents to approve before it performs the operation. If any registered
dependent vetos the operation, the operation is not performed and the method
(commitTransaction, abortTransaction, etc.) returns nil.

To make an object a dependent of a GbsSession, send:

mySession addDependent: myObj

Communicating with the GemStone Object Server Session Dependents

June 2011 VMware, Inc. 41

To remove an object from the list of dependents, send the following message:

mySession removeDependent: myObj

So, for example, a browser object might include code similar to Example 2.2 in its
initialization method:

Example 2.2

| mySession |
mySession := self session.
"Add this browser to the sessions dependents list"
(session dependents includes: self)

ifFalse: [session addDependent: self]
...

When a session receives a commit, abort, or logout request, it sends an
updateRequest: message to each of its dependents, with an argument
describing the nature of the request. Each registered object should be prepared to
receive the updateRequest: message with any one of the following aspect
symbols as its argument:

#queryCommit
The session with which this object is registered has received a request to
commit. Return true to allow the commit to take place or false to prevent it.

#queryAbort
The session with which this object is registered has received a request to abort.
Return true to allow the abort to take place or false to prevent it.

#queryEndSession
The session with which this object is registered has received a request to
terminate the session. Return true to allow the logout to take place or false to
prevent it.

Example 2.3 shows how a session dependent might implement an
updateRequest: method.

Session Dependents GBS User’s Guide

42 VMware, Inc. June 2011

Example 2.3

updateRequest: aspect

"The session I am attached to wants to do something.
 Return a boolean granting or denying the request."

^(#(queryAbort queryCommit queryEndSession)
 includes: aspect)
 ifTrue: ["My session wants to commit or abort.
 OK unless user doesn’t want to."
 self askUserForPermission]
 ifFalse: ["Let any other action occur."
 true]

After the action is performed, the session sends self changed: with a parameter
indicating the type of action performed. This causes the session to send an
update: message to each of the registered dependents with one of the following
aspect symbols:

#committed
All registered objects have approved the request to commit, and the
transaction has been successfully committed.

#aborted
All registered objects have approved the request to abort, and the transaction
has been aborted.

#sessionTerminated
The request to log out has been approved and the session has logged out.

Each registered dependent should be prepared to receive an update: message
with one of the above aspect symbols as its argument. Example 2.4 shows how a
session dependent might implement an update: method.

Communicating with the GemStone Object Server Session Dependents

June 2011 VMware, Inc. 43

Example 2.4

update: aSymbol
"The session I am attached to just did something.
 I might need to respond."

(aSymbol = #sessionTerminated) ifTrue: [
"The session this tool is attached to has logged out
 - close ourself."
self builder notNil ifTrue:

[self closeWindow]]

Figure 2.2 summarizes the sequence of events that occurs when a session queries
a dependent before committing. In the figure, the Session Browser sends a commit
request (commitTransaction) to a session (1). The session sends
updateRequest: #queryCommit to each of its dependents (2). If every
dependent approves (returns true), the commit proceeds (4). Following a
successful commit, the session notifies its dependents that the action has occurred
by sending update: #committed to each (5).

Session Dependents GBS User’s Guide

44 VMware, Inc. June 2011

Figure 2.2 Committing with Approval From a Session Dependent

Session
Session Browser

Class Browser

GemStone
Repository

(1) Commit Request

(2) Update Request (3) Request

(4) Commit

Approved

(5) Update

(Dependent of Session)

Chapter

June 2011 VMware, Inc. 45

3 Sharing Objects

This chapter describes how GemBuilder shares objects with the GemStone/S
object repository.

Which Objects to Share?
is an overview of the process of determining how to make good use of
GemBuilder’s resources, and introducing forwarders, replicates, and stubs.

Class Mapping
explains how classes are defined and how forwarders, stubs, and replicates
depend on them.

Forwarders
explains how to use forwarders to store all an object’s state and behavior in one
object space.

Replicates
explains replicating GemStone server objects in client Smalltalk, or vice-versa;
describes the processes of propagating changes to keep objects synchronized;
presents various mechanisms to minimize performance costs; presents further
details.

Precedence of Replication Controls
discusses the various ways replication mechanisms interact, and describes

Which Objects to Share? GBS User’s Guide

46 VMware, Inc. June 2011

how to determine whether an application object becomes a forwarder, stub, or
replicate.

Converting Between Forms
lists protocol for converting from and to delegates, forwarders, stubs,
replicates, and unshared client objects.

3.1 Which Objects to Share?
Working with your client Smalltalk, you had one execution engine—the virtual
machine—acting on one object space—your image. Now that you’ve installed
GemBuilder, you have two execution engines and two object spaces, one of which
is a full-fledged object repository for multiuser concurrent access, with transaction
control, security protections, backups and logging.

What’s the best way to make use of these new resources?

Objects represent both state and behavior. Therefore, you have two basic
decisions:

 • Which state should reside on the client, which on the server, and which in both
object spaces?

 • Which behavior should reside on the client, which on the server, and which in
both object spaces?

Ultimately, the answer is dictated by the unique logic of your specific problem and
solution, but these common patterns emerge:

Client presents user interface only; state (domain objects) and application
logic reside on server; server executes all but user interface code. A web-
based application that uses the client merely to manage the browser needs
little functionality on the client, and what it does need is cleanly delimited.

State resides on both client and server; client manages most execution;
server is used mainly as a database. A Department of Motor Vehicles could
use a repository of driver and vehicle information, properly defined, for a bevy
of fairly straightforward client applications to manage driver’s licenses,
parking permits, commercial licenses, hauling permits, taxation, and fines.

Execution occurs, and therefore state resides, on both client and server. At
specified intervals, clients of a nationwide ticket-booking network download
the current state of specific theaters on specific dates. Clients book seats and
update their local copies of theaters until they next connect to the repository.
To resolve conflicts, server and client engage in a complex negotiation.

Sharing Objects Class Mapping

June 2011 VMware, Inc. 47

For these and other solutions, GemBuilder provides several kinds of client- and
server-side objects, and a mechanism—a connector—for describing the association
between pairs of root objects across the two object spaces.

Three kinds of objects help a GemBuilder client and a GemStone server repository
share state and execution: forwarders, stubs, and replicates.

Forwarder — is a proxy: a simple object that knows only which object in the
other space it is associated with. It responds to a message by
passing it to its associated master object in the other object space,
where state is stored and execution occurs remotely. Forwarders
can be on the client, for server master objects, or on the server for
client master objects.

Replicate — is an object associated with a particular object in the other object
space. The replicate copies some or all of the other object’s state,
which it synchronizes at appropriate times. It implements all
messages it expects to receive. By default, the replicate executes
locally. However, you can use performOnGsServer: to
forward a message to the server.

Stub — is a proxy that responds to a message by becoming a replicate of
its counterpart object, then executing the message locally.
Stubbing is a way to minimize memory use and network traffic by
bringing only what is needed when it is needed.

Connector — associates a root client object with a root server object, typically
resolving objects by name, although there are other ways. When
connected, they synchronize data or pass messages in either
direction or take no action at all, as specified. For more
information on connectors, see Chapter 4.

Whatever combination of these elements your application requires, subsystems of
objects will probably reside on both the client and the server. Some subset of these
subsystems will need state or behavior on both sides: some objects will be shared.

3.2 Class Mapping
Before GemBuilder can replicate an object, it must know the respective structures
of client and repository object and the mapping between them. Although not
strictly necessary for forwarders, this knowledge improves forwarding
performance, saving GemBuilder an extra network round-trip during the initial
connection.

Class Mapping GBS User’s Guide

48 VMware, Inc. June 2011

GemBuilder uses class definitions to determine object structure. To replicate an
object:

 • both client and server must define the class, and

 • the two classes must be mapped by name or by using a class connector.

GemBuilder uses this mapping for all replication, whether at login or later.

Unlike connectors for replicates or forwarders, class connectors by default do not
update at connect time. If class definitions differ on the client and the server, it is
usually for a good reason; you probably don’t want to update GemStone with the
client Smalltalk class definition, or vice-versa.

GemBuilder predefines special connectors, called fast connectors, for the GemStone
kernel classes. For more information about fast connectors, see “Connecting by
Identity: Fast Connectors” on page 95.

If there is no connector for a class, and a mapping for that class is required,
GemBuilder will attempt to map the client and server classes with the same name.
By default, it will also create a connector for those classes. If the configuration
parameter generateClassConnectors is false, GemBuilder will still map the classes
by name, but will not create a connector. The difference is that without a connector,
the mapping only lasts until the session logs out, and any other sessions logged in
will not have that mapping. If a connector is created, it is associated with the
session parameters object, and any session logged in using that session parameters
object will have that class mapping created at login time.

Automatic Class Generation and Mapping
You can configure GemBuilder to generate class definitions and connectors
automatically. When so configured, if GemBuilder requires the GemStone server
to replicate an instance of a client class that is not already defined on the server,
then at the first access, GemBuilder generates a server class having the same
schema and position in the hierarchy, and a class connector connecting it to the
appropriate client class. Conversely, if the client must replicate an instance of a
GemStone class that is not already defined in client Smalltalk, GemBuilder
generates the client Smalltalk class and the appropriate class connector. If
superclasses are also undefined, GemBuilder generates the complete superclass
hierarchy, as necessary.

You can control automatic class generation with the configuration parameters
generateServerClasses and generateClientClasses (described starting
on page 162). These settings are global to your image.

Sharing Objects Class Mapping

June 2011 VMware, Inc. 49

 • If you have disabled automatic generation of GemStone classes by setting
generateServerClasses to false (the default), situations that would
otherwise generate a server class instead raise the exception
GbsClassGenerationError.

 • If you have disabled automatic generation of client Smalltalk classes by setting
generateClientClasses to false (the default), situations that would
otherwise generate a client Smalltalk class instead raise the exception
GbsClassGenerationError.

 • You can disable class connector generation by setting
generateClassConnectors to false. When classes are generated or
mapped by name, no connector is generated.

GemBuilder deposits automatically generated GemStone server classes in the
GemStone symbol dictionary UserClasses, which it creates if necessary.
Automatically generated client Smalltalk classes are deposited in the current
package.

Automatic class generation is primarily useful as a development-time
convenience. In an application runtime environment, we recommend having all
necessary classes predefined in both object spaces, and having a connector defined
for each class before logging in. This can improve performance by avoiding
unnecessary work when the class is first accessed.

Schema Mapping
By default, when you map a client class to a GemStone server class, GemBuilder
automatically maps all instance variables whose names match, regardless of the
order in which they are stored. (You can change this default mapping to
accommodate nonstandard situations.)

If you later change either of the mapped class definitions, GemBuilder
automatically remaps identically named instance variables.

Behavior Mapping
When GemBuilder generates classes automatically, it only copies the definition of
the class, not the methods of the class.

Replicated instances depend on methods implemented in the object space in which
they execute. During development, it may be simplest to use GemBuilder’s
programming tools to implement the same behavior in both spaces. For reliability
and ease of maintenance, however, some decide to remove unnecessary

Forwarders GBS User’s Guide

50 VMware, Inc. June 2011

duplication from production systems and to define behavior only where it
executes.

Mapping and Class Versions
Unlike the client Smalltalk language, GemStone Smalltalk defines class versions:
when you change a class definition, you make a new version of the class, which is
added to an associated class history. (For details, see the chapter entitled “Class
Versions and Instance Migration” in the GemStone Programming Guide.)

If you change a class definition on the client or server, and decide to update one
class definition with the other, the result depends on the direction of the update:

 • Updating a client Smalltalk class from a GemStone server class regenerates the
client class and recompiles its methods.

 • Updating a GemStone server class from a client Smalltalk class creates a new
version of the class.

NOTE
A class connector connects to a specific GemStone class version, the
version that was in effect when the connector was connected. Instances
of a given class version are not affected by a connector connected to
another class version.

Migration can affect this issue. See Chapter 8, “Schema Modification
and Coordination.”

3.3 Forwarders
The simplest way to share objects is with forwarders, simple objects that know just
one thing: to whom to forward a message. A forwarder is a proxy that responds to
messages by forwarding them to its counterpart in the other object space.

Forwarders are particularly useful for large collections, generally resident on the
GemStone server, whose size makes them expensive to replicate and cumbersome
to handle in a client image.

Forwarders are of two kinds:

 • The most common kind of forwarder is a forwarder to the server: a client
Smalltalk object, an instance of GbsFowarder, that knows only which
GemStone server object it represents. It responds to all messages by passing
them to the appropriate server object, where its associated state resides and

Sharing Objects Forwarders

June 2011 VMware, Inc. 51

behavior is implemented. (For historical reasons, this is the kind of forwarder
usually meant when a discussion merely says “forwarder.” This kind of
forwarder is also called a server forwarder.)

 • A forwarder to the client is a GemStone server object that knows only which
client Smalltalk object it represents. It responds to all messages by passing
them to its associated client Smalltalk object, where state resides and behavior
is implemented.

You can create forwarders in several ways:

 • Create a connector with a postconnect action of #forwarder or
#clientForwarder. For example, connect the server global variable
BigDictionary as a forwarder to the server so that it isn’t replicated in the
client.

 • Specify that a given instance variable must always appear on the client as a
forwarder to the server (using a replication specification, discussed starting on
page 64). For example, a client class might implement a specification that
declares the instance variable inventory as a forwarder to the server.

 • Prefix fw to a method name to return a forwarder from any message-send to
the server. For example, to return a forwarder from a GemStone server name
lookup, send the GbsSession fwat: or fwat:ifAbsent: instead of at: or
at:ifAbsent:.

 • Override all these by implementing a class method
instancesAreForwarders on the client class to return true, and all
instances of that class and its subclasses will be forwarders to the server.
Subclasses of GbsServerClass already respond true to this message;
GbsServerClass is an abstract class, and all instances that inherit from it
become forwarders to the server. When sent to a class that inherits from
GbsServerClass, the instance creation methods new and new: create a new
instance of the class on the server and return a forwarder to that instance.

Sending Messages
On the client, when a forwarder to the server receives a message, it sends the
message to its counterpart on the GemStone server—presumably an instance that
can respond meaningfully. The target server object’s response is then returned to
the forwarder on the client, which then returns the result.

When a forwarder to the client receives a message on the server, it forwards the
message to the full-fledged client object to which it is connected. This object’s

Forwarders GBS User’s Guide

52 VMware, Inc. June 2011

response is returned to the client forwarder, which returns the result represented
as a server object.

Arguments

Before a message is forwarded to the GemStone server, arguments are translated
to server objects. As a message is forwarded to the client, its arguments are
translated to client Smalltalk objects.

When an argument is a block of executable code, special care is required: for
details, see “Replicating Client Smalltalk BlockClosures” on page 75.

Results

The result of a message to a client forwarder is a GemStone Smalltalk object in the
GemStone server.

The result of a message to a server forwarder is the client Smalltalk object
connected to the server object returned by GemStone—usually a replicate,
although a forwarder might be desirable under certain circumstances.

To ensure a forwarder result, prefix the message to the forwarder with the
characters fw. For example:

 • aForwarder at: 1 returns a replicate of the object at index 1.

 • aForwarder fwat: 1 returns a forwarder to the object at index 1.

Defunct Forwarders
A forwarder contains no state or behavior in one object space, relying on the
existence of a valid instance in the other. When a session logs out of the server,
communication between the two spaces is interrupted. Forwarders that relied on
objects in that session can no longer function properly. If they receive a message,
GemBuilder raises an error complaining of either an invalid session identifier or a
defunct forwarder.

You cannot proceed from either of these errors; an operation that encounters one
must restart (presumably after determining the cause and resolving the problem).

GemBuilder cannot safely assume that a given server object will retain the same
object identifier (OOP) from one session to the next. Therefore, you can’t fix a
defunct forwarder error simply by logging back in.

(If a connector has been defined for that object or for its root, then logging back in
will indeed fix the error, because logging back in will connect the variables. But in

Sharing Objects Replicates

June 2011 VMware, Inc. 53

that case, it’s the connector, not the forwarder, that repairs damaged
communications.)

Consider the following forwarder for the global BigDictionary:

Example 3.1

conn := GbsNameConnector
clientName: #BigDictionary
serverName: #BigDictionary.

conn beForwarderOnConnect.
GBSM addGlobalConnector: conn

When a GemBuilder session logs into the GemStone server, BigDictionary
becomes a valid forwarder to the current server BigDictionary. But when no
session is logged into the server, sending a message to BigDictionary results in a
defunct forwarder error.

GemBuilder’s configuration parameter connectorNilling, when true, assigns each
connector’s variables to nil on logout. This applies only to session-based name,
class variable, or class instance variable connectors that have a postconnect action
of #updateST or #forwarder (See “Connectors” on page 87). This usually
prevents defunct stub and forwarder errors, replacing them with nil
doesNotUnderstand errors.

3.4 Replicates
Sometimes it’s undesirable to dispatch a message to the other object space for
execution—sometimes local execution is desirable, even necessary, for example, to
reduce network traffic. When local state and behavior is required, share objects
using replicates instead of forwarders. Replicates are particularly useful for small
objects, objects having visual representations, and objects that are accessed often
or in computationally intensive ways.

Like a forwarder, a replicate is a client Smalltalk object associated with a server
object that the replicate represents. Unlike a forwarder, replicates also hold (some)
state and implement (some) behavior. Replicates synchronize their state with that
of their associated server object.

To do so, GemBuilder must know about the structure of the two objects and the
mapping between those structures. GemBuilder manages this mapping on a class
basis: each replicate must be an instances of a class whose definition is mapped to

Replicates GBS User’s Guide

54 VMware, Inc. June 2011

the definition of the corresponding class in the server object space. GemBuilder
handles many obvious cases automatically, but nonstandard mappings require
you to implement certain instance and class methods. Nonstandard mappings are
discussed starting on page 57.

Synchronizing State
After a relationship has been established between a client object and a GemStone
server object, GemBuilder keeps their states synchronized by propagating changes
as necessary.

When an object changes in the server, GemBuilder automatically updates the
corresponding client Smalltalk replicate. By default, GemBuilder also detects
changes to client Smalltalk replicates and automatically updates the
corresponding server object.

The stages and terminology of this synchronization are as follows:

 • When an object is modified in the client, leaving its server counterpart out of
date, the client object is now referred to as dirty.

 • When the state of dirty client objects is transferred to their corresponding
server objects, this is called flushing.

 • When a server object is modified in the server, leaving its client counterpart
out of date, the server object is now dirty. This can occur during execution of
server Smalltalk, or at a transaction boundary when changes committed by
other sessions become visible to your session.

 • When the state of dirty server objects is transferred to their corresponding
client objects, this is called faulting.

Together, GemBuilder and the GemStone server manage the timing of faulting and
flushing.

Faulting

GemBuilder faults objects automatically when required. Faulting is required when
a stub receives a message, requesting it to turn itself into a replicate. (see stubbing
on page 59)

Faulting may also be required when:

 • Connectors connect; this typically occurs at login, the beginning of a
GemStone session, but you can connect and disconnect connectors explicitly
during the course of a session using either code or the Connector Browser.

Sharing Objects Replicates

June 2011 VMware, Inc. 55

Faulting may or may not occur upon connection, depending on the post-
connect action specified for the connector.

 • A server object that has been replicated to the client is modified on the server.
This can happen in two cases:

1. GemStone Smalltalk execution in your session modifies the state of the
object. GemStone Smalltalk execution occurs when a forwarder receives a
message, or in response to any variant of GbsSession >> evaluate:.

2. Your session starts, commits, aborts, or continues a transaction—passes a
transaction boundary—which refreshes your session's private view of the
repository. If the server object has been changed by some other concurrent
session, and that change was committed, the object's new state will be
visible when your session refreshes its view.

In both of these cases, the replicate's state is now out of date, and cannot be
used until updated by faulting. Depending on the replicate's faultPolicy (see
page 62) the new state will either be faulted immediately, or the replicate
becomes a stub, and will be faulted the next time it receives a message.

Flushing

GemBuilder flushes dirty client objects to the GemStone server at transaction
boundaries, immediately before any GemStone Smalltalk execution, or before
faulting a stub.

Flushing is not the same as committing. When GemBuilder flushes an object, the
change becomes part of the session’s private view of the GemStone repository, but
it doesn’t become part of the shared repository until your session commits—only
then are your changes accessible to other users.

For GemBuilder to flush a changed object to the server, that object must be marked
dirty, that is, GemBuilder must be made aware that the object has changed. Objects
are, by default, marked dirty automatically. In addition, you can explicitly mark
objects dirty.

Marking Modified Objects Dirty Automatically

By default, GemBuilder uses features of the VisualWorks 7.x Object Engine to
detect modifications to replicates on the client so that modified replicates can be
automatically marked dirty. This mechanism is fast, reliable, and does not affect
client objects that are not replicates. Thus, we recommend always using automatic
dirty-marking. Automatic dirty-marking is enabled by default.

Replicates GBS User’s Guide

56 VMware, Inc. June 2011

To disable automatic dirty-marking, execute:

GbsConfiguration current autoMarkDirty: false

or use the Settings Tool to turn off the configuration parameter autoMarkDirty.
It is enabled or disabled globally for the client; you cannot enable automatic dirty-
marking for only some classes or objects in the client virtual machine. If you
disable automatic dirty-marking, your application must manually mark modified
client replicates dirty as described in the next section.

Marking Modified Objects Dirty Manually

Generally, we recommend you use the automatic mechanisms. You can instead, if
you wish, mark objects dirty explicitly in your code. The automatic mechanism is
faster and much more reliable—if you miss even one place where a shared object
is modified, your application will misbehave.

To manually mark a replicate dirty, send markDirty to the replicate immediately
after each time your application modifies it. If a replicate is modified on the client
but not marked dirty, the modification will be lost eventually. The object could be
overwritten with its GemStone server state after the application has executed code
on the server, or at the next transaction boundary. Even if the client object is never
overwritten, the modification will never be sent to the server.

Minimizing Replication Cost
Replicating the full state of a large and complex collection can demand too much
memory or network bandwidth. Optimize your application by controlling the
degree and timing of replication; GemBuilder provides three ways to help:

Instance Variable Mapping — Modify the default class map to specify how widely
through each object to replicate—which instance variables to
connect and which to prune as never being of interest in the other
object space. You can also specify the details of an association
between two classes whose structures do not match.

Stubbing — Specify how deeply through the network to replicate, how many
layers of references to follow when faulting occurs.

Replication Specifications — Another way to specify how widely or deeply
through each object to replicate—of a class’s mapped instance
variables, which to replicate and which to stub.

Sharing Objects Replicates

June 2011 VMware, Inc. 57

Instance Variable Mapping

As discussed in “Class Mapping” on page 47, before GemBuilder can replicate
objects, it must know their respective structures and the mapping between them.
By default GemBuilder maps instance variables by name. You can override this
default either by suppressing the copying of certain instance variables, or by
explicitly specifying a mapping between nonmatching names.

Suppressing Instance Variables

Some client Smalltalk objects must define instance variables that are relevant only
in the client environment—for example, a reference to a window object. Such data
is transient and doesn’t need to be visible to the GemStone server. Situations can
also arise in which the server class defines instance variables that a given
application will never need; many applications can share repository objects
without necessarily sharing the same concerns. Mapping allows your application
to prune parts of an object.

Suppress the replication of an individual instance variable simply by omitting its
name from its counterpart’s class definition:

 • If a client object contains a named instance variable that does not exist in its
GemStone server counterpart, the value of that variable is not replicated in the
server. When GemBuilder faults the server object into the client, the client’s
suppressed instance variable remains unchanged.

 • Likewise, if a server object contains a named instance variable that does not
exist in its client counterpart, the value of that variable is not replicated in the
client. When GemBuilder flushes the object into the server, the server object’s
suppressed instance variable remains unchanged.

You can also suppress instance variable mappings by implementing the client class
method instVarMap. Example 3.2 shows a simple implementation:

Example 3.2

TestObject class>>instVarMap
^super instVarMap ,

#((nil serverName)
 (clientName nil))

The first component of the return value, a call to super instVarMap, ensures
that all instance variable mappings established in superclasses remain in effect.

Replicates GBS User’s Guide

58 VMware, Inc. June 2011

Appended to the inherited instance variable map, an array contains the pairs of
instance variable names to map. The first pair (nil serverName) specifies that
the server instance variable serverName will never be replicated in the client. The
second pair (clientName nil) specifies that the client instance variable
clientName will never be replicated in the server.

Nonmatching Names

You can also specify an explicit instance variable mapping between the server and
the client:

 • to map two instance variables whose names don’t match, or

 • to prevent the mapping of two instance variables whose names do match.

In this way your application can accommodate differing schemas.

To specify nonstandard instance variable mappings, use the same class method
instVarMap, as in Example 3.3:

Example 3.3

TestObject class>>instVarMap
^super instVarMap ,

#((clientName serverName))

Appended to the inherited instance variable map, a single pair declares that the
instance variable clientName in the client maps to the instance variable
serverName in GemStone.

One implementation can both prune irrelevancy and accommodate differing
schemas, as the instance variable mapping for the class Book shows in
Example 3.4:

Example 3.4

Book class>>instVarMap
^super instVarMap ,

#((title title)
 (author author)
 (nil pages)
 (publisher nil)
 (copyright publicationDate))

Sharing Objects Replicates

June 2011 VMware, Inc. 59

The first two pairs of instance variables change nothing: they explicitly state what
would happen without this method, but are included for completeness.

(nil pages) specifies that the client application does not need to know a books
page count and therefore this server-side instance variable is not replicated in the
client.

(publisher nil) specifies that the client application needs (and presumably
assigns) the instance variable publisher, which is never replicated in the server.

(copyright publicationDate) maps the client class Book’s instance variable
copyright to the server class Book’s instance variable publicationDate.

Stubbing

Often an application has need of certain instance variables, but not all at once. For
example, it’s impractical to replicate the entire hierarchy of BigDictionary at login:
users will experience unacceptable network delays, and the client Smalltalk image
can’t handle data sets as large as the GemStone server can. Furthermore, it’s
unnecessary: only a small number of objects will be needed for the current task. To
help prevent this kind of over-replication, GemBuilder provides stubs.

A stub, like a forwarder, is also a proxy associated with a server object. Unlike a
forwarder, however, when a stub receives a message, it does not send the message
across to the other object space. Instead, it faults is server counterpart into the
client image. The client Smalltalk replicate then responds to the message.

When GemBuilder faults automatically, it replicates the object hierarchy to a
certain level, then creates stubs for objects on the next level deeper than that. The
number of levels that are replicated each time is the fault level.

A fault level of 1 follows an object’s immediate references and faults those in. A
fault level of 2 follows one more layer of references and replicates those objects,
too. Figure 3.1 illustrates an application with a fault level of 2.

Faulting at Login

At login, the connectors connect, and objects a, b, and c are replicated; objects d
and e are stubbed; objects f and g are ignored.

Replicates GBS User’s Guide

60 VMware, Inc. June 2011

Figure 3.1 Two-level Fault of an Object

Rep

Rep
Rep

StubStub

a

ed

c
b

a

c

d

b

f g

e

GemStoneClient Smalltalk

Faulting in Response to a Message

When object e, a stub, receives a message, it faults in a replicate of its counterpart
GemStone server object.

A stub faults in a replicate in response to a message. Therefore, direct references to
instance variables can cause problems. Direct access is not a message-send; the
stub will not fault in its replicate, because it receives no message; neither can it
supply the requested value. To avoid this problem, use accessor methods to get or
set instance variables.

Sharing Objects Replicates

June 2011 VMware, Inc. 61

The following sequence demonstrates the problem. The object starts as a replicate
in client Smalltalk:

demonstrateProblem

| firstTemp secondTemp |

firstTemp := size. "Size is an inst var of the receiver.
FirstTemp now has a valid value."

self stubYourself. "self is now a stub, and has no
instance variable values"

secondTemp := size. "Since this access is not a message
send, it does not unstub self.
SecondTemp now contains an invalid
value, most likely nil."

^Array with: firstTemp with: secondTemp.

Using an accessor method, on the other hand, causes the stub to be faulted in and
yields the correct result:

self size. "This is a message, and faults the stub."

e is now a replicate, as shown in Figure 3.2. The new replicate responds to the
message.

Figure 3.2 A Stub Responds to a Message

Rep

Rep
Rep

Stub

a

d

c
b

a

c

d

b

f g

e

GemStoneClient Smalltalk

f g

e
Rep

Rep Rep

Replicates GBS User’s Guide

62 VMware, Inc. June 2011

Again, two levels are replicated, object e and its immediate instance variable: a
fault level is a global parameter.

Faulting in Changes From Other Sessions

Now, suppose another session commits a change to b?

Each session maintains its own view of the GemStone object server’s shared object
repository. The session’s private view can be changed by the client application
when it adds, removes, or modifies objects—that is, you can see your own changes
to the repository—or the Gem can change your view at transaction boundaries or
after a session has executed GemStone Smalltalk.

A Gem maintains a list of repository objects that have changed and notifies
GemBuilder of any changes to objects it has replicated. If it finds any changed
counterparts, it updates the client object with the new GemStone value.

GemStone/S (32 bit). Replicates and stubs respond to the message faultPolicy.
The default implementation returns the value of GemBuilder’s configuration
parameter defaultFaultPolicy: either #lazy or #immediate.

 • A lazy fault policy means that, when GemBuilder detects a change in a
repository object, it turns the client counterpart from a replicate into a stub.
The object will remain a stub until it next receives a message.

 • An immediate fault policy means that, when GemBuilder detects a change in a
repository object, it updates the replicate immediately.

If another session commits a change to b, and b’s fault policy is lazy, b becomes a
stub. If b’s fault policy is immediate, b is updated.

The default fault policy is lazy, to minimize network traffic. For more information,
see the description of defaultFaultPolicy in the Settings Browser. For
examples, browse implementors of faultPolicy in the GemBuilder image.

GemStone/S 64 Bit. Because network overload is minimal, all objects are
immediate-faulted. When GemBuilder detects a change in a repository object, it
updates the replicate immediately.

Overriding Defaults

Because linked sessions may be able to access the gem with lower latency,
GemBuilder ships with faultLevelLnk set to 2 and faultLevelRpc set to 4. In
this way, linked sessions replicate less at login, faulting in objects as they are
needed.

Sharing Objects Replicates

June 2011 VMware, Inc. 63

 • You can override these defaults for specific instance variables of specific
replicates.

 • You can also stub or replicate certain objects explicitly.

To specify fault levels for all instance variables, implement a class method
replicationSpec for the client class. Replication specifications are versatile
mechanisms described starting on page 64.

To cause a replicate to become a stub, send it the message stubYourself. This
can be useful for controlling the amount of memory required by the client
Smalltalk image. Explicit control of stubs is discussed in “Optimizing Space
Management” on page 145.

Sometimes stubbing is not desirable, either for performance reasons or for
correctness. For example, primitives cannot accept stubs as arguments if the
primitive accesses the instance variables of the argument. If your application uses
an object as an argument to a primitive, you must either prevent that object from
ever becoming a stub, or ensure that it is replicated before the primitive is
executed.

To cause a stub to become a replicate, send it the message fault. Stubs respond
to this message by replicating; replicates return self. The message
faultToLevel: allows you to fault in several levels at once, as specified.

Defunct Stubs

Faulting in a stub relies on the existence of a valid GemStone server object to
replicate or forward to. If an object is stubbed and the session logs out, a message
to that stub raises an error complaining that it is defunct. For example, suppose
MyGlobal is modified in a 32-bit server, thereby stubbing it in your client session.
If the session logs out before MyGlobal is faulted back in, the client Smalltalk
dictionary contains a defunct stub.

Because GemBuilder cannot safely assume that a given object will retain the same
object identifier from one session to the next, it cannot simply fix the problem at
next login. That’s the job of a connector: to reestablish at login the stub’s
relationship to GemStone. A connector can do so either directly, by connecting the
stub itself, or transitively, by connecting some object that refers to the stub.

If you’ve defined a connector for MyGlobal, logging back into GemStone
reconnects it.

Now, suppose an instance variable of MyGlobal becomes a stub shortly before a
session logs out. Sending a message to this variable will produce a defunct stub
error. At next login, MyGlobal’s connector will fault in the variable. You can then

Replicates GBS User’s Guide

64 VMware, Inc. June 2011

retry the message, but only by means of a message sent to MyGlobal (or another
connected object). If the application is maintaining a direct reference to the
previous defunct stub, the error will persist.

NOTE
You cannot proceed from a defunct stub error. After you’ve encountered
this error, determined the cause, and corrected the problem, you must
restart the client Smalltalk operation that encountered the defunct stub.

Replication Specifications

By default, when GemBuilder replicates an instance of a connected class, it
replicates all that class’s instance variables to the session’s specified fault level. You
can further refine faulting by class, however, with specific instructions for
individual instance variables.

Each class replicates according to a replication specification (hereafter referred to
as a replication spec). The replication spec allows you to fault in specified instance
variables as forwarders, stubs, or replicates that will in turn replicate their instance
variables to a specified level.

By default, a class inherits its replication spec from its superclass. If you haven’t
changed any of the replication specs in an inheritance chain, then the inherited
behavior is to replicate all instance variables as specified by the configuration
parameters faultLevelLnk and faultLevelRpc.

To modify a class’s replication behavior in precise ways, implement the class
method replicationSpec. For example, suppose you want class Employee’s
address instance variable always to fault in as a forwarder:

Example 3.5

Employee >> replicationSpec
^ super replicationSpec ,
#((address forwarder)).

To ensure that replication specs established in superclasses remain in effect,
Example 3.5 appends its implementation to the result of:

super replicationSpec

Appended to the inherited replication spec are nested arrays, each of which pairs
an instance variable with an expression specifying its treatment at faulting:

(instVar whenFaulted)

Sharing Objects Replicates

June 2011 VMware, Inc. 65

instVar can be either:

 • the client-side name of an instance variable, or

 • the reserved identifier indexable_part, specifying an object’s unnamed
indexable instance variables, such as the elements of a collection.

whenFaulted is one of:

stub — faults in the instance variable as a stub.

forwarder — faults in the instance variable as a forwarder to the server.

min n — faults in the instance variable and its referents as replicates to a
minimum of n levels. min 0 = replicate.

max m — faults in the instance variable and its referents as replicates to a
maximum of m levels. max 0 = stub.

replicate — faults in the instance variable as a replicate whose behavior will be
subject to the configuration parameters faultlevelRpc and
faultLevelLnk, relative to the root object being faulted.

By default, an instance variable’s behavior is replicate. Your application
needn’t specify replicate unless to restore behavior overridden in a superclass.

Example 3.6

TestObject class>>replicationSpec
^super replicationSpec ,

#((instVar1 stub)
(instVar2 forwarder)
(instVar3 max 0)
(instVar4 min 0)
(instVar5 max 2)
(instVar6 min 2)
(instVar7 replicate)
(indexble_part min 1))

Replication Specifications and Class Versions

As explained in “Mapping and Class Versions” on page 50, client Smalltalk classes
connect not simply to GemStone Smalltalk classes, but to specific server class
versions. A class connector connects to only one server class version.

Replicates GBS User’s Guide

66 VMware, Inc. June 2011

A replication spec, therefore, affects only client instances connected to instances of
the correct GemStone class version.

Suppose, for example, that you define and redefine class X in the server until its
class history lists three versions. Your client Smalltalk class is connected to
Version 2. Class X’s replication spec will affect server instances of Class X,
Version 2. If the server contains instances of Class X, Versions 1 or 3, the
replication spec will not affect them.

Multiple Replication Specifications

It’s not always possible to define one replication spec that works well for all
operations in an application. Some queries or windows may require a different
object profile than others in the same application and session; a replication spec
crafted to optimize one set of operations can make others inefficient.

By default, the message replicationSpec returns the default replication spec.
Change this by sending the message
replicationSpecSet: #someRepSpecSelector to an instance of GbsSession.
With this message, you can specify multiple replication specs, selecting one
dynamically according to circumstances. The following procedure shows how:

Step 1. Decide on a new name, such as replicationSpec2.

Step 2. Implement Object class >> replicationSpec2 to return self
replicationSpec.

Step 3. Reimplement replicationSpec2 as appropriate in those application
classes that need it.

Step 4. Immediately before your application performs the query or screen fetch
or other operation that requires the second replication spec, send
replicationSpecSet: #replicationSpec2 to the current GbsSession
instance.

Step 5. Immediately after the operation completes, send
replicationSpecSet: #replicationSpec to the GbsSession to restore
replication. If the session could be addressed from more than one client
Smalltalk process, your application should use a semaphore to control access
to the session.

For example, suppose your application has a class Employee, with instance
variables firstName, lastName, and address. address contains an instance of
class Address. The application has one screen that displays the names from a list

Sharing Objects Replicates

June 2011 VMware, Inc. 67

of employees, and another screen that displays the zip codes from a list of
employee addresses. Here’s how to replicate only what’s needed:

Step 1. Define a new replication spec with the selector empNamesRepSpec.

Step 2. Implement Object class >> empNamesRepSpec as:

^self replicationSpec.

Step 3. Implement Employee class >> empNamesRepSpec as:

^#((firstName min 1) (lastName min 1) (address stub))

Step 4. Define another replication spec with the selector empZipcodeRepSpec.

Step 5. Implement Object class >> empZipcodeRepSpec as:

^self replicationSpec

Step 6. Define Employee class >> empZipcodeRepSpec as:

^#((firstName stub) (lastName stub) (address min 2))

and Address class >> empZipcodeRepSpec as:

^#((city stub) (state stub) (zip min 1))

Step 7. Before opening the employee names screen, send:

myGbsSession replicationSpecSet: #empNamesRepSpec

Restore it to #replicationSpec after opening the window.

Step 8. Before opening the zip code window, send:

myGbsSession replicationSpecSet: #empZipcodeRepSpec

Restore it to #replicationSpec after opening the window.

For each window, the procedure above reduces the number of objects retrieved to
the minimum required. Other objects fault in as stubs; if subsequent input requires
them, they are retrieved transparently.

Managing Interobject Dependencies

Replication specs are ordinarily an optimization mechanism. Some applications,
however, require a replication spec to function correctly. If the structural
initialization of an object depends on other objects, you must implement

Replicates GBS User’s Guide

68 VMware, Inc. June 2011

replication specs to ensure that, when GemBuilder replicates an object, it also
replicates those objects it depends on.

Hashed collection classes that wish to replicate instances between client and server
should answer true to the message #gbsMustDeferElements. This is the
recommended approach.

When an object whose class answers true to #gbsMustDeferElements is faulted
to the client, the elements are not added to the collection until the replication of
those elements is complete. This ensures that all of the information necessary to
compute the hash of the element is present before adding it to the collection; if
added earlier, its hash might change as its replication continued, corrupting the
collection.

There is one exception to this requirement. Hashed collections that compute hash
purely on the identity hash of their elements may answer false to
#gbsMustDeferElements, since their hash values are computed strictly on the
identity of the elements themselves, which is always present.

NOTE
If you do not use #gbsMustDeferElements (the recommended
approach), you must independently address the issues described in the
following paragraphs.

For example, in order to create a Dictionary when replicating it from the server, we
need to be able to send hash to each key to determine its location in the hash table
(hash values aren’t necessarily the same in the server as they are in the client). So,
if GemStone replicates a Dictionary, it must also replicate the association, and the
key in the association. The default implementation for Dictionary class >>
replicationSpec therefore contains #(indexable_part min 1), and
Association class >> replicationSpec contains #(key min 1).

This works for Dictionaries with simple keys such as strings, symbols or integers.
If an application has dictionaries with complex keys, though, additional
replication specs can be required. For example, if you are storing Employees as
keys in a dictionary, and you’ve implemented = and hash in Employee to
consider the firstName and lastName, then you must ensure that when a
dictionary containing Employees is traversed, so are the associations, the
employees, and the firstName and lastName.

You could ensure this by implementing Employee class >>
replicationSpec to include #(firstName min 1) and #(lastName min
1). Or, if you had a special Dictionary class for Employees, you could include
#(indexable_part min 3) in that dictionary class’s replication spec.

Sharing Objects Replicates

June 2011 VMware, Inc. 69

However, this could cause the entire Employee to be replicated whenever one of
these dictionaries is replicated, rather than just the firstName and lastName.

We recommend that you use the default replication spec #replicationSpec as
the base replication spec for all classes to reflect interobject dependencies. When
defining other replication specs, make sure the default implementation in Object
is:

^self replicationSpec

Ensure that subclass implementations of the new replicationSpec method do
not stray from the default, so as not to break interobject dependencies.

Precedence of Multiple Replication Specs

It’s possible to implement replication specs that appear to contradict each other.
Such apparent conflicts are resolved deterministically according to the order in
which instance variables appear in a replication spec and the order in which
objects are replicated. If a superclass specifies one way of handling an instance
variable, and a subclass reimplements replicationSpec to handle the same
variable in a different way, the last occurrence takes precedence.

For example, suppose the value returned from sending replicationSpec to the
subclass is:

#((name min 1) (name max 2))

The last occurrence of the instance variable is max 2, and therefore takes
precedence.

If subclass implementations of replicationSpec always append their results to
super replicationSpec, the subclass will reliably override the superclass
handling of a given instance variable. The recommended approach is:

^super replicationSpec, #((name max 2))

not:

^#((name max 2)), super replicationSpec.

Another apparent contradiction can arise between parent and child objects. For
example, suppose Employee refers to an Address, which refers to a complex object
County. The Employee replicationSpec includes #(address min 5),
specifying that several levels of the County object are to be replicated. But if
Address includes #(county max 1), it modifies Employee’s handling of
address.

Replicates GBS User’s Guide

70 VMware, Inc. June 2011

Employee specifies, “Get at least 5 levels of address.” Address specifies,
“Whatever you do, don’t get more than one level of county.” The apparent
contradiction is resolved by the order in which these specifications are
encountered: because Address is encountered after Employee, Address takes
precedence.

If your object network includes cycles, different replication specs could take effect
at different times, depending on which object is the replication root at any given
time. Given a specific root object, however, it’s always possible to determine the
exact effect of a set of replication specs.

Forwarding Messages to Server Objects
Through Replicates and Stubs

Most messages received by a client replicate execute their behavior locally on the
client. However, it is possible to make a replicate or a stub forward a message to
its server counterpart, somewhat like a forwarder does. This is done with the
following message:

performOnGsServer: selector withArguments: argumentArray

For messages with no arguments, you may use

performOnGsServer: selector

The server object will be sent a message with the given selector and arguments,
and the result will be replicated to the client. This gives you a great deal of
flexibility as to which behaviors are executed on the server and which on the client.

Customized Flushing and Faulting
You can customize both flushing and faulting to change object structure
arbitrarily, if your application requires it. You can even create a class in the server
GemStone that maps to a client Smalltalk class with a different format—for
example, a format of bytes on the client but pointers in the server.

Modifying Instance Variables During Faulting

You can customize object retrieval by using buffers for the client counterparts of
GemStone server objects as they are faulted in. You can then process the contents
of these buffers in any manner required.

To provide these buffers, reimplement the class methods:

namedValuesBuffer
indexableValuesBuffer

Sharing Objects Replicates

June 2011 VMware, Inc. 71

To unpack these buffers correctly, reimplement the class methods:

namedValues:
indexableValues:
namedValues:indexableValues:

By default, namedValuesBuffer returns self; new client objects are faulted
directly into the named instance variable slots. Override this to supply either a
different object of the same type, or an instance of GbsBuffer (a subclass of Array)
of the required size.

By default, indexableValuesBuffer returns self. Override this to return an
indexable buffer of the appropriate size.

The buffers you define in these methods are used during faulting. They are
subsequently unpacked by the faulted object according to its implementation of
the unpacking methods listed above.

Implement the unpacking methods to obtain the desired client representation by
performing arbitrary computation on the buffer contents. Use the message
namedValues:indexableValues: for cases in which computation must
operate on indexable and named values together.

NOTE
The methods namedValuesBuffer and namedValues: are a pair;
so are indexableValuesBuffer and indexableValues:. To
avoid replication errors, if you override one, you must also override the
other.

You can also override the messages indexableValueAt:put: and
namedValueAt:put: to process the values of the indexable and named slots of
the object. For example, class Set might implement the former as:

Set >> indexableValueAt: index put: aValue
self add: aValue

The method simply adds the element to the Set rather than assigning it to a specific
slot.

NOTE
To avoid generating a “The current server didn’t complete” error, if you
override namedValues: or indexableValues:, make sure you do
not send messages to any stubs that would require a remote object to be
faulted. Doing so causes an error as faulting is attempted while flushing.
Adjust the replicationSpec and faultPolicy of the object to
ensure that stubs won’t exist for special flush operations.

Replicates GBS User’s Guide

72 VMware, Inc. June 2011

You can override two other messages to control faulting initialization and
postprocessing: preFault and postFault.

Implement preFault to initialize a newly created object prior to faulting its
named and indexable values.

For example:

OrderedCollection >> preFault
 "Initialize <firstIndex> and <lastIndex> prior to
 adding elements."

self setIndices

The method indexableValueAt:put: for OrderedCollection has an
implementation similar to Set to add the indexable objects. As another example, a
specialized type of SortedCollection could use preFault to assign the sortBlock
so that additions to the collection would be sorted properly during faulting.

Implement postFault to do any necessary postprocessing. For example, if the
methods used to add to an OrderedCollection also marked the object dirty, the
postprocessing could remove dirty-marking: by definition, faulting never results
in a dirty object:

OrderedCollection >> postFault
 "Additions to the OrderedCollection are due to the faulting
 mechanisms and should not result in a dirty object."
 self markNotDirty

Modifying Instance Variables During Flushing

To provide an arbitrary mapping of objects from the client to the server you can
implement two class methods called namedValues and indexableValues.

namedValues
Implement this to return a copy of the object being stored or an instance of
GbsBuffer sized to match the number of named instance variables in the client
object. The store operations then access this buffer for storing in the server.

indexableValues
Implement this to return a list of the indexable instance variables in the client
object. The store operations then access this list for storing in the server.

Implementations of namedValues must return an object with the appropriate
number of named instance variable slots. In Example 3.7, a clone of the
positionable stream is returned that increments the position instance variable by
1 as needed when mapped into the server:

Sharing Objects Replicates

June 2011 VMware, Inc. 73

Example 3.7

PositionableStream>>namedValues
| aClone |
aClone := self copy.
aClone instVarAt: 1 put: self contents.
aClone instVarAt: 2 put: position + 1.
^aClone

An alternative might return an instance of GbsBuffer (a subclass of Array) of the
appropriate size. (A special buffer class is necessary to distinguish between trying
to store an array and trying to store the named values of an object residing in a
buffer.)

The default implementation of namedValues is to return self. In this case, the
instance variables are processed directly from the object being stored, eliminating
the need for a temporary array.

Implementations of indexableValues must return an indexable collection
containing a sequential list of the elements in the collection. In Example 3.8, for
class Set, an Array is returned, because the indexable fields of a Smalltalk set are a
sparse list of the actual elements.

Example 3.8

Set>>indexableValues
| values index |
values := Array new: self size.
index := 1.
self elementsDo: [:each |

values at: index put: each.
index := index + 1].

^values

The default implementation of indexableValues is to return self. In this case,
the indexable slots are processed directly from the object being stored, eliminating
the need for a temporary array.

You can also override the messages indexableValueAt: and namedValueAt:
to return processed values rather than the actual values in the indexable and

Replicates GBS User’s Guide

74 VMware, Inc. June 2011

named slots of the object. For example, OrderedCollection might implement
indexableValueAt: as:

OrderedCollection>indexableValueAt: index
^self at: index

This lets OrderedCollection control for the fact that its underlying indexable slots
are being managed by the firstIndex and lastIndex instance variables—that
is, the first actual indexable slot of the object may not necessarily be the first logical
element.

In conjunction with these two methods, you might need to reimplement the
messages indexableSize and namedSize as well. For example, to match the
implementation of indexableValueAt:above, OrderedCollection would have
to implement indexableSize as shown below; otherwise, the object storage
mechanisms would try to iterate over the entire list of indexable slots rather than
those controlled by firstIndex and lastIndex:

indexableSize
^self size

Mapping Classes With Different Formats

You can create a class in GemStone that maps to a client Smalltalk class with a
different format—for example, a format of bytes on the client but pointers in the
server. To do so, reimplement the class method gsObjImpl in the client Smalltalk
to return a value specifying the GemStone implementation.

A gsObjImpl method must return a SmallInteger representing the GemStone
class format. The following formats are valid:

Return Format

0 pointers

1 bytes

2 nonsequenceable collection

Symbolic names for these values are stored in the pool dictionary
SpecialGemStoneObjects.

Limits on Replication
Replicating blocks and collections with instance variables can present special
problems, discussed below.

Sharing Objects Replicates

June 2011 VMware, Inc. 75

Replicating Client Smalltalk BlockClosures

Forwarders are especially well-suited for managing large collections that reside in
the object server. Collections are commonly sent messages that have blocks as
arguments. When the collection is represented in client Smalltalk by a forwarder,
these argument blocks are replicated in GemStone and executed in the server.

When a GemStone replicate for a client Smalltalk block is needed, GemBuilder
sends the block to GemStone Smalltalk for recompilation and execution. If a block
is used more than once, GemBuilder saves a reference to the replicated block to
avoid redundant compilations.

For example, consider the use of select: to retrieve elements from a collection of
Employees:

| fredEmps |
fredEmps := myEmployees select:

[:anEmployee | (anEmployee name) = 'Fred'].

If myEmployees is a forwarder to a collection residing in the object server, then
GemBuilder sends the parameter block’s source code:

[:anEmployee | (anEmployee name) = 'Fred'].

to GemStone to be compiled and executed.

Replication of client Smalltalk blocks to GemStone Smalltalk is subject to certain
limitations. When block replication violates one of these limitations, GemBuilder
issues an error indicating that the attempted block replication has failed.

To avoid these limitations, consider using block callbacks instead. Block callbacks
are discussed starting on page 78.

You can disable block replication completely using GemBuilder’s configuration
parameter blockReplicationEnabled. Block replication is enabled by default. Set
this parameter to false to disable it, and GemBuilder raises an exception when
block replication is attempted. This can be useful for determining if your
application depends on block replication.

Image-stripping Limitations

Block replication relies on the client Smalltalk compiler and decompiler; if they’ve
been removed from a deployed runtime environment, blocks cannot be replicated.

Replicates GBS User’s Guide

76 VMware, Inc. June 2011

Two workarounds are possible:

1. Leave the compiler and decompiler in the image. For example, the
VisualWorks Image Maker tool offers a “Remove Compiler” option which you
can deselect to leave the compiler and decompiler in the image.

2. Do not use block replication. Usually this requires implementing a cover
method for the block in a GemStone method, and sending that message
instead. For instance:

aForwarder select: [:name | name = #Fred]

—is instead coded:

aForwarder selectNameEquals: #Fred

...and in GemStone, selectNameEquals: is implemented as:

selectNameEquals: aName
 ^self select: [:name | name = aName]

When the block is encoded entirely in GemStone in this way, you can further
optimize its operation by taking advantage of indexes and use an optimized
selection block, as described in the GemStone Programming Guide.

Temporary Variable Reference Restrictions

A block is replicated in the form of its source code, without its surrounding
context. Therefore, values drawn from outside the block’s own scope cannot be
relied upon to exist in both the client Smalltalk and in GemStone. Replication is not
supported for blocks that reference instance variables, class variables, method
arguments, or temporary variables declared external to the block’s scope.

An exception is allowed in the case of global references, such as class names:

 • Global variable references from inside a block must have the same name in
both object spaces.

In the case of global variables containing data, it is the programmer’s responsibility
to ensure that the global identifier represents compatible values in both contexts.

Temporary variable reference restrictions disallow the following, because
“tempName” is declared outside the block’s scope:

| namedEmps tempName |
tempName := 'Fred'.
namedEmps := myEmployees select:

[:anEmployee | (anEmployee name) = tempName].

Sharing Objects Replicates

June 2011 VMware, Inc. 77

As a workaround, implement a new Employees method in GemStone Smalltalk
named select:with: that evaluates a two-argument block, in which the extra
block argument is passed in as the with: parameter. For example:

select: aBlock with: extraArg
|result|

result := self speciesForSelect new.
self keysAndValuesDo: [:aKey :aValue |
 (aBlock value: aValue value: extraArg) "two-value block"
 ifTrue: [result at: aKey put: aValue]
].

^ result.

You can then rewrite the application code to pass its temporary as the argument to
the with: parameter without violating the scope of the block:

| namedEmps tempName |
tempName := 'Fred'.
namedEmps := myEmployees select:

[:anEmployee :extraArg |
(anEmployee name) = extraArg

] with: tempName.

Restriction on References to self or super

References to self and super are also context-sensitive and, therefore,
disallowed:

 • A replicated block cannot contain references to self or super.

For example, the following code cannot be forwarded to GemStone because the
parameter block contains a reference to self:

myDict at:#key ifAbsent:[self]

References to self or super in forwarded code must occur outside the scope of
the replicated block, where you can be sure of the context within which they occur.
For example, you can rewrite the above code to return a result code, which can
then be evaluated in the calling context, outside the scope of the replicated block:

result := myDict at:#key ifAbsent:[#absent].
result = #absent ifTrue: [self]

Replicates GBS User’s Guide

78 VMware, Inc. June 2011

Explicit Return Restriction

Because a block is replicated without its surrounding context, a return statement
has no surrounding context to which to return. Therefore:

 • A replicated block cannot contain an explicit return.

For example:

result := myDict at:#key ifAbsent:[^nil]

is disallowed. The statement can be recoded to perform its return within the calling
context:

result := myDict at:#key ifAbsent:[#absent].
result = #absent ifTrue: [^nil]

Replicating GemStone Blocks in Client Smalltalk

Also supported, though less commonly used, is the replication of GemStone blocks
in client Smalltalk. Similar restrictions apply with regard to external references and
the need for compiler/decompiler support. Blocks most frequently passed from
the server to the client are the sort blocks that accompany instances of
SortedCollection and its subclasses. Sort blocks rarely have occasion to violate
replicated block restrictions.

If restrictions hamper you, consider using block callbacks instead.

Block Callbacks

Block callbacks provide an alternate mechanism for representing a client block in
GemStone that avoids the limitations of block replication by calling back into the
client Smalltalk to evaluate the block.

Block callbacks have the following advantages over block replication:

 • Block callbacks don’t require a compiler or decompiler.

 • Block callbacks don’t suffer the context limitations of block replication. The
block can reference self, super, instance variables, and non-local temporaries;
it can also perform explicit returns. For example, the following expression
works correctly as a block callback, but fails if you try to replicate the block:

aForwarder at: aKey ifAbsent: [^nil] asBlockCallback

Sharing Objects Replicates

June 2011 VMware, Inc. 79

Block callbacks have the following disadvantages:

 • A block that is evaluated many times in GemStone will perform poorly as a
block callback. For example, the following expression sends a message to a
client forwarder for each element of the collection represented by aForwarder:

aForwarder select: [:e | e isNil] asBlockCallback

You can determine whether, by default, blocks are replicated or call back to the
client using GemBuilder’s configuration parameter blockReplicationPolicy. Legal
values #replicate and #callback. A value of #replicate causes a client
block to be stored in GemStone as a GemStone block. A value of #callback
causes a client block to be stored in GemStone as a client forwarder, so that sending
value to the block in GemStone causes value to be forwarded to the client block;
the result of that block evaluation is then passed back to the GemStone context that
invoked the block.

To ensure a specific replication policy for a given block, use the methods
asBlockCallback or asBlockReplicate. Send asBlockCallback to ensure
that the block always executes in the client, regardless of the default block
replication policy set by the configuration parameter. Likewise, send
asBlockReplicate to ensure that the block is executed local to the context that
invokes it (either in GemStone or in the client).For example:

dictionaryForwarder
 at: #X
 ifAbsent: [^nil] asBlockCallback

collectionForwarder do: [:e | e check] asBlockReplicate

Replicating Collections with Instance Variables

If you create a subclass of a Collection and give it instance variables, you must
reimplement the copyEmpty: method to ensure that added instance variables are
included in the copy operation. Failure to reimplement copyEmpty: results in
data loss.

For example, consider a Collection subclass called MyCollection that defines the
additional instance variable name, with methods name and name: that retrieve
and assign its value, respectively. MyCollection might reimplement copyEmpty:
like this:

MyCollection >> copyEmpty: size

^(super copyEmpty: size) name: name

Precedence of Replication Controls GBS User’s Guide

80 VMware, Inc. June 2011

This reimplementation of copyEmpty: preserves the copying behavior of the
superclass and assures that the added instance variable is also copied.

3.5 Precedence of Replication Controls
Certain replication controls can appear to contradict each other. The rules of
precedence are:

 • If the class methods instVarMap (for replicates) or
instancesAreForwarders (for forwarders) are implemented, they take
precedence over all others and are always respected.

 • Otherwise, if the class method replicationSpec is implemented, or if an
application sends replicationSpecSet: to switch among several
replication specs, those replication specs take precedence.

In other words, if a class implements a replication spec, but it also implements
instancesAreForwarders to return true, then instances of that class will
be forwarders and the replication spec will be ignored.

Or, if a class implements both instVarMap and replicationSpec, the
instVarMap determines which instance variables will be visible to the
replication spec.

 • In the absence of a replication spec, the instance method faultToLevel:, if
called, is respected for replicates. Forwarders, of course, do not fault.

 • For classes that use no other mechanism, the configuration parameters
faultLevelLnk and faultLevelRpc are respected.

3.6 Evaluating Smalltalk Code on the GemStone server
In addition to sending messages to forwarders, GemBuilder provides mechanisms
to execute ad-hoc Smalltalk code on the server.

Using the development environment Workspace, you can type in and select
Smalltalk code and use the menu option “GS-Do it”, “GS-Inspect it” or “GS-Print
it” to execute the selected text on the GemStone server, and return a replicate of the
results.

You can also do this on the client by sending the string to a session for execution.
The expression:

aGbsSession evaluate: aString

Sharing Objects Evaluating Smalltalk Code on the GemStone server

June 2011 VMware, Inc. 81

when executed on the client, tells GemBuilder to have the server compile and
execute the GemStone Smalltalk code contained in aString, and answer a client
replicate of the result of that execution. If, rather than a replicate, you would like
the result as a forwarder, use the expression

aGbsSession fwevaluate: aString

The code in aString may be any arbitrary GemStone Smalltalk code that would be
a valid method body (see Appendix A of the GemStone Programming Guide for
GemStone Smalltalk syntax), with the exceptions that the code:

 • cannot take any arguments

 • must not refer to the variables self or super

 • must not refer to any instance variable of any class

Example 3.9 shows how to use evaluate: to execute code.

Example 3.9

 resultReplicate := GBSM currentSession
 evaluate: '
 | result |
 result := Array new: 3.
 result
 at: 1 put: ''Pear'';
 at: 2 put: #unripe;
 at: 3 put: 42.
 ^ result'

You can avoid some of these restrictions by passing in a context object using:

aGbsSession evaluate: aString context: aServerObject

or

aGbsSession fwevaluate: aString context: aServerObject

The context argument, aServerObject, can be any replicate of or forwarder to a
GemStone server object. If the code in aString refers to the variables self or super,
these will be bound to the context object. The code in aString can also refer to any
instance variables of the context object.

Converting Between Forms GBS User’s Guide

82 VMware, Inc. June 2011

Example 3.10

aGbsSession

 evaluate: 'self at: 2 put: #ripe'

 context: resultReplicate.

The advantage of the evaluate: family of messages is that they allow you to
execute arbitrary ad-hoc code on the server without previously defining a method.

However, this isn't always the best way to execute server code. The evaluate:
messages invoke the GemStone Smalltalk compiler upon each execution, and so
have extra overhead. Also, the inability to pass arguments rules out the evaluate:
messages for some uses.

Message sends through forwarders are the most common means of initiating
execution of GemStone Smalltalk code on the server. However, a message passed
through a forwarder will fail if the server object that receives the message does not
understand that message. Forwarder sends require previous definition of an
appropriate GemStone method on the server.

The two forms of execution complement each other. The evaluate: messages do
not require prior method definition, but cannot take arguments. Forwarder sends
require prior method definition, but can take arguments.

3.7 Converting Between Forms
A variety of messages exist to convert between delegates, forwarders, replicates,
stubs, and unconnected client objects. Table 3.1–Table 3.5 list the results of sending
any of several conversion messages to these objects.

A delegate is an instance of GbxDelegate. Delegates are used internally by
GemBuilder. An application doesn’t normally need to use delegates directly, but
you may see them when debugging. We recommend against using delegate
protocol, as in Table 3.1, in customer applications.

NOTE
To avoid unpredictable consequences and possible errors, do not use the
expressions listed as producing undefined results.

Table 3.1 Delegate Conversion Protocol

Message Return Value
copy shallow copy of delegate
asLocalObject replicate
asGSObject self
asForwarder undefined
beReplicate undefined
fault undefined
stubYourself undefined

Table 3.2 Forwarder (to the Server) Conversion Protocol

Message Return Value
copy copies associated server object and returns replicate of

copy
asLocalObject undefined
asGSObject (not
recommended for
customer applications)

associated delegate

asForwarder self
beReplicate self, which has become a replicate
fault self (use beReplicate to make a replicate)
stubYourself self

Sharing Objects Converting Between Forms

June 2011 VMware, Inc. 83

Table 3.3 Replicate Conversion Protocol

Message Return Value
copy shallow copy of delegate not associated with any server

object
asLocalObject undefined
asGSObject (not
recommended for
customer applications)

associated delegate

asForwarder self, which has become a forwarder
beReplicate self
fault self, whose instance variables are now also replicates

to the configured fault level
stubYourself self, which has become a stub

Table 3.4 Stub Conversion Protocol

Message Return Value
copy shallow copy; receiver becomes a replicate
asLocalObject undefined
asGSObject (not
recommended for
customer applications)

associated delegate

asForwarder self, which has become a forwarder
beReplicate self (use fault to become a replicate)
fault self
stubYourself self

Converting Between Forms GBS User’s Guide

84 VMware, Inc. June 2011

Table 3.5 Conversion Protocol for Unshared Client Objects

Message Return Value
copy shallow copy
asLocalObject undefined
asGSObject (not
recommended for
customer applications)

new delegate; creates new associated server object

asForwarder self, which has become a forwarder; creates new
associated server object

beReplicate self
fault self
stubYourself self

Sharing Objects Converting Between Forms

June 2011 VMware, Inc. 85

Converting Between Forms GBS User’s Guide

86 VMware, Inc. June 2011

Chapter

June 2011 VMware, Inc. 87

4 Connectors

This chapter describes connectors, which allow an application developer to
explicitly declare an association between a root client object and a root server
object.

 • Connectors connect at login. After that, you must explicitly disconnect and
reconnect them to effect any changes.

 • There are different kinds of connectors for different types of objects.

 • At connect time, connectors may update either connected object, depending
on how they are set up.

 • Connectors exist either in a given set of session parameters, or globally—in
every session your image defines.

Connecting Root Objects
explains which objects to associate using connectors.

Connecting and Disconnecting
describes what connectors do and when they do it.

Kinds of Connectors
describes the available kinds of connectors and the differences between them.

Connecting Root Objects GBS User’s Guide

88 VMware, Inc. June 2011

4.1 Connecting Root Objects
Every replicate and forwarder in the client is connected to an object in the server.
You do not, however, need a connector for every replicate or forwarder. A typical
application only needs connectors for a small number of root objects.

A connector connects more than the specified client object to the specified server
object. Through transitive reference, a connector connects whole networks of
objects. Most objects (except atomic objects—characters, booleans, small integers,
nil) refer to others through their instance variables. And their instance variables
refer to their instance variables, and so on, branch and twig, until you reach the
leaves of a large network of objects with a treelike structure.

You can take advantage of this hierarchical structure to minimize application
overhead. Identify the object at the root of each subsystem of shared objects, and
then connect only these root objects. Depending on how you’ve defined
configuration parameters and related matters, you can synchronize entire
subsystems in GemStone/S this way. After you’ve connected the application’s
roots, GemBuilder automatically manages all the objects referenced from these
roots.

Root objects are often:

 • global variables,

 • class or shared variables, or

 • class instance variables.

Figure 4.1 shows an application in which several connected objects are accessed
through global or shared variables in client Smalltalk. One system represents an
employee database. Another system represents a data entry application for
creating and modifying objects. A third system represents a report writer for these
objects. Dotted lines in the figure group the logically related subsystems.

Connectors Connecting Root Objects

June 2011 VMware, Inc. 89

Figure 4.1

Report Writer

Employee Database
Data Entry Application

Smalltalk
Namespace

Connecting Application Roots

The data entry application and the report writer reside in the client Smalltalk
image; however, the employee database is stored on the GemStone server, as it
defines a large amount of persistent data that other users may need to share, data
that benefits from GemStone/S’s capacity, stability, robustness, and fast searches.

Figure 4.2 shows the state of the employee data when stored on the server:

Connecting Root Objects GBS User’s Guide

90 VMware, Inc. June 2011

Figure 4.2 Root Objects

employee data
Smalltalk Namespace

a
b

GemStone

In Figure 4.2, objects a and b are root objects: those objects from which all others
can be reached by transitive closure: by direct reference, or by indirect reference
through any number of layers.

The above discussion has focused on shared instances from your applications, but
in order to share instances in any way, GemBuilder and GemStone must first share
definitions for each class of shared instance.

Scope
Some connectors connect their objects whenever any session logs in. Some do so
only when logging in using a specific session parameters object:

 • Global connectors allow you to maintain a standard set of connectors common
to all applications in your GemBuilder image.

 • Session connectors allow individual applications to customize connectors: you
define unique session parameters for each application, and different sessions
can connect different objects. When sessions of one kind log in, other sessions’
connectors are defined but not connected.

When a session logs in, the connectors of its session parameters and all global
connectors connect automatically. When a session logs out, its connectors
disconnect.

Connectors Connecting Root Objects

June 2011 VMware, Inc. 91

Verifying Connections
Connectors are saved in client Smalltalk sets, separate ones for global connectors
and each session parameters object. Two connectors are considered equal if they
resolve to the same client object. Client Smalltalk sets eliminate duplicates based
on equality. Therefore:

NOTE
Adding a global or session connector that points to the same object as an
existing connector will remove the existing connector.

Duplicate session connectors are not removed if they are stored in different session
parameters.

GemBuilder provides a configuration parameter, connectVerification, that,
when true, causes connectors to verify at login that they are not redefining a
connector that already exists. In addition, class connectors verify that the two
classes they are connecting have compatible structures.

If a connector fails verification, GemBuilder issues a notifier if verbose is also
true, or raises an exception otherwise. You can set connectVerification in
the Connector Browser or in the Settings Browser.

Initializing
At login, a connector associates an object in a single-user image with an object in a
multiuser repository. The value of either could have changed since last login.
Which value is valid?

Connectors can initialize either object by performing a specified postconnect action:

Update Smalltalk
default for all but class connectors, initializes the client object with the current
state of the GemStone server object.

Update GemStone
initializes the GemStone server object with the current state of the client object.

Forward to the server or client
makes one object a forwarder to the other. Forwarders are discussed starting
on page 50.

No initialization
leaves the client object and GemStone server object unmodified after
connection—default for class connectors.

Connecting and Disconnecting GBS User’s Guide

92 VMware, Inc. June 2011

As the name implies, postconnect actions execute only at initial connection. After
that, changes propagate according to mark dirty specifications, as described in
“Synchronizing State” on page 54, or they do not propagate at all, as is normally
the case with class connectors, as described in “Class Mapping” on page 47.

Updating Class Definitions

By default, after login and initialization, class connectors do not propagate
changes. If you’ve defined classes differently on the client and the server, you
probably had good reason to do so; you probably don’t want one object space to
update the other with its own class definition. Therefore, to avoid updating class
definitions, class connectors generally specify a postconnect action of none.

For similar reasons, class connectors cannot specify that the client class is a
forwarder—the forwarder and clientForwarder postconnect action are unavailable
for class connectors.

If you change either a client or GemStone class definition during a session, you
must propagate the change yourself by disconnecting and reconnecting the
connector. The Connector Browser, described starting on page 198, provides
convenient buttons for the purpose.

NOTE
Remember to restore a postconnect action of none after you complete the
desired update.

4.2 Connecting and Disconnecting
At login, connectors connect objects according to their specifications; thereafter,
they are inactive. Changes to instances that occur during the course of a session are
replicated either because those instances are synchronized replicates that mark
changes dirty, or because one is a forwarder to the other. Changes to class
definitions or other unsynchronized changes must be propagated manually. To do
so, use the Disconnect and Connect buttons in the Connector Browser to
disconnect and reconnect the appropriate connector.

Connectors with a post-connect action of #clientForwarder cannot be
explicitly disconnected. These connectors only disconnect at logout.

At logout, GemBuilder sets the instance variables of connectors to nil, if the
GemBuilder configuration parameter connectorNilling is set to true (the default).
This reduces the risk of defunct stub or forwarder errors, replacing them with nil
doesNotUnderstand errors.

Connectors Kinds of Connectors

June 2011 VMware, Inc. 93

Only connectors whose values are set from the server on login are cleared when
connectorNilling is true. Session-based name, class variable, or class instance
variable connectors that have a postconnect action of #updateST or #forwarder
are cleared. Fast connectors, class connectors, or connectors whose postconnect
action is #updateGS or #none do not have instance variables set to nil.

connectorNilling can be set for individual sessions, if desired. See “Setting
Configuration Parameters” on page 151 for details on setting session-specific
configuration parameters. The detailed description for this configuration
parameter is on page 158.

4.3 Kinds of Connectors
Five kinds of connectors use different ways of finding the two objects to connect.
You have already encountered one kind:

Class connector — connects a client Smalltalk and GemStone class. As discussed
in “Class Mapping” on page 47, to replicate an object, both client
and repository must define the class, and the two classes must be
connected using a class connector.

For replicating instances, however, we need ways to connect root objects:

Name connector — connects client and server objects identified by name.
Figure 4.3 illustrates how a name connector connects a client
object to a server object.

Class variable connector — first resolves the named objects representing the
classes, then looks for a class variable in the GemStone class, and
a Class or Shared Variable in the client Smalltalk class with the
specified name and connects those objects.

Class instance variable connector — first resolves the named objects representing
the classes, then looks for a class instance variable in each class
with the specified name and connects those objects.

Fast connector — connects the GemStone kernel classes to their client Smalltalk
counterparts. Fast connectors are predefined. The kernel classes to
which they point will not change identity during the course of a
session. The GemStone kernel class connectors are predefined,
and GemBuilder relies on them. Applications should not define
fast connectors.

Kinds of Connectors GBS User’s Guide

94 VMware, Inc. June 2011

Connection Order
At login, GemBuilder connects connectors in the following order:

1. First, predefined fast connectors for kernel classes;

2. next, class connectors whose postconnect action is anything other than
updateGS; and finally

3. all other connectors, in no particular order.

You can control the order in which connectors connect by connecting them
explicitly in your code, instead of relying on GemBuilder’s automatic mechanism
to connect them for you at login.

Lookup

Connecting by Name

Except for fast connectors (discussed in the following section), all kinds of
connectors find the objects to connect through a name lookup. Names must be
found in namespaces. GemBuilder looks in the namespace “Smalltalk”; a fully-
qualified name can also be used.

In the client, GemStone implements namespaces with symbol dictionaries. If the
symbol list of the session user includes the symbol dictionary defining object A,
then object A is visible to that user.

Lookup occurs when the connector connects, usually when the session first logs in.

Connectors Kinds of Connectors

June 2011 VMware, Inc. 95

Figure 4.3 Connecting a Name Connector

name1

name1
name2

name2

GemStoneClient Smalltalk
 GemStone user’s symbol listSmalltalk Namespace

GbsNameConnector

looked up in GemStone symbol list

looked up
 in Smalltalk

Client Object

Server Object

Connecting by Identity: Fast Connectors

You can bypass name lookup by using a fast connector, which saves direct
references to the client Smalltalk objects and the object IDs of the GemStone server
objects that are connected.

NOTE
The name “fast connector” is historic. These connectors are not
necessarily faster than other connectors.

Using fast connectors can be risky. If the GemStone server object is renamed or
redefined, a fast connector will continue to point to the old object: the one with the
same object identifier. When the identity of an object changes (for example, if it is
a variable that you assign to a new object), a fast connector becomes incorrect. An
out-of-date fast connector may cause an “object does not exist” error, or it may
silently continue to pass messages to an old object.

Because using object identity is not always an appropriate way to resolve an object,
we recommend that you do not use fast connectors.

Making and Managing Connectors GBS User’s Guide

96 VMware, Inc. June 2011

4.4 Making and Managing Connectors
To make and manage connectors interactively, see “The Connector Browser” on
page 198. The next section describes making and managing connectors in code.

Making Connectors Programmatically
GbsConnector is the abstract superclass for the connector class hierarchy. These
classes implement connection methods and define instance variables to refer to the
associated GemStone and client objects. Figure 4.4 shows the hierarchy.

Figure 4.4 Connector Class Hierarchy

Object

GbsConnector

GbsFastConnectorGbsNameConnector

GbsClassConnector GbsClassVarConnector

GbsClassInstVarConnector

To create a connector programmatically:

1. Create the connector.

2. Set its postconnect action, if other than the default.

3. Add it to the global connector list, or a connector list for session parameters.

Create the required GemStone session parameters and connectors in an
initialization method.(Creation methods for session parameters are described in
“Session Parameters” on page 35.)

Connectors Making and Managing Connectors

June 2011 VMware, Inc. 97

Creating Connectors

One simple creation method for a name connector requires only the names of the
two objects to be connected:

GbsNameConnector stName: stName
 gsName: gsName

You can create a class connector this way too:

GbsClassConnector stName: stName
 gsName: gsName

The above methods require that the server object already exist. If GemBuilder must
create the object, choose an instance creation method that specifies the GemStone
server dictionary in which to place it:

GbsNameConnector stName: stName
gsName: gsName
dictionaryName: gsDictionary

To create a class variable connector:

GbsClassVarConnector
stName: #ClassName
gsName: #ClassName
cvarName: #ClassVarName

Similarly, a class instance variable connector:

GbsClassInstVarConnector
stName: #ClassName
gsName: #ClassName
cvarName: #ClassInstVarName

For more, browse instance creation methods for each connector class.

Setting the Postconnect Action

The symbolic names for postconnect actions are #updateST, #updateGS,
#forwarder, #clientForwarder, and #none. All connectors default to using
#updateST except class connectors, which default to #none.

To cause a GemStone server object to take its initial values at login from its
Smalltalk counterpart, send postConnectAction: #updateGS to the
connector. This is occasionally useful for loading data into GemStone from the
client image.

Making and Managing Connectors GBS User’s Guide

98 VMware, Inc. June 2011

Adding Connectors to a Connector List

When you create a connector, you must decide whether it is to be managed by an
individual session parameters object or globally. Leaving it unmanaged can have
several adverse effects: it will not be connected and disconnected when required,
and object retrieval may slow.

A connector is managed by adding it to the appropriate list of connectors.

If you want a connector in effect whenever any session logs in, put it in the global
connectors collection:

GBSM addGlobalConnector: aConnector

A new global connector first takes effect the next time any session logs in.

Each session parameters object maintains its own list of session connectors. If you
want a connector in effect whenever a session logs in using specific parameters,
add a connector to the session parameters object:

ThisApplicationParameters addConnector: aConnector

A new session connector first takes effect the next time a session logs in using those
parameters.

To initialize a system with two roots, the global BigDictionary, and a class
variable in MyClass called MyClassVar, your application might execute code
such as that shown in Example 4.1:

Example 4.1

GBSM addGlobalConnector: (GbsNameConnector
stName: #MyGlobal
gsName: #MyGlobal);

addGlobalConnector: (GbsClassVarConnector
stName: #MyClass
gsName: #MyClass
cvarName: #MyClassVar)

Initialization code such as that in Example 4.1 needs to execute only once. From
then on, every time you log into GemStone, MyGlobal and MyClassVar (and all
the objects they reference) connect; after that, replication and updating occur as
specified.

Connectors Making and Managing Connectors

June 2011 VMware, Inc. 99

Session Control

The following examples illustrate one approach to managing GemBuilder sessions
and connectors: a session control class that defines these methods for, in this
example, a help request system.

An instance of the session control class could be stored in the application object as
a class variable, in which case the session information would be the same for all
instances of the application, or it could be stored in the application as an instance
variable, in which case each instance of the application would get its own copy to
change as needed. In either case, methods to create the session parameters object
and its connectors might follow these patterns:

Example 4.2 shows the method session, which returns the application’s logged-
in session. If the session is not logged in, the method requests an RPC login and
returns the resulting session. If login fails, the method returns nil.

Example 4.2

session
"self session"
(session isNil or: [session isLoggedIn not]) ifTrue: [

session := self sessionParameters loginRpc.
session isNil ifTrue: [^nil]].

^session

Example 4.3 shows a method that initializes a set of session parameters. (For
security, you may choose to prompt for passwords instead.)

Making and Managing Connectors GBS User’s Guide

100 VMware, Inc. June 2011

Example 4.3

sessionParameters
| params |
sessionParameters isNil ifTrue: [

params := GbsSessionParameters new.
params gemStoneName: 'gs64stone'.
params username: 'DataCurator'.
params password: 'swordfish'.
params gemService: 'gemnetobject'.
params rememberPassword: true.
params rememberHostPassword: true.
self addConnectorsTo: params.
sessionParameters := params.
GBSM addParameters: params].

^sessionParameters

Example 4.4 adds connectors to the session parameters object:

Example 4.4

addConnectorsTo: aParams
self addClassConnectorsTo: aParams.
self addClassVarConnectorsTo: aParams

Example 4.5 shows a method that creates class connectors and adds them to the
session parameters connector list:

Connectors Making and Managing Connectors

June 2011 VMware, Inc. 101

Example 4.5

addClassConnectorsTo: aParams
aParams addConnector:

(GbsClassConnector
stName: #GST_Action
gsName: #GST_Action).

aParams addConnector:
(GbsClassConnector

stName: #GST_Customer
gsName: #GST_Customer).

aParams addConnector:
(GbsClassConnector

stName: #GST_Engineer
gsName: #GST_Engineer).

Example 4.6 shows a method that creates class variable connectors and adds them
to the session parameters connector list:

Example 4.6

addClassVarConnectorsTo: aParams
| aConnector |
aParams addConnector:

(aConnector := GbsClassVarConnector
stName: #GST_HelpRequest
gsName: #GST_HelpRequest
cvarName: #AllRequests).

aConnector postConnectAction: #forwarder.
aParams addConnector:

(GbsClassVarConnector
stName: #GST_Company
gsName: #GST_Company
cvarName: #AllCompanies)

You can create methods similar to those shown in examples 4.5 and 4.6 to create
name connectors and global connectors for your application, as well.

NOTE
If more than one session is logged into GemStone using the same session
parameters object, and you add a connector to one of those sessions,

Making and Managing Connectors GBS User’s Guide

102 VMware, Inc. June 2011

GemBuilder will try to connect that connector for all sessions sharing the
same parameters. If any fail to reference the GemStone server object
represented by the connector, you’ll receive an error message stating that
the connector failed to connect.

Chapter

June 2011 VMware, Inc. 103

5 Managing
Transactions

The GemStone object server’s fundamental mechanism for maintaining the
integrity of shared objects in a multiuser environment is the transaction. This
chapter describes transactions and how to use them. For further information, see
the chapter in the GemStone Programming Guide entitled “Transactions and
Concurrency Control.”

Transaction Management: an Overview
introduces the concepts to be explained later in the chapter.

Operating Inside a Transaction
explains the transaction model, committing, and aborting.

Operating Outside a Transaction
discusses a lower-overhead alternative for read-only views of the shared
repository.

Transaction Modes
explains the difference between automatic and manual transaction modes.

Managing Concurrent Transactions
discusses concurrency conflicts and ways to minimize them, such as locks.

Transaction Management: an Overview GBS User’s Guide

104 VMware, Inc. June 2011

Reduced-Conflict Classes
describes specialized GemStone collections that minimize conflicts without
locking.

Changed Object Notification
explains a mechanism for coordinating the activities of multiple sessions.

5.1 Transaction Management: an Overview
The GemStone object server provides an environment in which many users can
share the same persistent objects. The object server maintains a central repository
of shared objects. When a GemBuilder application needs to view or modify shared
objects, it logs in to the GemStone object server, starting a session as described in
Chapter 2.

A GemBuilder session creates a private view of the GemStone repository
containing views of shared objects for the application’s use. The application can
perform computations, retrieve objects, and modify objects, as though it were a
single-user Smalltalk image working with private objects. When appropriate, the
application propagates its changes to the shared repository so those changes
become visible to other users.

In order to maintain consistency in the repository, GemBuilder encapsulates a
session’s operations (computations, fetches, and modifications) in units called
transactions. Any work done while operating in a transaction can be submitted to
the object server for incorporation into the shared object repository. This is called
committing the transaction.

During the course of a logged-in session an application can submit many
transactions to the GemStone object server. In a multiuser environment,
concurrency conflicts can arise and cause some commit attempts to fail. Aborting
the transaction discards any changes to persistent objects and refreshes the
session’s view of the repository in preparation for further work.

In order to reduce its operating overhead, a session can run outside a transaction, but
to do so the session must temporarily relinquish its ability to commit. A session
running outside a transaction operates in manual transaction mode, in contrast to the
system default automatic transaction mode.

Another potential mode is transactionless mode. However, this mode is not usable
from within GemBuilder.

GemBuilder provides ways of avoiding the concurrency conflicts that can cause a
commit to fail. Optimistic concurrency control risks higher rates of commit failure in

Managing Transactions Operating Inside a Transaction

June 2011 VMware, Inc. 105

exchange for reduced transaction overhead, while pessimistic concurrency control
uses locks of various kinds to improve a transaction’s chances of successfully
committing. GemStone also offers reduced-conflict classes that are similar to familiar
Smalltalk collections, but are especially designed for the demands of multiuser
applications.

This chapter explains each of the topics mentioned here: transactions, committing
and aborting, running outside a transaction, automatic and manual transaction
modes, optimistic and pessimistic concurrency control, and reduced conflict
classes. Be sure to refer to the related topics in the GemStone Programming Guide for
a full understanding of these transaction management concepts.

5.2 Operating Inside a Transaction
While a session is logged in to the GemStone object server, that session maintains
a private view of the shared object repository. To prevent conflicts that can arise
from operations occurring simultaneously in different sessions in the multiuser
environment, Each session’s operations are encapsulated in a transaction. Only
when the session commits its transaction does GemStone try to merge the
modified objects in that session’s view with the main, shared repository.

Figure 5.1 shows a client image and its repository, along with a common sequence
of operations: (1) faulting in an object from the shared repository to Smalltalk, (2)
flushing an object to the private GemStone view, and (3) committing the object’s
changes to the shared repository.

Figure 5.1 GemBuilder Application Workspace

Client Smalltalk Gem with Private
Repository
GemStone

Repository ViewImage

(1) Fault

(2) Flush (3) Commit

(1) Fault

GemBuilder Application

Operating Inside a Transaction GBS User’s Guide

106 VMware, Inc. June 2011

The private GemStone view starts each transaction as a snapshot of the current
state of the repository. As the application creates and modifies shared objects,
GemBuilder updates the private GemStone view to reflect the application’s
changes. When your application commits a transaction, the repository is updated
with the changes held in your application’s private GemStone view.

For efficiency, GemBuilder does not replicate the entire contents of the repository.
It contains only those objects that have been replicated from the repository or
created by your application for sharing with the object server. Replicated objects
are updated only when modified. This minimizes the amount of data that moves
across the boundary from the Gem to the client Smalltalk application.

Committing a Transaction
When an application submits a transaction to the object server for inclusion in the
shared repository, it is said to commit the transaction. To commit a transaction from
the client, send the message:

aGbsSession commitTransaction (to commit a specific session)

or:

GBSM commitTransaction (to commit the current session)

or, in the Session Browser, select the session and click on the Commit... button; or
in the Class Browser, use the pop up menu on the SymbolDictionary pane to select
commit.

When the commit succeeds, the method returns true. Successfully committing a
transaction has two effects:

 • It copies the application’s new and changed objects to the shared object
repository, where they are visible to other users.

 • It refreshes the application’s private GemStone view to match the current state
of the repository, making visible any new or modified objects that have been
committed by other users.

A commit request can be unsuccessful in two ways:

 • A commit fails if the object server detects a concurrency conflict with the work
of other users. When the commit fails the commitTransaction method
returns false.

 • A commit is not attempted if a related application component is not ready to
commit. When the commit is not attempted, the commitTransaction
method returns nil. (See “Session Dependents” on page 40.)

Managing Transactions Operating Inside a Transaction

June 2011 VMware, Inc. 107

In order to commit, the session must be operating within a transaction. An attempt
to commit while outside a transaction raises an exception.

Aborting a Transaction
When a session aborts its transaction, it discards any uncommitted changes to
persistent objects and refreshes its view of the shared object repository. Despite the
terminology, a session need not be operating inside a transaction in order to abort.
To abort, send the message:

aGbsSession abortTransaction (to abort a specific session)

or:

GBSM abortTransaction (to abort the current session)

or, in the Session Browser, select a logged-in session and click on the Abort...
button; or in the Class Browser, use the pop up menu on the SymbolDictionary
pane to select abort.

Aborting has these effects:

 • Any changes to persistent objects are discarded.

 • The transaction (if any) ends. If the session’s transaction mode is automatic,
GemBuilder starts a new transaction. If the session’s transaction mode is
manual, the session is left outside of a transaction.

 • Temporary Smalltalk objects remain unchanged.

 • The session’s private view of the GemStone shared object repository is
updated to match the current state of the repository.

Avoiding or Handling Commit Failures
You can use the GemBuilder method GbsSession >> hasConflicts to determine
if any concurrency conflicts exist that would cause a subsequent commit operation
to fail. It returns false if it finds no conflicts with other concurrent transactions,
true otherwise. You can then determine how best to proceed.

If an attempt to commit fails because of a concurrency conflict, the
commitTransaction method returns false.

Following a commit failure, the client’s view of persistent objects may differ from
their precommit state:

 • The current transaction is still in effect. However, you must end the transaction
and start a new one before you can successfully commit.

Operating Outside a Transaction GBS User’s Guide

108 VMware, Inc. June 2011

 • Temporary Smalltalk objects remain unchanged.

 • Modified GemStone server objects remain unchanged.

 • Unmodified GemStone server objects are updated with new values from the
shared repository.

Following a commit failure, your session must refresh its view of the repository by
aborting the current transaction. The uncommitted transaction remains in effect so
you can save some of its contents, if necessary, before aborting.

A common strategy for handling such a failure is to abort, then reinvoke the
method in which the commit occurred. Depending on your application, you may
simply choose to discard the transaction and move on, or you may choose to
remedy the specific transaction conflict that caused the failure, then initiate a new
transaction and commit.

If you want to know why a transaction failed to commit, you can send the message:

aGbsSession transactionConflicts

This expression returns a symbol dictionary whose keys indicate the kind of
conflict detected and whose values identify the objects that incurred each kind of
conflict. (See “Managing Concurrent Transactions” on page 112 for more
discussion of the kinds of conflicts that can arise.)

5.3 Operating Outside a Transaction
A session must be inside a transaction in order to commit. While operating within a
transaction, every change the session makes and every new object it creates can be
a candidate for propagation to the shared repository. GemBuilder monitors the
operations that occur within the transaction, gathering all the necessary
information required to prepare the transaction to be committed.

For efficiency, an application may configure a session to operate outside a
transaction. When operating outside a transaction, a session can view the
repository, browse the objects it contains, and even make computations based
upon their values, but it cannot commit any new or changed GemStone server
objects. When a session is operating outside a transaction, the Stone may request
that the session abort. A session operating outside a transaction can, at any time,
begin a transaction.

No session is overhead-free: even a session operating outside a transaction uses
GemStone resources to manage its objects and its view of the repository. For best

Managing Transactions Operating Outside a Transaction

June 2011 VMware, Inc. 109

system performance, all sessions, even those running outside a transaction, must
periodically refresh their views of the repository by committing or aborting.

Table 5.1 shows GbsSession methods that support running outside of a GemStone
transaction:

Table 5.1 GbsSession Methods for Running Outside of a Transaction

beginTransaction Aborts and begins a transaction.
transactionMode Returns #autoBegin or #manualBegin
transactionMode:newMode Sets #autoBegin or #manualBegin
inTransaction Returns true if the session is currently in a

transaction.
signaledAbortAction:
 aBlock

Executes aBlock when a signal to abort is
received (see below).

To begin a transaction, send the message:

aGbsSession beginTransaction
(to begin a transaction for a specific session)

or:

GBSM beginTransaction
(to begin a transaction for the current session)

or, in the Session Browser, select a logged-in session and click on the Begin...
button.

This message discards any local modifications, gives you a fresh view of the
repository, and starts a transaction. When you abort or successfully commit this
new transaction, you will again be outside of a transaction until you either
explicitly begin a new one or change transaction modes.

If you are not currently in a transaction, but still want a fresh view of the
repository, you can send the message aGbsSession abortTransaction. This
discards modifications to your current view of the repository and gives you a fresh
view, but does not start a new transaction.

Being Signaled to Abort
When you are in a transaction, GemStone waits until you commit or abort to
reclaim storage for objects that have been made obsolete by your changes. When
you are running outside of a transaction, however, you are implicitly giving
GemStone permission to send your Gem session a signal requesting that you abort

Transaction Modes GBS User’s Guide

110 VMware, Inc. June 2011

your current view so that GemStone can reclaim storage when necessary. When
this happens, you must respond within the time period specified in the
STN_GEM_ABORT_TIMEOUT parameter in the Stone’s configuration file. If you
do not, GemStone either terminates the Gem or forces an abort, depending on the
value of the related configuration parameter STN_GEM_LOSTOT_TIMEOUT. The
Stone forces an abort by sending your session an abortErrLostOtRoot signal,
which means that your view of the repository was lost, and any objects that your
application had been holding may no longer be valid. When your application
receives abortErrLostOtRoot, the application must log out of GemStone and
log back in, thus rereading all of its data in order to resynchronize its snapshot of
the current state of the GemStone repository.

You can avoid abortErrLostOtRoot and control what happens when you
receive a signal to abort with the signaledAbortAction: aBlock message. For
example:

aGbsSession signaledAbortAction:
[aGbsSession abortTransaction].

This causes your GemBuilder session to abort when it receives a signal to abort.

5.4 Transaction Modes
A GemBuilder session always initiates a transaction when it logs in. After login,
the session can operate in either of two transaction modes: automatic or manual.

Automatic Transaction Mode
In automatic transaction mode, committing or aborting a transaction automatically
starts a new transaction. This is GemBuilder’s default transaction mode: in this
mode, the session operates within a transaction the entire time it is logged into
GemStone.

However, being in a transaction incurs certain costs related to maintaining a
consistent view of the repository at all times for all sessions. Objects that the
repository contained when you started the transaction are preserved in your view,
even if you are not using them and other users' actions have rendered them
meaningless or obsolete.

Depending upon the characteristics of your particular installation (such as the
number of users, the frequency of transactions, and the extent of object sharing),
this burden can be trivial or significant. If it is significant at your site, you may
want to reduce overhead by using sessions that run outside transactions, so that

Managing Transactions Transaction Modes

June 2011 VMware, Inc. 111

the Stone can signal transactions to abort when necessary. To run outside a
transaction, a session must switch to manual transaction mode.

Manual Transaction Mode
In manual transaction mode, the session remains outside a transaction until you
begin a transaction. When you change the transaction mode from automatic (its
initial setting) to manual, the current transaction is aborted and the session is left
outside a transaction. In manual transaction mode, a transaction begins only as a
result of an explicit request. When you abort or commit successfully, the session
remains outside a transaction until a new transaction is initiated.

To begin a transaction, send the message

aGbsSession beginTransaction

or select the Begin... button on the Session Browser.

A new transaction always begins with an abort to refresh the session’s private view
of the repository. Local objects that customarily survive an abort operation, such
as temporary results you have computed while outside a transaction, can be
carried into the new transaction where they can be committed, subject to the usual
constraints of conflict-checking. If you begin a new transaction while already
inside a transaction, the effect is the same as an abort.

In manual transaction mode, as in automatic mode, an unsuccessful commit leaves
the session in the current transaction until you take steps to end the transaction by
aborting.

Choosing Which Mode to Use
You should use automatic transaction mode if the work you are doing requires
committing to the repository frequently, because you can make permanent
changes to the repository only when you are in a transaction.

Use manual transaction mode if the work you are doing requires looking at objects
in the repository, but only seldom requires committing changes to the
repository. You will have to start a transaction manually before you can commit
your changes to the repository, but the system will be able to run with less
overhead.

Managing Concurrent Transactions GBS User’s Guide

112 VMware, Inc. June 2011

Switching Between Modes
To find out if you are currently in a transaction, execute aGbsSession
inTransaction. This returns true if you are in a transaction and false if you
are not.

To change from manual to automatic transaction mode, execute the expression:

aGbsSession transactionMode: #autoBegin

This message automatically aborts the transaction, if any, changes the transaction
mode, and starts a new transaction.

To change from automatic to manual transaction mode, execute the expression:

aGbsSession transactionMode: #manualBegin

This message automatically aborts the current transaction and changes the
transaction mode to manual. It does not start a new transaction, but it does
provide a fresh view of the repository.

5.5 Managing Concurrent Transactions
When you tell GemStone to commit your transaction, it checks to see if doing so
presents a conflict with the activities of any other users.

1. It checks to see whether other concurrent sessions have committed
transactions of their own, modifying an object that you have also modified
during your transaction. If they have, then the resulting modified objects can
be inconsistent with each other.

2. It may check to see whether other concurrent sessions have committed
transactions of their own, modifying an object that you have read during your
transaction, while at the same time you have modified an object that the other
session has read.

3. It checks for locks set by other sessions that indicate the intention to modify
objects that you have read or to read or write objects you have modified in
your view.

If it finds no such conflicts, GemStone commits the transaction, and your work
becomes part of the permanent, shared repository. Your view of the repository is
refreshed and any new or modified objects that other users have recently
committed become visible in any dictionaries that you share with them.

Managing Transactions Managing Concurrent Transactions

June 2011 VMware, Inc. 113

For details about read and write operations, optimistic and pessimistic
concurrency control, and other general information about GemStone transactions,
refer to the “Transactions and Concurrency Control” chapter of the GemStone/S
64 Bit Programming Guide.

Setting Locks
GemBuilder provides locking protocol that allows application developers to write
client Smalltalk code to lock objects and specify client Smalltalk code to be
executed if locking fails.

A GbsSession is the receiver of all lock requests. Locks can be requested on a
single object or on a collection of objects. Single lock requests are made with the
following statements:

aGbsSession readLock:anObject.
aGbsSession writeLock:anObject.
aGbsSession exclusiveLock:anObject.

The above messages request a particular type of lock on anObject. If the lock is
granted, the method returns the receiver. (Lock types are described in the
GemStone Programming Guide; note that exclusive locks are not available in
GemStone/S 64 Bit). If you don’t have the proper authorization, or if another
session already has a conflicting lock, an error will be generated.

When you request a lock, an error will be generated if another session has
committed a change to anObject since the beginning of the current transaction. In
this case, the lock is granted despite the error, but it is seen as “dirty.” A session
holding a dirty lock cannot commit its transaction, but must abort to obtain an up-
to-date value for anObject. The lock will remain, however, after the transaction is
aborted.

Another version of the lock request allows these possible error conditions to be
detected and acted on.

aGbsSession readLock:anObject ifDenied:block1 ifChanged:block2
aGbsSession writeLock:anObject ifDenied:block1 ifChanged:block2
aGbsSession exclusiveLock:anObject ifDenied:block1 ifChanged:block2

If another session has committed a change to anObject since the beginning of the
current transaction, the lock is granted but dirty, and the method returns the value
of the zero-argument block block2.

Managing Concurrent Transactions GBS User’s Guide

114 VMware, Inc. June 2011

The following statements request locks on each element in the three different
collections.

aGbsSession readLockAll:aCollection.
aGbsSession writeLockAll:aCollection.
aGbsSession exclusiveLockAll:aCollection.

The following statements request locks on a collection, acquiring locks on as many
objects in aCollection as possible. If you do not have the proper authorization for
any object in the collection, an error is generated and no locks are granted.

aGbsSession readLockAll: aCollection ifIncomplete: block1
aGbsSession writeLockAll: aCollection ifIncomplete: block1
aGbsSession exclusiveLockAll: aCollection ifIncomplete: block1

Example 5.1 shows how error handling might be implemented for the collection
locking methods:

Example 5.1

getWriteLocksOn:aCollection
 "This method attempts to set write locks on the elements
 of a Collection."
aGbsSession
 writeLockAll: aCollection
 ifIncomplete: [:result |

 (result at: 1)isEmpty ifFalse:
[self handleDenialOn: denied].

 (result at: 2)isEmpty ifFalse:
[aGbsSession abortTransaction].

 (result at: 3)isEmpty ifFalse:
[aGbsSession abortTransaction].

].

Once you lock an object, it normally remains locked until you either log out or
explicitly remove the lock; unless you specify otherwise, locks persist through
aborts and commits. In general, you should remove a lock on an object when you
have used the object, committed the resulting values to the repository, and no
longer anticipate a need to maintain control of the object.

Managing Transactions Managing Concurrent Transactions

June 2011 VMware, Inc. 115

The following methods are used to remove specific locks.

aGbsSession removeLock: anObject.
aGbsSession removeLockAll: aCollection.
aGbsSession removeLocksForSession.

The following methods answer various lock inquiries:

aGbsSession sessionLocks.
aGbsSession systemLocks.
aGbsSession lockOwners: anObject.
aGbsSession lockKind: anObject.

Releasing Locks Upon Aborting or Committing
The following statements add a locked object or the locked elements of a collection
to the set of objects whose locks are to be released upon the next commit or abort:

 aGbsSession addToCommitReleaseLocksSet: aLockedObject
 aGbsSession addToCommitOrAbortReleaseLocksSet: aLockedObject
 aGbsSession addAllToCommitReleaseLocksSet: aLockedCollection
 aGbsSession addAllToCommitOrAbortReleaseLocksSet: aLockedCollection

If you add an object to one of these sets and then request a fresh lock on it, the
object is removed from the set.

You can remove objects from these sets without removing the lock on the
object. The following statements show how to do this:

 aGbsSession removeFromCommitReleaseLocksSet: aLockedObject
 aGbsSession removeFromCommitOrAbortReleaseLocksSet: aLockedObject
 aGbsSession removeAllFromCommitReleaseLocksSet: aLockedCollection
 aGbsSession removeAllFromCommitOrAbortReleaseLocksSet: aLockedCollection

The following GemStone Smalltalk statements remove all objects from the set of
objects whose locks are to be released upon the next commit or abort. These
methods are executed using GS-Do it:

System clearCommitReleaseLocksSet
System clearCommitOrAbortReleaseLocksSet

The statement aGbsSession commitAndReleaseLocks attempts to commit the
current transaction, and clears all locks for the session if the transaction was
successfully committed.

Reduced-Conflict Classes GBS User’s Guide

116 VMware, Inc. June 2011

5.6 Reduced-Conflict Classes
At times GemStone will perceive a conflict when two users are accessing the same
object, when what the users are doing actually presents no problem. For example,
GemStone may perceive a write/write conflict when two users are simultaneously
trying to add an object to a Bag that they both have access to because this is seen
as modifying the Bag.

GemStone provides some reduced-conflict classes that can be used instead of their
regular counterparts in applications that might otherwise experience too many
unnecessary conflicts. For details, refer to the “Transactions and Concurrency
Control” chapter of the GemStone/S 64 Bit Programming Guide.

5.7 Changed Object Notification
A notifier is an optional signal that is activated when an object’s committed state
changes. Notifiers allow sessions to monitor the status of designated shared
application objects. A program that monitors stock prices, for example, could use
notifiers to detect changes in the prices of certain stocks.

In order to be notified that an object has changed, a session must register that object
with the system by adding it to the session’s notify set.

Notify sets persist through transactions, living as long as the GemStone session in
which they were created. When the session ends, the notify set is no longer in
effect. If you need it for your next session, you must recreate it. However, you
need not recreate it from one transaction to the next.

Class GbsSession provides the following two methods for adding objects to
notifySets:

 addToNotifySet:
adds one object to the notify set

 addAllToNotifySet:
adds the contents of a collection to the notify set

When an object in the notify set appears in the write set of any committing
transaction, the system evaluates a client Smalltalk block, sending a collection of
the changed objects as an argument to the block. By examining the argument, the
session can determine exactly which objects triggered the signal. (The block must
have been previously defined by sending notificationAction: to the session,
with the block as the argument.)

Managing Transactions Gem-to-Gem Notification

June 2011 VMware, Inc. 117

Because these events are not initiated by your session but cause code to run within
your session, this code is run asynchronously in a separate Smalltalk
process. Depending on what else is occurring in your application at that time,
using this feature might introduce multi-threading into your application,
requiring you to take some additional precautions. (See “Multiprocess
Applications” on page 147.)

Example 5.2 demonstrates notification in GemBuilder.

Example 5.2

"First, set up notifying objects and notification action"
| notifier |
GBSM currentSession abortTransaction; clearNotifySet.
notifier := Array new: 1.
GBSM currentSession at: #Notifier put: notifier.
GBSM currentSession commitTransaction.
GBSM currentSession addToNotifySet: notifier.
GBSM currentSession notificationAction: [:objs |

Transcript cr; show: 'Notification received']

"Now, from any session logged into the same stone with
visibility to the object 'notifier' - to initiate
notification"
GBSM currentSession abortTransaction;

evaluate: 'Notifier at: 1 put: Object new';
commitTransaction

5.8 Gem-to-Gem Notification
Sessions can send general purpose signals to other GemStone sessions, allowing
the transmission of the sender’s session, a numerical signal value, and an
associated message string.

One Gem can handle a signal from another using the method GbsSession >>
sessionSignalAction: aBlock, where aBlock is a one-argument block that will
be passed a forwarder to the instance of GsInterSessionSignal that was received.
From the GsInterSessionSignal instance, you can extract the session, signal value,
and string.

Gem-to-Gem Notification GBS User’s Guide

118 VMware, Inc. June 2011

One GemStone session sends a signal to another with:

aGbsSession sendSignal: aSignal to: aSessionId withMessage: aString

For example:

Example 5.3

"First, set up the signal-receiving action"
GBSM currentSession sessionSignalAction: [:giss |

nil gbsMessenger
comment: 'Signal %1 received from session %2: %3.'
with: giss signal
with: giss session
with: giss message.

].

"Now, from any session logged into the same Stone, send a
signal.(This example uses the same session)"
GBSM currentSession

sendSignal: 15
to: (GBSM evaluate: 'GsCurrentSession currentSession serialNumber')
withMessage: 'This is the signal'.

If the signal is received during GemStone execution, the signal is processed and
execution continues. If aBlock is nil, any previously installed signal action is
deinstalled.

NOTE
The method sessionSignalAction: and the mechanism described
above supersede the old mechanism that used the method
gemSignalAction:. Do not use both this method and
gemSignalAction: during the same session; only the last defined
signal handler will remain in effect.

See the chapter entitled “Error-handling” in your GemStone Programming Guide for
details on using the error mechanism for change notification.

Managing Transactions Asynchronous Event Error Handling

June 2011 VMware, Inc. 119

5.9 Asynchronous Event Error Handling
For each session, there is a background thread that detects events from the server
such as sigAbort, lostOTroot, gem to gem signals, and changed object notifications,
and other events that are handled internally. If a non-fatal error occurs in
processing these events, by default a walkback is opened.

To avoid an end-user experiencing a walkback, you may set a handler block for an
unexpected error in this event detection.

GbsSession >> eventDetectorErrorHandler: aOneArgBlock

If the eventDetectorErrorHandler is set, and if the exception is not already handled
by another handler that is set up for the application, this handler block will be
executed for the exception caught by the event detection thread.

Asynchronous Event Error Handling GBS User’s Guide

120 VMware, Inc. June 2011

Chapter

June 2011 VMware, Inc. 121

6 Security and Object
Access

Once objects have been successfully committed to GemStone, they can be
damaged or destroyed only by mishaps that damage or erase the disk files
containing your repository. GemStone provides several mechanisms for
safeguarding the objects in your GemStone repository. These mechanisms are
discussed in the chapter on creating and restoring backups in the GemStone System
Administration Guide.

This chapter discusses security and access at the object level.

GemStone Security
highlights the mechanisms GemStone provides for keeping your stored
objects secure.

6.1 GemStone Security
GemStone provides for blocking access to certain objects as well as sharing
them. Applications can take advantage of several security mechanisms to prevent
unauthorized access to, or modification of, sensitive code and data. These
mechanisms are listed below, and you can choose to use any or all of them.

GemStone Security GBS User’s Guide

122 VMware, Inc. June 2011

GemStone provides security at several levels:

 • Login authorization keeps unauthorized users from gaining access to the
repository;

 • Privileges limit ability to execute special methods affecting the basic
functioning of the system; and

 • Object level security allows specific groups of users access to individual
objects in the repository.

Complete details on GemStone security mechanisms are found in the GemStone/S
System Administration Guide for your GemStone server product and version. A brief
overview is included here.

Login Authorization
GemStone’s first line of protection is to control login authorization. When
someone tries to log in to GemStone, GemStone requires a user name and
password. If the user name and password match the user name and password of
someone authorized to use the system, GemStone allows interaction to proceed; if
not, the connection is severed.

The GemStone system administrator controls login authorization by establishing
user names and passwords when he or she creates UserProfiles.

The UserProfile

Each instance of UserProfile is created by the system administrator. The
UserProfile contains information about you as an individual user, such the UserId
and password, your SymbolList, any groups you belong to, and your privileges.
This information is used to provide system and object level security, including
object visibility.

Controlling Visibility of Objects with SymbolLists
One way to control access is to hide certain objects from users. Each GemStone
user has a SymbolList, containing a collection of SymbolDictionaries to which they
have been given access. Objects—such as Classes—that are not found in a search
of the user’s SymbolLists are not accessible. Because it is difficult for users to refer
to objects that are not defined somewhere in their symbol lists, simply omitting off-
limits objects from a user’s symbol list provides a small measure of security. It is

Security and Object Access GemStone Security

June 2011 VMware, Inc. 123

possible, however, for users to find ways to circumvent this, since it’s difficult to
ensure that all indirect paths to an object are eliminated.

NOTE
For performance reasons, GbsSession uses transient copies of your
symbol lists. If you change this transient copy programmatically, the
changes are not immediately reflected in the permanent GemStone
object. Also, changes to the permanent GemStone symbol list are not
reflected in the GbsSession’s transient symbol list until a transaction
boundary. If you must be absolutely certain that the two copies are
synchronized, log out and log back in again.

System Privileges
A few GemStone Smalltalk methods can be executed only by those who have
explicitly been given the necessary privileges. The privilege mechanism is entirely
independent of the authorization mechanism. This mechanism allows the system
administrator to control who can send certain powerful messages, such as those
that halt the system or change passwords. Privileges are associated with only
certain methods and cannot be extended to others.

Specific privileges and the privileged messages are described in the image, and
their use is discussed in the GemStone System Administration Guide.

Protecting Methods
Another choice is to implement procedural protection. If your program accesses
its objects only through methods, you can control the use of those objects by
including user identity checks in the accessing methods.

Object-level Security

Object Security Policies

Instances of GemStone’s GSObjectSecurityPolicy Class provide read and write
authorization control to individual objects. When someone tries to read or write an
object that is governed by an object security policy for which he or she lacks the
proper authorization, GemStone raises an authorization error and does not permit
the requested operation.

In GemStone/S 64 Bit, objects may be associated with an object security policy or
not. If not, no object authorization is done and any user can read and write the

GemStone Security GBS User’s Guide

124 VMware, Inc. June 2011

objects. In the 32-bit GemStone/S server product, every server object is associated
with an object security policy that controls access to that object.

NOTE
In the 32-bit GemStone/S server product, and in GemStone/S 64 Bit 2.x,
object security policies are known as Segments.

All objects associated with a particular object security policy have exactly the same
protection; that is, if you can read or write one object with that security policy, you
can read or write them all. Each security policy is owned by a specific single user,
and may have authorizations for owner, groups, or world for read-only, read-
write, or no access.

Groups provide a way to allow a number of GemStone users to share the same
level of access to set of objects in the repository.

Object security policies are not meant to organize objects for retrieval; GemStone
uses Symbol Lists for that. Moreover, security policies don’t have any relationship
to the physical location of objects on disk; they merely provide access security.

For a complete discussion of object level security, symbol resolution, and object
sharing, see the relevant chapters of the GemStone Programming Guide.

Chapter

June 2011 VMware, Inc. 125

7 Exception Handling

This chapter discusses exceptions: how to handle them and how to recover from
them, and how to define your own GemStone errors.

GemStone Errors and Exception Classes
describes how GbsErrors and Exceptions are created and used.

Handling Exceptions
explains how to handle exceptions, and how to define and signal your own
errors.

Interrupting GemStone Execution
explains how to interrupt GemStone Execution.

7.1 GemStone Errors and Exception Classes
When an error occurs in the GemStone server and is not handled by server
Smalltalk execution, an instance of GbsError is created on the client that contains
detailed information about the error, and an exception is signaled in GemBuilder.
You may set up exception handlers to catch the exception, and perform the desired
client Smalltalk exception handling. If no exception handler is set up for the
particular exception that occurred, the default handler opens a notifier, from
which you can open a debugger.

GemStone Errors and Exception Classes GBS User’s Guide

126 VMware, Inc. June 2011

GBS and GemStone server exceptions are signaled in client Smalltalk as instances
of exception classes.

 • In GemStone/S 64 Bit 3.0 or later, you can replicate exception instances to the
client, along with their instance variables. (See the discussion that begins on
page 127.) This behavior may be desirable if you wish to more fully bring
information about the server exception to the client. To replicate exception
instances to the client, you must set the configuration parameter
replicateExceptions to true. By default, replicateExceptions is
false and the following behavior applies.

With the GemStone/S 64 Bit 2.x and GemStone/S 32-bit server products, and
GemStone/S 64 Bit 3.0 (when replicateExceptions is false), exception classes
can be found in the application/package GbsExceptions. In VisualWorks, these
exception classes are defined in the namespace GemStone.Gbs.

On the GemStone server, there is a dictionary of error names, called ErrorSymbols.
This dictionary lists all the errors that can occur when communicating with a
GemStone session. For each of these errors, there is a corresponding client
exception class. The name of that class is derived by making the first character of
the error symbol uppercase, and prepending “Gbs”. So, for instance, the server
error #rtErrBadArgKind corresponds to the client exception class
GbsRtErrBadArgKind.

The GemBuilder exception classes fit into the VisualWorks exception hierarchy as
shown below:

GenericException
ControlInterrupt

GbxAbstractControlInterrupt
<various specific error classes related to pauses, breaks, or breakpoints>

Exception
Error

GbxAbstractException
GbsGemStoneError

GbsAbortingError
<various specific error classes that cause aborts>

 GbsCompilerError
<various specific compile-related error classes>

GbsEventError
<various specific signal related error classes>

GbsFatalError
<various specific fatal error classes>

GbsInterpreterError

Exception Handling Handling Exceptions

June 2011 VMware, Inc. 127

<various specific other error classes>
GbsInterfaceError

GbsAssertionError
GbsBlockReplicationError
GbsClassGenerationError
GbsConnectorError
GbsLinkedLoginError
GbsNotCachedError
GbsUnsupportedFloatError
GsiUnsupportedFloatError

The subclasses of GbxAbstractControlInterrupt are exceptions raised by
the GemStone server that are normally used to invoke a debugger. Applications do
not typically define handlers for these exceptions.

The subclasses of GbsGemStoneError are exceptions that are raised by the
GemStone server.

The subclasses of GbsInterfaceError represent client side only GBS errors,
that is, errors that are detected by the GBS client.

GemStone/S 64 Bit 3.0 or later (replicateExceptions=true)

For each server exception class, there is a corresponding client exception class.
With GemStone/S 64 Bit 3.0 and later, when replicateExceptions is true,
these client exception classes have the same name as the corresponding server
classes, and are defined in the namespace GemStone.Gbs.Exceptions.

Before being signaled on the client, the actual exception instance on the server is
replicated to the client, along with its instance variables.

7.2 Handling Exceptions
You can use the on:do: method to install error handlers to anticipate specific
GemStone errors. For example, this shows how to use the exception classes to
handle a GemStone server error:

Example 7.1

[GBSM currentSession evaluate: '5 / 0']
 on: GbsNumErrIntDivisionByZero
 do: [:ex | ex proceedWith: 'oops']

Handling Exceptions GBS User’s Guide

128 VMware, Inc. June 2011

To handle an entire set of errors, rather than an individual error, set up the handler
for the common superclass of the errors you want to handle. For example, to
handle all GemStone fatal errors, set up a handler for GbsFatalError, something
like this:

[…]
 on: GbsFatalError
 do: [:ex | …]

Each exception detected by the GemStone server also has an associated instance of
the class GbsError. This is primarily for internal use by GemBuilder, but you can
examine the GbsError by sending #originator to the exception instance. For
example:

Example 7.2

[GBSM evaluate: '#(1 2 3) at: 4']
 on: GbsObjErrBadOffsetIncomplete
 do: [:ex | ex originator inspect]

User-Defined Errors
You can define and signal your own errors in GemStone. For more information on
how to do this, see the GemStone Programming Guide.

This section describes the behavior when replicateExceptions is false (the
default), and for GemStone/S 64 Bit 2.x and GemStone/S 32-bit server products.

 • If you’re using GemStone/S 64 Bit 3.0 or later (with replicateExceptions
set to true), see the discussion on page 130.

In a GemBuilder application, if you want to define a client Smalltalk exception
handler for a user-defined error, you will first need to associate the GemStone
error number with a client Smalltalk exception class. To do this, use the method
GbsError class>>defineErrorNumber:class:. This only needs to be done
once for each user defined error.

Note that user-defined error numbers must be unique, and the numbers 1000-6999
are reserved for use by GemStone.

For example, suppose you have created a GemStone user-defined error as follows:

Exception Handling Handling Exceptions

June 2011 VMware, Inc. 129

Example 7.3

"In GemStone"
| myErrors |
myErrors := LanguageDictionary new.
UserGlobals at: #MyErrors put: myErrors.
myErrors at: #English put: (Array new: 10).
(myErrors at: #English)

at: 10
put: #('My new error with argument ' 1).

The following client Smalltalk code signals your newly created error in GemStone:

GBSM evaluate: 'System signal: 10
args: #[46] signalDictionary: MyErrors'

A generic signal-handler for all GemStone errors would trap this signal. This code
sets up the exception handler and causes the exception to be signaled:

^[GBSM evaluate: 'System signal: 10
args: #[46]
signalDictionary: MyErrors']

on: GbsGemStoneError
do: [:ex | ex return: #handled].

To explicitly handle your new error in client Smalltalk, you first need to associate
the GemStone error number with a client exception class. Create a new class, which
should inherit from GbsGemStoneError. In this example, the class MyNewError
has been created, and this code associates this class with the GemStone error
number:

GbsError
defineErrorNumber: 10
class: MyNewError.

Then to explicitly handle your new error from client Smalltalk:

Handling Exceptions GBS User’s Guide

130 VMware, Inc. June 2011

Example 7.4

^[GBSM evaluate: 'System
signal: 10
args: #[46]
signalDictionary: MyErrors']
 on: MyNewError
 do: [:ex | ex return: #handled]

You can obtain the exception's error description string by sending it #description.
For example:

[GBSM execute: '#a at: 2']
on: GbsObjErrBadOffsetIncomplete
do: [:ex | ex return: ex description]

You can obtain the array of server exception arguments by sending
#serverArguments to the client exception. This array contains client replicates of
the server error arguments.

For example:

[GBSM execute: '#a at: 2']
on: GbsObjErrBadOffsetIncomplete
do: [:ex | ex return: ex serverArguments]

For information on how to create GemStone error dictionaries and how to handle
GemStone errors (predefined and user-defined) within the GemStone
environment, see the chapter entitled “Handling Errors” in the GemStone
Programming Guide. For more information about defining error handlers in the
client Smalltalk, refer to your client Smalltalk documentation on exception
handling.

GemStone/S 64 Bit 3.0 or later (replicateExceptions=true)

With GemStone/S 64 Bit 3.0 or later, when replicateExceptions is true, you
can define and signal your own errors by performing the following steps:

1. Create a subclass of an exception class on the server.

2. Create a subclass of the corresponding exception class on the client.

3. Define a connector to connect these two classes.

Subsequently, any exceptions signaled and not handled on the server will be
replicated to the client and signaled there.

Exception Handling Interrupting GemStone Execution

June 2011 VMware, Inc. 131

7.3 Interrupting GemStone Execution
When executing GemStone server Smalltalk in a non-blocking RPC session, it’s
possible to interrupt GemStone execution by sending the session #softBreak.
GemStone responds by raising GbsRtErrSoftBreak, which is a continuable
exception.

GBS automatically sends #softBreak when a client Smalltalk user interrupt occurs
in a Process executing GemStone server code (in a non-blocking RPC session). If
VisualWorks can’t determine which Process to interrupt when control-Y is
entered, try executing GBSM softBreak, or aGbsSession softBreak (if you have
more than one GemStone session).

In addition to being continuable, soft break can also be handled on the server by
an exception handler. There is another mechanism called hard break which is not
continuable, and cannot be handled on the server. Sending an executing
GbsSession the message #hardBreak stops server execution, aborts the current
GemStone transaction, and raises GbsRtErrHardBreak on the client.

In GBS, in situations where a client Smalltalk user interrupt sends a soft break, a
hard break will be sent after the server has not responded to three soft breaks.

Interrupting GemStone Execution GBS User’s Guide

132 VMware, Inc. June 2011

Chapter

June 2011 VMware, Inc. 133

8 Schema Modification
and Coordination

No matter how elegantly your schema was designed, sooner or later changes in
your application requirements or even changes in the world around your
application will probably make it necessary to make changes to classes that are
already instantiated and in use. When this happens, you will want the process of
propagating your changes to be smooth and to impact your work as little as
possible.

This chapter discusses the mechanisms GemStone and GemBuilder provide to
help you accomplish this.

Schema Modification
explains how GemStone supports schema modification by maintaining
versions of classes in class history objects. It shows you how to migrate some
or all instances from one version of a class to another while retaining the data
that these instances hold.

Schema Coordination
explains how to synchronize schema modifications between GemStone and
the client Smalltalk.

Schema Modification GBS User’s Guide

134 VMware, Inc. June 2011

8.1 Schema Modification
Client Smalltalk and GemStone Smalltalk both have schema modification
support. Client Smalltalk supports only a single version of a class; when a class is
modified, instance migration occurs immediately. Because GemStone stores
persistent objects, schema modification is a more complex issue.

GemStone Smalltalk supports schema modification and protects the integrity of
your stored data by allowing you to define different versions of classes. It keeps
track of these versions in a class history object.

For details about schema modification in GemStone, see the “Class Creation,
Versions, and Instance Migration” chapter in the GemStone Programming Guide.

8.2 Schema Coordination
GemBuilder’s goal in supporting schema migration is to provide an interaction
between the client Smalltalk and the GemStone server that provides as much of
GemStone’s capabilities as possible, while minimizing the impact on the client
Smalltalk system.

GemBuilder preserves the behavior of having only a single version of a given class
in client Smalltalk at one time. That client Smalltalk class will be mapped to a
specific version of a GemStone server class, resolved at login time (if a connector is
defined) by its name. If, while faulting an object into client Smalltalk, GemBuilder
discovers that the server object is an instance of a class that is a different version of
the class that is in client Smalltalk, and the class version of the server object is
earlier than the class version that is already mapped to the client class, it will be
faulted in in the format of the class in client Smalltalk and flagged so that if it is
modified and written back to the server, the server instance will be of the newer
class version. This will lazily-migrate forward server instances to newer class
versions.

For example, suppose you have a class named Foo on the GemStone server, and
there are two versions of it: Foo [1] and Foo [2]. Suppose that client Smalltalk
has a representation of Foo [2]. Instances of Foo [2] are replicated back and
forth between client and server, as usual. If GemBuilder attempts to fault an

Schema Modification and Coordination Schema Coordination

June 2011 VMware, Inc. 135

instance of Foo [1], however, GemBuilder will discover that there is no class
mapping for Foo [1]. GemBuilder will then do the following:

1. It will fetch the name of the GemStone server class and discover that there is a
client Smalltalk class by the same name that is already mapped to a server
class.

2. It will verify that the two server classes are in the same class history, and that
the version of Foo [1] is earlier than the version of Foo [2].

3. It will then ask GemStone to make a copy of the Foo [1] instance, migrate the
copy to Foo [2], and replicate that migrated copy to the client. The client
replicate is mapped to the original Foo [1] server instance.

4. If the client replicate is later modified in client Smalltalk, marked dirty, and
flushed to the server, it will not be migrated back, and the server object will
become an instance of Foo [2].

This process is fairly expensive. If you are running GemBuilder in verbose mode,
the discovery of an client Smalltalk class that is mapped to an old version of a
GemStone server class (a version that is not the migration destination) will be
logged to the transcript. If you see this happening frequently, you should consider
migrating your instances to the GemStone server class version corresponding to
your client Smalltalk class.

Schema Coordination GBS User’s Guide

136 VMware, Inc. June 2011

Chapter

June 2011 VMware, Inc. 137

9 Performance Tuning

This chapter discusses ways that you can tune your GemBuilder application to
optimize performance and minimize maintenance overhead.

Profiling
explains ways you can examine your program’s execution.

Selecting the Locus of Control
provides some rules of thumb for deciding when to have methods execute on
the client and when to have them execute on the server.

Replication Tuning
explains the replication mechanism and how you can control the level of
replication to optimize performance

Optimizing Space Management
explains how you can reclaim space from unneeded replicates.

Using Primitives
introduces the use of methods written in lower-level languages such as C.

Multiprocess Applications
discusses nonblocking protocol and process-safe transparency caches.

See Chapter 10, “GemBuilder Configuration Parameters,” for GemBuilder
configuration parameters that can used to tune performance.

Profiling GBS User’s Guide

138 VMware, Inc. June 2011

For further information, see the GemStone Programming Guide for a discussion on
how to optimize GemStone Smalltalk code for faster performance. That manual
explains how to cluster objects for fast retrieval, how to profile your code to
determine where to optimize, and discusses optimal cache sizes to improve
performance.

9.1 Profiling
Before you can optimize the performance of your application, you must find out
where most of the execution time is being spent. There are client Smalltalk tools
available for profiling client code. GemStone also has a profiling tool in the class
ProfMonitor. This class allows you to sample the methods that are executed in a
given block of code and to estimate the percentage of total execution time
represented by each method, within GemStone server execution. See the chapter
on performance in the GemStone Programming Guide for details.

Profiling Client Smalltalk Execution
GemBuilder can be configured to collect statistics describing the performance of
its internal operation. These statistics are archived to a file (a statistics archive
file), which can be viewed by a tool called VSD (for more information on VSD, See
“VSD” on page 141). Statistics tracking introduces minimal overhead into GBS. A
VisualWorks process named “GBS Stat Monitor” samples and archives the stats at
a regular, configurable time interval.

To enable the tracking of all GBS statistics in an image, and start the statistics
monitor archiving at a default interval of once every 2000 milliseconds, execute
the following:

GBSM statsEnabled: true

To disable all statistics tracking and turn off the statistics monitor, execute:

GBSM statsEnabled: false

To check if any statistics are currently enabled:

GBSM statsEnabled

Main Statistics
GBS provides two groups of statistics, called “main statistics” and “cache
inventory statistics”. The “main statistics” of GBS are statistics associated with the

Performance Tuning Profiling

June 2011 VMware, Inc. 139

session manager and with each logged in session. The session manager statistics
are:

The statistics associated with each logged in session are:

Table 9.1 Session Manager Main Statistics

Statistic Description

numSessions The number of logged in GbsSessions
sessionListProtectInvocations The number of accesses to the

sessionListProtect semaphore
gciCallProtectInvocations The number of accesses to the

GciCallProtect semaphore (a
GbxCInterface shared variable)

clientMapSize The number of entries in the client map
(stObjectCache)

mainStatSampleTime The amount of time spent sampling
manager and session main statistics

cacheStatSampleTime The amount of time spent sampling
cache statistics

Table 9.2 Session Main Statistics

Statistic Description

gciCallsToGem The number of gci calls made that
communicate with the gem

gciCallsToGemTime The amount of time spent in gci calls that
communicate with the gem

traverseCalls The number of traversal calls (all types,
including more traversal)

traverseCallTime The amount of time spent in traversal
calls

objectsTraversed The total number of objects (with or
without a value buffer) received by
traversal call

bytesTraversed The cumulative number of bytes
returned by traversal calls

Profiling GBS User’s Guide

140 VMware, Inc. June 2011

To enable the main statistics without enabling cache statistics, execute:

GBSM mainStatsEnabled: true

Unlike the all-in-one “statsEnabled:” method, this method doesn't start the
statistics monitor. To start the statistics monitor, execute:

traversalUnpackingTime The total number of milliseconds spent
unpacking traversal buffers

storeTraversals The number of store traversal calls made
bytesSentByStoreTraversal The number of bytes sent cumulatively

by store traversal calls
objectsStoredByTraversal The total number of objects stored by

store traversal calls
sigAborts The number of signaled aborts received
lostOtRoots The number of lostOTRoot signals

received
changedObjNotifications The number of changed object

notifications received
sessionSignals The number of gem-to-gem signals

received
freeOopsFetched The number of free oops fetched
sessionProtectInvocations The number of times the sessionProtect

semaphore has been invoked
gciErrors The number of errors reported by

GciErr()
nbEndResultReady The number of times GciNbEnd() was

called and a result was ready
nbEndResultProgressed The number of times GciNbEnd() was

called and progress was made
nbEndResultNoProgress The number of times GciNbEnd() was

called when the result wasn't ready and
no progress was made

serverMapSize The number of entries in this session's
server map (gsObjectCache)

Table 9.2 Session Main Statistics (Continued)

Statistic Description

Performance Tuning Profiling

June 2011 VMware, Inc. 141

GBSM statMonitorRunning: true

To specify a specific statistics archiving interval in milliseconds, execute:

GBSM statSampleInterval: milliseconds

Cache Inventory Statistics
GBS provides cache inventory statistics, which show the number of instances of,
and bytes consumed by, each class of object found in the clientMap (formerly the
stObjectCache). To enable cache inventory statistics without enabling main
statistics, execute:

GBSM cacheStatsEnabled: true

GBSM statMonitorRunning: true

Cache inventory statistics are more expensive to sample and archive than the
main GBS statistics. Because of this, cache statistics are not sampled and archived
every time the statistics monitor performs sampling and archiving of the main
statistics. By default, the cache statistics are sampled and archived every 5th time.
This value is configurable by sending:

GBSM cacheSampleIntervalMultiplier: anInteger

This value times statSampleInterval is the interval between two cache statistics
samples. For example, with the default cacheSampleIntervalMultiplier of 5 and
the default statSampleInterval of 2000 milliseconds, the cache statistics will be
sampled and archived every 10000 milliseconds (or once every 10 seconds). A
cacheSampleIntervalMultiplier of 1 would mean that cache statistics will be
sampled and archived every time the main statistics are sampled.

VSD
The Visual Statistics Display tool, VSD, is provided with the GemStone server
product, and can be found in the directory $GEMSTONE/bin/vsd. You can
download the latest version of VSD from:

http://community.gemstone.com/display/GSS64/VSD

To view one or more GBS statistics files, invoke vsd with the statistic files as
arguments. See the help system in VSD for more information.

Selecting the Locus of Control GBS User’s Guide

142 VMware, Inc. June 2011

9.2 Selecting the Locus of Control
By default, GemBuilder executes code in the client Smalltalk. Objects are stored
in GemStone for persistence and sharing but are replicated in the client Smalltalk
for manipulation. In general, this policy works well. There are times, however,
when it is preferable or required to execute in GemStone.

One motivation for preferring execution in GemStone is to improve
performance. Certain functions can be performed much more efficiently in
GemStone. The following section discusses the trade-offs between client
Smalltalk and server Smalltalk execution and how to choose one space over the
other.

Beyond optimization, some functions can be performed only in
GemStone. GemStone’s System class, for example, cannot be replicated in the
client Smalltalk; messages to System have to be sent in GemStone.

Locus of Execution
This section centers on controlling the locus of execution—in other words,
determining whether certain parts of an application should execute in the client
Smalltalk or in GemStone. Subsequent sections discuss other ways of tuning to
increase execution speed.

Client Smalltalk and GemStone Smalltalk are very similar languages. Using
GemBuilder, it is easy to define behavior in either client Smalltalk or GemStone to
accomplish the same task. There are, however, performance implications in the
placement of the execution. This section discusses several factors to weigh when
choosing the space in which to execute methods.

Relative Platform Speeds

One consideration when choosing the execution platform is the relative speed of
the client Smalltalk and the server Smalltalk execution environments. Your client
Smalltalk may run faster than GemStone on the same machine. GemStone’s
database management functions and its ability to handle very large data sets add
some overhead that the client Smalltalk environment doesn’t have.

Cost of Data Management

Execution cannot complete until all objects required have been brought into the
object space. When executing in the client Smalltalk, this means that all
GemStone server objects required by the message must be faulted from
GemStone. When executing in GemStone, this means that dirty replicates must

Performance Tuning Replication Tuning

June 2011 VMware, Inc. 143

be flushed from the client Smalltalk. In general, it is impossible to tell exactly
which objects will be required by a message send, so GemBuilder flushes all dirty
replicates before a GemStone message send and faults all dirty GemStone server
objects after the send.

Clearly, data movement can be expensive. Although the client Smalltalk
environment might be more efficient for some messages, faulting the object into
the client Smalltalk might overwhelm the savings. If the objects are all already
there, however, or if the objects will be reused for other messages, then the
movement may be justified.

For example, consider searching a set of employees for a specific employee,
giving her a raise, and then moving on to another unrelated operation. Although
a brute force search may be faster in your client Smalltalk, the cost of moving the
data to the client may exceed the savings. The search should probably be done in
GemStone.

However, if additional operations are going to be done on the employee set, the
cost of moving data is amortized and, as the number of operations increases,
becomes less than the potential savings.

GemStone Optimization

Some optimizations are possible only using GemStone server execution. In
particular, repository searching and sorting can be done much more quickly on
the GemStone server than in your client Smalltalk as data sets become large.

If you will be doing frequent searches of data sets such as the employee set in the
previous example, using an index on the server Smalltalk set will speed
execution.

The GemStone Programming Guide provides a complete discussion of indexes and
optimized queries.

9.3 Replication Tuning
The faulting of GemStone server objects into the client Smalltalk is described in
Chapter 3. As described there, a GemStone server object has a replicate in the
client Smalltalk created for itself, and, recursively, for objects it contains to a
certain level, at which point stubs instead of replicates are created.

Faulting objects to the proper number of levels can noticeably improve
performance. Clearly, there is a cost for faulting objects into the client
Smalltalk. This is made up of communication cost with GemStone, object

Replication Tuning GBS User’s Guide

144 VMware, Inc. June 2011

accessing in GemStone, object creation and initialization in the client Smalltalk,
and increased virtual machine requirements in the client Smalltalk as the number
of objects grows. For this reason, you should try to minimize faulting and fault in
to the client only those objects that will actually be used in the client.

On the other hand, inadequate faulting also has its penalties. Communication
overhead is important. When fetching an employee object, it is wasteful to stub
the name and then immediately fetch the name from GemStone. It is better to
avoid creating the stub and then invoking the fault mechanism when sending it a
message.

Controlling the Fault Level
By default, two levels of objects are faulted with the linked version of
GemBuilder, and four levels are faulted for the RPC version. This reflects the cost
of remote procedure calls and the judgment that it is better to risk fetching
unneeded objects to avoid extra calls to GemStone.

It is possible to tune the levels of stubbing to a more optimal level with a
knowledge of the application being programmed. You can set the configuration
parameters faultLevelRpc and faultLevelLnk to a SmallInteger indicating
the number of levels to replicate when updating an object from GemStone to the
client Smalltalk. A level of 2 means to replicate the object and each object it
references, stubbing objects beyond that level. A level of 0 indicates no limit; that
is, entering 0 prevents any stubs from being created. The default for the linked
version is 2; the default for the RPC version is 4. To examine or change this
parameter, choose GemStone > Browse > Settings and select the Replication
tab in the resulting Settings Browser.

NOTE
Take care when using a level of 0 to control replication. GemStone can
store more objects than can be replicated in a client Smalltalk object
space.

Preventing Transient Stubs
If the default faultLevelLnk or faultLevelRpc is the only mechanism used
to control fault levels, it is possible to create large numbers of stubs that are
immediately unstubbed.

To prevent stubbing on a class basis, reimplement the replicationSpec class
method for that class. For details, see “Replication Specifications” on page 64.

Performance Tuning Optimizing Space Management

June 2011 VMware, Inc. 145

Setting the Traversal Buffer Size
The traversal buffer is an internal buffer that GemBuilder uses when retrieving
objects from GemStone. The larger the traversal buffer size, the more information
GemBuilder is able to transfer in a single network call to GemStone. To change its
value, send the message

 GbsConfiguration current traversalBufferSize: aSmallInteger.

You can also change this value by using the Settings Browser: choose GemStone
> Tools > Settings and select the Server Communications category in the
resulting Settings Browser.

9.4 Optimizing Space Management
In normal use of GemBuilder, objects are faulted from GemStone to the client
Smalltalk on demand. In many ways, however, this is a one-way street, and the
client Smalltalk object space can only grow. Advantages can be gained if client
Smalltalk replicates can be discarded when they are no longer needed. A reduced
number of objects on the client reduces the load on the virtual machine, garbage
collection, and various other functions.

Measures you can take to control the size of the client Smalltalk object cache
include explicit stubbing, using forwarders, and not caching certain objects.

Explicit Stubbing
If the application knows that a replicate is not going to be used for a period of
time, the space taken by that object can be reclaimed by sending it the message
stubYourself. More importantly, any objects it references become candidates
for garbage collection in your client Smalltalk.

Consider having replicated a set of employees. After faulting in the set and the
objects transitively referenced from that set, the objects in the client Smalltalk look
something like this.

Optimizing Space Management GBS User’s Guide

146 VMware, Inc. June 2011

Figure 9.1

currentEmp

emp1

name1 address1

emp2

firstName

empn

setOfEmployees

Employee Set Faulted into the Client Smalltalk

Clearly, there can be a large number of objects referenced transitively from the
employee set. If the application’s focus of interest changes from the set to, say, a
specific employee, it may make sense to free the object space used by the
employee set.

In this example, one solution is to send stubYourself to the
setOfEmployees. All employees, except those referenced separately from the
set, become candidates for garbage collection.

Of course, if the application will be referencing the setOfEmployees again in
the near future, the advantage gained by stubbing could be offset by the increased
cost of faulting later on.

If you send stubYourself to self, be careful not to read instance variables of
the unstubbed class later in the same method, since the stub will not have these
variables and you may observe incorrect nil values.

Using Forwarders
Another solution is to declare the setOfEmployees as a forwarder. See
“Forwarders” on page 50.

Performance Tuning Using Primitives

June 2011 VMware, Inc. 147

9.5 Using Primitives
Sometimes there is an advantage to dropping out of Smalltalk programming and
writing methods in a lower-level language such as C. Such methods are called
primitives in Smalltalk; GemStone refers to them as user actions. There are serious
concerns when doing this. In general, such applications will be less portable and
less maintainable. However, when used judiciously, there can be significant
performance benefits.

In general, profile your code and find those methods that are heavily used to be
candidates for primitives or user actions. The trick to proper use of primitives or
user actions is to create as few as possible. Excess primitives or user actions make
the system more difficult to understand and place a heavy burden on the
maintainer.

For a description about adding primitives to your client Smalltalk, see the
vendor’s documentation. For adding user actions to GemStone, see the
GemBuilder for C user manual.

9.6 Multiprocess Applications
Some applications support multiple Smalltalk processes running concurrently in
a single image. In addition, some applications enter into a multiprocess state
occasionally when they make use of signalling and notification. Multiprocess
GemBuilder applications must exercise some precautions in order to preserve
expected behavior and data integrity among their concurrent processes.

Blocking and Nonblocking Protocol
In a linked GemBuilder session, GemStone operations execute synchronously: the
entire client Smalltalk VM must wait for a GemStone operation to complete before
proceeding with the execution process that called it. Synchronous operation is
known in GemBuilder as blocking protocol.

An RPC GemBuilder session can support asynchronous operation: nonblocking
protocol. When the configuration parameter blockingProtocolRpc is false (the
default setting in RPC sessions), client Smalltalk processes (other than the process
interacting with GemStone) can proceed with execution during GemStone
operations. A session, however, is permitted only one outstanding GemStone
operation at a time.

Multiprocess Applications GBS User’s Guide

148 VMware, Inc. June 2011

When blockingProtocolRpc is true, behavior is the same as in a linked session:
the entire client Smalltalk VM must wait for a GemStone call to return before
proceeding.

One Process per Session
Applications that limit themselves to one client Smalltalk process per GemStone
session are relatively easy to design because each process has its own view of the
repository. Each process can rely on GemStone to coordinate its modifications to
shared objects with modifications performed by other processes, each of which
has its own session and own view of the repository. If at all possible, try to limit
your application to one process per GemStone session.

Multiple Processes per Session
Applications that have multiple processes running against a single GemStone
session must take additional precautions.

You may not have designed your application to run multiple processes with a
single GemStone session. However, if your application uses signals and notifiers,
chances are it is occasionally running two processes against a single GemStone
session. Methods that create concurrent processes include:

GbsSession
>>notificationAction:
>>gemSignalAction:
>>signaledAbortAction:

When the specified event occurs, the block you supply to these methods runs in a
separate process. Unless your main execution process is idle when these events
occur, you need to take the same precautions as any other application running
multiple processes against a single session.

Applications that have multiple processes running against a single GemStone
session should take these additional precautions:

 • coordinate transaction boundaries

 • coordinate flushing

 • coordinate faulting

GemBuilder provides a method, GbsSession>>critical: aBlock, that
evaluates the supplied block under the protection of a semaphore that is unique
to that session. The best approach to creating an application that must support
more than one process interacting with a single GemStone session is to organize

Performance Tuning Multiprocess Applications

June 2011 VMware, Inc. 149

its logical transactions into short operations that can be performed entirely within
the protection of GbsSession>>critical:. All of that session’s commits,
aborts, executes, forwarder sends, flushes and faults should be performed within
GbsSession>>critical: blocks.

For example, a block that implements a writing transaction will typically start
with an abort, make object modifications, and then finish with a commit. A block
that implements a reading transaction might start with an abort, perhaps perform
a GemStone query, and then maybe display the result in the user interface.

Coordinating Transaction Boundaries

Multiple processes need to be in agreement before a commit or abort occurs. For
example, suppose two processes share a single GemStone session. If one process
is in the process of modifying a set of persistent objects and a second process
performs a commit, the committed state of the repository will contain a logically
inconsistent state of that set of objects.

The application must coordinate transaction boundaries. One way to do this is to
make one process the transaction controller for a session, and require that all
other processes sharing that session request that process for a transaction state
change. The controller process can then be blocked from performing that change
until all other processes using that session have relinquished control by means of
some semaphore protocol.

Coordinating Flushing

GemBuilder’s transparency mechanism flushes dirty objects to GemStone
whenever a commit, abort, GemStone execution or forwarder send occurs.
Whenever a process modifies persistent objects, it must protect against other
processes performing operations that trigger flushing of dirty objects to
GemStone. The risks are that a flush may catch a logically inconsistent state of a
single object, or might cause GemBuilder to mark an object “not dirty” without
really flushing it.

To control when flushing occurs, perform update operations within a block
passed to GbsSession>>critical:.

Coordinating Faulting

If two processes send a message to a stub at roughly the same time, one of the
processes can receive an incomplete view of the contents of the object. This results
in doesNotUnderstand errors which cannot be explained by looking at them
under a debugger, because by the time it is visible in the debugger, the object has
been completely initialized. Unstubbing conflicts can be avoided by

Multiprocess Applications GBS User’s Guide

150 VMware, Inc. June 2011

encapsulating potential unstubbing operations within the protection of a
GbsSession>>critical: block.

Chapter

June 2011 VMware, Inc. 151

10 GemBuilder
Configuration
Parameters

GemBuilder provides configuration settings that allow GemBuilder to operate
differently for development or debugging, control details of the user interface, and
tune your program for performance.

This appendix describes the GemBuilder configuration parameters, their default
and legal values, and their significance.

10.1 Setting Configuration Parameters
Some configuration parameters control fundamental features of GemBuilder, and
must remain the same while the image is running. Other parameters can be
modified while GemBuilder is running, and may take effect immediately or at a
later point, or can be set individually for a session to override the global behavior.
The configuration parameter descriptions starting on page page 153 provide
specific details for each parameter.

Global settings
When sessions log in, they obtain an initial set of configuration parameters based
on the configuration settings in the current global GbsConfiguration.

Setting Configuration Parameters GBS User’s Guide

152 VMware, Inc. June 2011

To determine the current global setting of a parameter, send the parameter name
as a message to the global instance of GbsConfiguration, GbsConfiguration
current. For example, the following expression returns the setting of the
connectVerification parameter:

GbsConfiguration current connectVerification
false

To globally set a parameter, append a colon to the parameter name and send it as
a message to the GbsConfiguration instance, with the desired value as the
argument. For example, to set the connectVerification parameter, send:

GbsConfiguration current connectVerification: true

You may also use the Settings Browser to view and change the settings of these
parameters. (See “The Settings Browser” on page 178.)

Session-specific settings
While many configuration parameters apply to the image as a whole, other
parameters may be modified for specific sessions.

For these parameters, the value in GbsConfiguration current is used at login.
Subsequently, you may send the GbsConfiguration messages to the session's
configuration (acquired by sending #configuration to the session) to determine or
modify the value for that session only.

For example, if the current session requires a larger traversal buffer, an expression
such as the following will increase the size for this session, while leaving the
global setting for new sessions unchanged.

GBSM currentSession configuration traversalBufferSize:
500000.

GemBuilder Configuration Parameters GemBuilder Configuration Parameters

June 2011 VMware, Inc. 153

10.2 GemBuilder Configuration Parameters
The following table summarizes GemBuilder configuration parameters. Each
parameter is described in detail following the table.

Table 10.1 Configuration Parameters for GemBuilder

Parameter Legal values Default Scope

alwaysUseGemCursor true/false true Global
assertionChecks true/false false Global
autoMarkDirty true/false true Global
blockingProtocolRpc true/false false Global
blockReplicationEnabled true/false true Global
blockReplicationPolicy #replicate/

#callback
#replicate Global

bulkLoad true/false false Global
clientMapCapacity any integer 30000 Global
clientMapFinalizerPriority integers between 1

and 99, inclusive
30 Global

confirm true/false true Global
connectorNilling true/false true Session-

specific
connectVerification true/false false Global
defaultFaultPolicy #immediate/#lazy #lazy Global
deprecationWarnings true/false true Global
eventPollingFrequency any integer 300 Global
eventPriority any integer 50 Session-

specific
faultLevelLnk any integer 2 Session-

specific
faultLevelRpc any integer 4 Session-

specific
forwarderDebugging true/false false Global
freeSlotsOnStubbing true/false true Global
fullCompression true/false false Global

GemBuilder Configuration Parameters GBS User’s Guide

154 VMware, Inc. June 2011

gcedObjBufferSize any integer 2000 Global
generateClassConnectors true/false true Session-

specific
generateClientClasses true/false true Session-

specific
generateServerClasses true/false true Session-

specific
InitialDirtyPoolSize any integer 100 Session-

specific
libraryName any string empty

string
Global

pollForAsynchronousEvents true/false false Global
pollForRpcResponse true/false false Global
removeInvalidConnectors true/false false Global
replicateExceptions true/false false Session-

specific
rpcSocketWaitTimeoutMs any integer 100 Session-

specific
serverMapLeafCapacity any integer 400 Session-

specific
stubDebugging true/false false Global
traversalBufferSize any integer 250000 Session-

specific
verbose true/false true Global

Table 10.1 Configuration Parameters for GemBuilder (Continued)

Parameter Legal values Default Scope

GemBuilder Configuration Parameters GemBuilder Configuration Parameters

June 2011 VMware, Inc. 155

alwaysUseGemCursor

Used to reduce the number of conditions under which GBS switches cursors.
When true, GBS changes the cursor to the “gem” cursor during all interactions
with the server. When false, the cursor is only changed during some server
operations by the GBS tools.

Legal values: true/false
Default: true
Settings Tool tab: User Interface
Scope: Global

assertionChecks

This parameter is for the use of GemStone customer support.

Legal values: true/false
Default: false
Settings Tool tab: Debugging
Scope: Global

autoMarkDirty

Defines whether modifications to client objects are automatically detected. When
false, the application must explicitly send markDirty to a client object after it has
been modified, so GemBuilder will know to update the object in GemStone. Do not
change this setting while sessions are logged in from this client process.

Legal values: true/false
Default: true
Settings Tool tab: Replication
Scope: Global

blockingProtocolRpc

Determines whether to use blocking or nonblocking protocol for RPC sessions
(linked sessions cannot be non-blocking). When false, nonblocking protocol is
used, enabling other threads to execute in the image while one or more threads are
waiting for a GemStone call to complete. When true, GemBuilder must wait for a
GemStone call to complete before proceeding with the thread that called it. Should
not be changed for sessions that are already logged in.

Legal values: true/false
Default: false
Settings Tool tab: Server Communication
Scope: Session-specific

GemBuilder Configuration Parameters GBS User’s Guide

156 VMware, Inc. June 2011

blockReplicationEnabled

When false, GemBuilder raises an exception when block replication is
attempted—useful in determining if your application depends on block
replication.

Legal values: true/false
Default: true
Settings Tool tab: Replication
Scope: Global

blockReplicationPolicy

Block replication requires decompiling and compiling the source code for blocks
at runtime. Since it is usually not possible to include the Smalltalk compiler in a
runtime image, block replication may cause problems in runtime applications.
Block callbacks use client forwarders to evaluate the block in the client. Block
callbacks escape the documented limitations of block replication, but do not
perform well for blocks invoked repeatedly from GemStone.

Legal values: #replicate or #callback
Default: #replicate
Settings Tool tab: Replication
Scope: Global

bulkLoad

This parameter has no effect when logged into a GemStone/S 64 Bit server.

When true, newly created objects are stored in GemStone as permanent objects
immediately, bypassing a step wherein they are temporary and eligible for storage
reclamation by the GemStone garbage collector unless other objects refer to them
(in which case they become permanent objects, as usual). Bypassing this step
improves performance for bulk data loading. When false, the temporary object
step is not bypassed.

Legal values: true/false
Default: false
Settings Tool tab: Cache Tuning
Scope: Global

clientMapCapacity

The minimum capacity in objects of the client object map. The client object map is
used to map client replicates, stubs, and forwarders to their corresponding server
objects. The map will grow in capacity if it runs out of room, and may shrink in

GemBuilder Configuration Parameters GemBuilder Configuration Parameters

June 2011 VMware, Inc. 157

capacity if it has an excess of free space. The map will never shrink its capacity
below clientMapCapacity. This value is also used as the initial capacity of the
map, which is initialized only upon the first login after loading GBS into a clean
image. Thus, changing clientMapCapacity will only affect the initial cache size
if changed before the first login after GBS load. After that time, however, changing
clientMapCapacity will limit the shrinkage of the map. Growing and
shrinking the map take time, so performance-critical applications that replicate
many objects may wish to have a larger map capacity. Check statistics for map size
and grow/shrink events to see whether your map capacity is sufficient.

The legal value is any positive Integer; GBS will set the actual capacity to an
appropriate value somewhat larger than specified.

Legal values: any positive Integer.
Default: 30000
Settings Tool tab: Cache Tuning
Scope: Global

clientMapFinalizerPriority

The process priority at which garbage-collected objects are finalized from the client
object map. These must be finalized before the server can garbage-collect the
corresponding server objects. By default, this finalization is done at a priority
below the normal application priority. This allows finalization to run at times
when the main application is waiting for user input or responses from the server.
However, if your application seldom waits, and creates a lot of garbage replicates,
it is possible that the finalizer might not get enough CPU cycles to keep up. If the
unfinalized objects have no remaining references on the server, this will cause
increased memory usage in the gem. If this is a problem, you may need to increase
this setting to a priority above that of your application. Changing this value will
change the finalizer's priority at the time of the next server interaction.

Legal values: an Integer between 1 and 99, inclusive
Default: 30
Settings Tool tab: Cache Tuning
Scope: Global

GemBuilder Configuration Parameters GBS User’s Guide

158 VMware, Inc. June 2011

confirm

When true, you are prompted to confirm various GemBuilder actions. Leave set
to true during application development; deployed applications may set to
false.

Legal values: true/false
Default: true
Settings Tool tab: User Interface
Scope: Global

connectorNilling

When true, GemBuilder nils the Smalltalk object for certain session-based
connectors after logout: all name, class variable, or class instance variable
connectors whose postconnect action is #updateST or #forwarder. When the last
session logs out, the Smalltalk object references of global connectors are also set to
nil. Fast connectors, class connectors, and connectors whose postconnect action
is #updateGS or #none are not set to nil. Clearing connectors that depend on
being attached to GemStone server objects helps prevent defunct stub and
forwarder errors.

When false, the logout sequence leaves the state of persistent objects in the image
as it was.

This setting can be different from session to session. The value in
GbsConfiguration current is used at login. Subsequently, you may send
#connectorNilling: to the session's configuration to change the value for that
session only. The session's current value will be used at logout.'

Legal values: true/false
Default: true
Settings Tool tab: Connectors
Scope: Session-specific

connectVerification

When true, connectors verify at login that they are not redefining a connector that
already exists, and class connectors verify that the two classes they are connecting
have compatible structures. When false, these things are not checked. Set to
true during development unless logging in becomes too slow, or your connector
definitions are stable. Applications in production should normally set this to false.

GemBuilder Configuration Parameters GemBuilder Configuration Parameters

June 2011 VMware, Inc. 159

 See “The Connector Browser” on page 198.

Legal values: true/false
Default: false
Settings Tool tab: Connectors
Scope: Global

defaultFaultPolicy

This parameter has no effect when logged into a GemStone/S 64 Bit server, which
is always #immediate.

Specifies GemBuilder’s default approach to updating client Smalltalk objects
whose GemStone counterparts have changed. When #lazy, GemBuilder
responds to a change in a GemStone server object by turning its client Smalltalk
replicate into a stub. The new GemStone value is faulted in the next time the stub
is sent a message. When #immediate, GemBuilder responds to a change in a
GemStone server object by updating the client Smalltalk replicate immediately.
The defaultFaultPolicy is implemented by Object >> faultPolicy. Subclasses
can override this method for specific cases.

Legal values: #immediate/#lazy
Default: #lazy
Settings Tool tab: Replication
Scope: Global

deprecationWarnings

When true, any attempt to use a deprecated feature of GemBuilder for Smalltalk
causes a proceedable exception to be raised. Deprecated features may be removed
in a future release. When false, deprecated features may be used with no warning.

Legal values: true/false
Default: true
Settings Tool tab: Debugging
Scope: Global

eventPollingFrequency

How often, in milliseconds, that GemBuilder polls for GemStone events such as
changed object notification or Gem-to-Gem signaling.

Legal values: any Positive Integer
Default: 300
Settings Tool tab: Signals And Events
Scope: Global

GemBuilder Configuration Parameters GBS User’s Guide

160 VMware, Inc. June 2011

eventPriority

The priority of the Smalltalk process that responds to GemStone events—that is,
the priority at which the block will execute that was supplied as an argument to
the keyword gemSignalAction:, notificationAction:, or
signaledAbortAction:. These keywords occur in messages used by Gem-to-
Gem signaling, changed object notification, or when GemStone signals you to
abort so that it can reclaim storage, respectively.

This setting can be different from session to session. The value in
GbsConfiguration current is used at login. Subsequently, you may send
#eventPriority: to the session's configuration to change the value for that session
only. The priority will not change immediately, but the new value will be used the
next time an action block is set and the event detection process is restarted.

Legal values: an Integer between 1and 99, inclusive
Default: 50
Settings Tool tab: Signals And Events
Scope: Session-specific

faultLevelLnk

The default number of levels to replicate an object from GemStone to client
Smalltalk in a linked session.

This setting can be different from session to session. The value in
GbsConfiguration current is used at login. Subsequently, you may send
#faultLevelLnk: to the session's configuration to change the value for that session
only.

Legal values: any Integer
Default: 2
Settings Tool tab: Replication
Scope: Session-specific

faultLevelRpc

The default number of levels to replicate an object from GemStone to client
Smalltalk in a remote session.

GemBuilder Configuration Parameters GemBuilder Configuration Parameters

June 2011 VMware, Inc. 161

The value in GbsConfiguration current is used at login. Subsequently, you may
send #faultLevelRpc: to the session's configuration to change the value for that
session only.

Legal values: any Integer
Default: 4
Settings Tool tab: Replication
Scope: Session-specific

forwarderDebugging

When true, forwarders support debugging by responding to some basic
messages locally, such as printOn:, instVarAt:, and class, which returns
GbsForwarder. When false, these messages are forwarded to the GemStone
server object.

Legal values: true/false
Default: false
Settings Tool tab: Debugging
Scope: Global

freeSlotsOnStubbing

When true, stubbing an existing replicate causes all persistent named instance
variables (that is, those that will be faulted in when the stub is unstubbed) and all
indexable instance variables to be set to nil, allowing stubs and their potentially
outdated instance variables to be garbage collected if they become eligible. When
false, GemBuilder does not alter instance variable values. To override this behavior
on a class-by-class basis, reimplement #freeSlotsOnStubbing (inherited from
Object).

Legal values: true/false
Default: true
Settings Tool tab: Replication
Scope: Global

fullCompression

When true, GemStone compresses all communication between the client and the
server, reducing the amount of data sent across a network connection to an RPC
gem. Has no effect on linked sessions. For network connections with low
throughput, compression may improve overall performance. For fast enough
network connections, compression may decrease overall performance due to the
CPU time required to do compression and decompression.

GemBuilder Configuration Parameters GBS User’s Guide

162 VMware, Inc. June 2011

This setting only takes effect at the time that a library is loaded (see libraryName
below). If a library is loaded you will need to save your image, quit, and restart for
a new fullCompression value to take effect.

Legal values: true/false
Default: false
Settings Tool tab: Server Communication
Scope: Global

gcedObjBufferSize

The initial size in objects of the buffer that holds server object IDs for objects which
have been garbage collected in the client. The buffer is enlarged when necessary,
but performance-sensitive applications that release many replicates at once may
want to avoid this. The IDs in this buffer are sent to the server with each server
interaction.

Legal values: any Integer
Default: 2000
Settings Tool tab: Cache Tuning
Scope: Global

generateClassConnectors

When true, a session connector is automatically created to connect two classes,
one of which has been automatically generated in response to the presence of the
other by the mechanisms described in the discussion of parameters
generateClientClasses and generateServerClasses. When false,
session connectors are not automatically created.

This setting can be different from session to session. The value in
GbsConfiguration current is used at login. Subsequently, you may send
#generateClassConnectors: to the session's configuration to change the value for
that session only.

 See “Class Mapping” on page 47.

Legal values: true/false
Default: true
Settings Tool tab: Class Generation
Scope: Session-specific

generateClientClasses

When true, if a GemStone server object is fetched into the client Smalltalk image
and the client Smalltalk image does not currently define the class of which it is an

GemBuilder Configuration Parameters GemBuilder Configuration Parameters

June 2011 VMware, Inc. 163

instance, a corresponding class is defined in the image. When false, behavior is
defined by the client Smalltalk image.

This setting can be different from session to session. The value in
GbsConfiguration current is used at login. Subsequently, you may send
#generateClientClasses: to the session's configuration to change the value for that
session only.

See “Class Mapping” on page 47.

Legal values: true/false
Default: true
Settings Tool tab: Class Generation
Scope: Session-specific

generateServerClasses

When true, if a client Smalltalk object is stored into GemStone and GemStone
does not currently define the class of which it is an instance, a corresponding class
is defined in GemStone Smalltalk. When false, GemBuilder raises an error.

This setting can be different from session to session. The value in
GbsConfiguration current is used at login. Subsequently, you may send
#generateServerClasses: to the session's configuration to change the value for that
session only.

See “Class Mapping” on page 47.

Legal values: true/false
Default: true
Settings Tool tab: Class Generation
Scope: Session-specific

InitialDirtyPoolSize

Initial size of the GbsSession dirtyPool identity set. For bulk loading, increasing
this value reduces the number of times the set needs to grow. For applications that
flush a small number of objects, decreasing this value (while keeping it larger than
the number of objects being flushed) improves flushing performance.

This setting can be different from session to session. The value in
GbsConfiguration current is used at login. Subsequently, you may send

GemBuilder Configuration Parameters GBS User’s Guide

164 VMware, Inc. June 2011

#initialDirtyPoolSize: to the session's configuration to change the value for that
session only. The new value will take effect after the next server operation.

Legal values: any positive Integer. GBS will select a prime size greater than this
value.

Default: 100
Settings Tool tab: Cache Tuning
Scope: Session-specific

libraryName

The name of the DLL or shared library to use to contact the server. If this is set to
an empty string, GBS loads the first found library with a default name. It tries
loading linked libraries first (which support both linked and RPC logins), then
RPC-only libraries. If a libraryName is specified, that exact library name is loaded.
If the library is not found, an error is reported. On Unix or Linux, the library name
may be specified as an absolute file path to the library file, or as a simple name (e.g.
libgcirpc.so). On Windows, use a simple name. If a simple name is used, the library
is found in the (platform-specific) standard directories for libraries. This setting
does not affect any library that is already loaded. If a library is already loaded you
will need to save your image, quit, and restart for a new libraryName to take effect.

Legal values: any String
Default: empty String
Settings Tool tab: Server Communication
Scope: Global

pollForAsynchronousEvents

This setting does not apply for linked sessions.

This setting determines which method to use to detect asynchronous events from
the GemStone server. When true, GBS uses a timed polling loop, polling once
every eventPollingFrequency milliseconds. When false, GBS waits for
traffic on the socket that the gem uses for communication, and also polls once
every eventPollingFrequency milliseconds. Under most circumstances, the
socket wait provides more timely notification of these events.

Legal values: true/false
Default: false
Settings Tool tab: Signals And Events
Scope: Global

GemBuilder Configuration Parameters GemBuilder Configuration Parameters

June 2011 VMware, Inc. 165

pollForRpcResponse

When using nonblocking protocol for RPC sessions, this setting determines which
method to use to detect when a response has been received from the GemStone
server. When true, GBS uses a timed polling loop. When false, it waits for traffic
on the socket that the gem uses for communication. Under most circumstances, the
socket wait provides better latency and uses slightly less CPU time.

This setting only affects non-blocking RPC sessions, and is ignored for linked
sessions and for RPC sessions when blockingProtocolRpc is set to true.

Legal values: true/false
Default: false
Settings Tool tab: Server Communication
Scope: Global

removeInvalidConnectors

When true and confirm is false, if a connector fails to resolve at login, it is
removed from the connector collections so that the issue does not arise again at
next login.

When true and confirm is true, you are prompted to remove invalid connectors
during login.

When false, invalid connectors are ignored.

See “The Connector Browser” on page 198.

Legal values: true/false
Default: false
Settings Tool tab: Connectors
Scope: Global

replicateExceptions

When true and connected to a GemStone/S 64-bit 3.0 or later server, server
exceptions that are not caught on the server will be replicated to the client and
signaled on the client stack. This allows objects referenced from exception instance
variables to also be replicated to the client.

GemBuilder Configuration Parameters GBS User’s Guide

166 VMware, Inc. June 2011

When false, or when connected to an earlier server product or version, server
errors are associated with a client error class by number as in versions of GBS prior
to 7.4.

Legal values: true/false
Default: false
Settings Tool tab: Replication
Scope: Global

rpcSocketWaitTimeoutMs

When using the socket-wait style of detecting when an RPC response is ready (see
the setting pollForRpcResponse), it is possible for the socket event to get lost
occasionally, especially on Windows. To avoid waiting forever in that case, GBS
double-checks for a response every rpcSocketWaitTimeoutMs milliseconds.

This setting can be different from session to session. The value in
GbsConfiguration current is used at login. Subsequently, you may send
#rpcSocketWaitTimeoutMs: to the session's configuration to change the value for
that session only.

Legal values: any positive Integer
Default: 100
Settings Tool tab: Server Communication
Scope: Session-specific

serverMapLeafCapacity

The lower bound in objects of the capacity of each leaf in the server map. The
server map maps the IDs of server objects to their corresponding client replicates,
forwarders, and stubs. The server map is structured as a shallow fixed-depth tree.
Each node in the tree is identified by the upper bits of the object ID. Each leaf node
is a hashed collection indexed by the lower bits of the object ID. The upper limit of
the capacity for each leaf depends on the server product and version, ranging from
222 to 224 object IDs. Leaves are created on demand; only those leaves that actually
contain objects exist. This setting controls the initial capacity of each leaf. Leaves
will grow and shrink as necessary, but will not shrink below this setting. Growing
and shrinking take some time, so performance-sensitive applications may want to
adjust this value. Using a larger value decreases the time spent growing and
shrinking each leaf, but increases memory use, and also increases the time spent
initializing each leaf.

This setting can be different from session to session. The value in
GbsConfiguration current is used at login. Subsequently, you may send

GemBuilder Configuration Parameters GemBuilder Configuration Parameters

June 2011 VMware, Inc. 167

#serverMapLeafCapacity: to the session's configuration to change the value for
that session only. From that point on, new leaf creation and all leaf shrinkage will
be subject to the new value.

Legal values: any positive Integer. GBS will select a prime table size greater
than this value, but not exceeding 224.

Default: 400
Settings Tool tab: Cache Tuning
Scope: Session Specific

stubDebugging

When true, stubs support debugging by responding to some basic messages
locally, such as printOn:, instVarAt:, and class, which returns
GbxObjectStub. When false, these messages cause the stub to fault into the client
image from GemStone.

Legal values: true/false
Default: false
Settings Tool tab: Debugging
Scope: Global

traversalBufferSize

Sets the size, in bytes, of the buffer used in traversal replication.

This setting can be different from session to session. The value in
GbsConfiguration current is used at login. Subsequently, you may send
#traversalBufferSize: to the session's configuration to change the value for that
session only. An increase in size will take effect immediately, but a decrease may
not.

Legal values: any positive Integer. The actual setting must be a multiple of 8,
larger than 2048. If an illegal number is entered, it will be replaced with the
nearest legal number.

Default: 250000
Settings Tool tab: Server Communication
Scope: Session-specific

GemBuilder Configuration Parameters GBS User’s Guide

168 VMware, Inc. June 2011

verbose

When true, GemBuilder prints messages to the Transcript when certain events
occur, such as logging a session in or out, or committing or aborting a transaction.
When false, these messages are not printed.

Legal values: true/false
Default: true
Settings Tool tab: User Interface
Scope: Global

Chapter

June 2011 VMware, Inc. 169

11 The GemStone Tools:
an Overview

This part of the manual introduces you to the GemBuilder visual programming
environment. We begin this chapter with an overview of the GemStone menu, then
describe several tools that allow you to manage sessions and transactions; log in
and out of GemStone sessions; examine configuration parameters; and access
commonly used GemStone Smalltalk expressions.

GemStone Menu
introduces the tools and options available from the GemStone menu.

The GemStone Session Browser
describes the GemStone Session Browser and Session Parameters Editor.

Logging In to and Logging Out of GemStone
describes how to log in and out of GemStone sessions using the Session
Browser.

The Settings Browser
describes how to examine and set GemBuilder configuration parameters with
the Settings Browser.

The System Workspace
describes the System Workspace.

GemStone Menu GBS User’s Guide

170 VMware, Inc. June 2011

Subsequent chapters describe the GemStone programming and administration
tools:

 • Chapter 12, “Using the GemStone Programming Tools,” describes the menus
and commands that allow you to execute GemStone Smalltalk code, access
GemBuilder programming tools, and make use of GemStone Smalltalk
debugging facilities.

 • Chapter 13, “Using the GemStone Administration Tools,” describes the
Security Policy Tool, Symbol List Browser, and GemStone user account
management tools. Taken together, these tools enable you to easily manage the
object sharing and protection issues discussed throughout this manual.

11.1 GemStone Menu
The GemStone menu (in the VisualWorks Launcher) gives you access to the
GemStone Smalltalk compiler and the GemBuilder programming tools. Many of
these functions are also available from pop-up menus in the browsers and tools.

As shown in Table 11.1, the GemStone menu provides commands for executing
GemStone Smalltalk code and accessing the GemStone programming tools.

Table 11.1 The GemStone Menu

Browse Sessions Opens a GemStone Session Browser, allowing you to log into or out
of the GemStone server and manage transactions. The Session
Browser is described on page 172.

Browse Connectors Opens a GemStone Connector Browser, allowing you to manage the
connections between GemStone server and Smalltalk client
objects. The Connector Browser is described on page 198.

Browse Produces a submenu with the following options:

All Classes Opens a GemStone Browser, comparable to the
client Smalltalk System or Classes
Browser. The GemStone Browser is described
in “The GemStone Session Browser” on
page 172.

Class... Prompts for the name of a class, then opens a
browser focused on that class.

The GemStone Tools: an Overview GemStone Menu

June 2011 VMware, Inc. 171

Namespace... Prompts for the name of a symbol dictionary,
then opens a browser focused on that
dictionary.

Senders of... Prompts for the name of a message selector,
then opens a method browser showing senders
of that message.

Implementors of... Prompts for the name of a message selector,
then opens a method browser showing
implementors of that message.

References to... Prompts for the name of a variable, then opens
a method browser showing all methods that
refer to that variable.

Methods with
substring...

Prompts for a string, then opens a method
browser showing all methods whose source
contains that string.

Admin Produces a submenu with the following options:

Users Opens the GemStone User Account
Management Tools, allowing you to create
new users, assign attributes to them, and
manage user accounts, provided you have the
privileges to do so. The User Account
Management Tools are described on page 230.

Symbol Lists Opens a Symbol List Browser, allowing you to
examine and modify symbol dictionaries and
their entries. The Symbol List Browser is
described on page 226.

Security Policies Opens a Security Policy Tool, allowing you to
control authorization at the object level by
assigning objects to security policies. The
Security Policy Tool is described on page 218.

Tools Produces a submenu with the following options:

Table 11.1 The GemStone Menu(Continued)

The GemStone Session Browser GBS User’s Guide

172 VMware, Inc. June 2011

11.2 The GemStone Session Browser
The GemStone Session Browser streamlines logging in and logging out of
GemStone and managing sessions and transactions. This section explains how to
invoke the Session Browser, and how to use it to define session parameters and to
log in and out of GemStone.

Starting the Session Browser
1. Start your GemBuilder for Smalltalk image.

2. Select Browse Sessions from the GemStone menu to open a Session Browser.

Figure 11.1 shows the Session Browser.

Settings Opens a Settings Browser in which you can
examine, change, and store parameters for
configuring GemBuilder. The Settings
Browser is described on page 178.

Breakpoints Opens a Breakpoint Browser, allowing you to
set and clear breakpoints in GemStone
Smalltalk code. The Breakpoint Browser is
described on page 212.

System
Workspace

Opens the GemStone System Workspace, a
workspace containing a variety of useful
GemStone Smalltalk and client Smalltalk
expressions.

About GemBuilder Opens a window providing the GemBuilder version and copyright
information.

Table 11.1 The GemStone Menu(Continued)

The GemStone Tools: an Overview The GemStone Session Browser

June 2011 VMware, Inc. 173

Figure 11.1 The GemStone Session Browser

Opening the Session Parameters Editor
Select the Add button to define a set of session parameters. A Session Parameters
Editor appears, as shown in Figure 11.2.

The first time this is done in a new image, the server-specific client libraries are
loaded. Any problems in the client library configuration will show up now.

Figure 11.2 The Session Parameters Editor

The GemStone Session Browser GBS User’s Guide

174 VMware, Inc. June 2011

Use the Tab key or the mouse to move through the fields in the login dialog, and
the Return key to accept input or changes in the login dialog.

In the Session Parameters Editor, specify the following session parameters:

 • GemStone repository
For a Stone running on a host other than the Gem host (described below), you
must include the server’s hostname in Network Resource String (NRS) format,
as shown in Figure 11.2. (NRS format is described in an appendix to the System
Administration Guide for GemStone/S 64 Bit.)

 • GemStone user name and GemStone password
This user name and password combination must already have been defined in
GemStone by your GemStone data curator or system administrator. Because
GemStone comes equipped with a data curator account, we show the
DataCurator user name in many of our examples.

 • Host username and Host password (not required for a linked session, or if
netldi is run in guest mode)
This user name and password combination specifies a valid login on the Gem’s
host machine (the network node specified in the Gem service name, described
below). Do not confuse these values with your GemStone username and
password. You do not need to supply a host user name and host password if
you are starting a linked Gem process. However, an application that must
control more than one GemStone session can use a linked interface for only
one session. Other sessions must use the RPC interface.

 • Gem service (not required for a linked session)
The name of the Gem service on the host computer (that is, the Gem process to
which your GemBuilder session will be connected). For most installations, the
Gem service name is gemnetobject.

You can specify that the gem is to run on a remote host by using an NRS for
the Gem service name. For example:

!@pelican!gemnetobject

You do not need to supply a Gem Service name if you are starting a linked
Gem process.

For maximum password security, leave the Password and Host Password fields
empty, and the Remember boxes unselected.

When you click on OK, GemBuilder creates an instance of GbsSessionParameters
and registers it with GBSM. The new session description is added to the Session
Browser.

The GemStone Tools: an Overview The GemStone Session Browser

June 2011 VMware, Inc. 175

To change a session parameters object, select the name of the parameters object in
the upper left pane of the Session Browser and use the browser’s Edit button to
open a Session Parameters Editor. Use the Session Parameters Editor to change
existing session parameters; clicking on OK causes your changes to take effect.

Managing Session Parameters
Using the Session Browser buttons or the pop-up menu accessible with the operate
mouse button, you can manage your set of session parameters.

The Session Browser supports the following operations:

Table 11.2 Functions in the Session Browser

Add Open an empty Session Parameters Editor.
Copy Make a copy of the selected session parameters, and add it to the

list.
Edit Open a Session Parameters Editor on the selected session

parameters.
Login Link Log in linked, using the selected session parameters.
Login RPC Log in RPC, using the selected session parameters.
Remove... Remove the selected session parameters
Import... Prompt for a filename, and read a previously exported list of

Session Parameters from a text file. (only on pop-up menu)
Export... Prompt for a filename, and write out the list of Session

Parameters to a text file. The exported information is in plain
text. If you have included passwords in your session
parameters, these will be visible. (only on pop-up menu)

In addition, if you have many session parameters, you can drag and drop a
selected session parameters to order them within the list. This has no affect on how
they are used, but can make frequently used ones easier to see.

Logging In to and Logging Out of GemStone GBS User’s Guide

176 VMware, Inc. June 2011

11.3 Logging In to and Logging Out of GemStone
Before you can start a GemStone session, you need to have a Stone process and, for
an RPC session, a NetLDI (network long distance information) process running.

Depending on the terms of your GemStone license, you can have many sessions
logged in at once from the same GemBuilder client. These sessions can all be
attached to the same GemStone repository, or they can be attached to different
repositories.

You can use the Session Browser to perform the same session management tasks
that you can perform programmatically: log in to the GemStone server, view
current sessions, set the current session, and log out of the GemStone server.

Logging In to GemStone

To log into the GemStone server with the Session Browser, select the name of the
session parameters object in the upper left pane, and click on either Login Link or
Login Rpc.

When you are logged in, the Session Browser displays the session description in its
lower pane.

Figure 11.3 The GemStone Session Browser

If your login is not successful, make sure you entered the correct parameters and
that the necessary server processes are running.

The GemStone Tools: an Overview Logging In to and Logging Out of GemStone

June 2011 VMware, Inc. 177

Setting the Current Session

The Session Browser’s upper pane shows all of the known parameters that are
registered with GBSM. The lower pane shows all sessions currently logged in.

To change the current session, select a logged-in session in the lower pane and click
the Current button.

Logging Out of GemStone

To log out of GemStone from the Session Browser, select the session in the
browser’s lower pane and click on Logout in the row of buttons at the bottom of
the browser.

Before logging out, GemBuilder prompts you to commit your changes, if the
GbsConfiguration setting confirm is true (it is true by default). If you log out after
performing work and do not commit it to the permanent repository, the
uncommitted work you have done will be lost.

If you have been working in several sessions, be sure to commit only those sessions
whose changes you wish to save.

The Settings Browser GBS User’s Guide

178 VMware, Inc. June 2011

11.4 The Settings Browser
The Settings Browser makes it easy to examine and set the configuration
parameters for GemBuilder. The Settings Browser is integrated with the client
Smalltalk settings.

Opening the Settings Browser

To open the Settings Browser, select Tools > Settings from the GemStone menu,
or System > Settings from the VisualWorks Launcher, and scroll down to see all
the GemStone configuration settings categories.

The Settings Browser

Figure 11.4 The Settings Browser Summary

The GemStone Tools: an Overview The Settings Browser

June 2011 VMware, Inc. 179

Parameter Categorization

The Settings Browser categories the parameters under headings. Selecting each
heading allows you to update a set of related configuration parameters.

Table 11.3 Settings Browser Categorization

Cache Tuning bulkLoad
clientMapCapacity
clientMapFinalizerPriority
gcedObjBufferSize
initialDirtyPoolSize
serverMapLeafCapacity

Class Generation generateClassConnectors
generateServerClasses
generateClientClasses

Connectors connectorNilling
connectVerification
removeInvalidConnectors

Debugging assertionChecks
deprecationWarnings
forwarderDebugging
stubDebugging

Replication autoMarkDirty
blockReplicationEnabled
blockReplicationPolicy
defaultFaultPolicy
faultLevelLnk
faultLevelRpc
freeSlotsOnStubbing
replicateExceptions

Server Communication blockingProtocolRpc
fullCompression
libraryName
pollForRpcResponse
rpcSocketWaitTimeoutMs
traversalBufferSize

The Settings Browser GBS User’s Guide

180 VMware, Inc. June 2011

The Settings Browser has the following buttons.

Table 11.4 Buttons in the Settings Browser

Apply Default Settings (At the highest level only)
Reset all GemStone settings to their default value.

OK Close the Settings Browser, applying all changes to
the current configuration.

Cancel Close the Settings Browser, cancelling all
unapplied changes.

Apply Apply all unapplied changes to the current
configuration.

Help Open a dialog with help for the configurations on
the current view.

Signals And Events eventPollingFrequency
eventPriority
pollForAsynchronousEvents

User Interface alwaysUseGemCursor
confirm
verbose

Table 11.3 Settings Browser Categorization

The GemStone Tools: an Overview The System Workspace

June 2011 VMware, Inc. 181

11.5 The System Workspace
The GemStone System Workspace is a workspace containing templates for many
useful GemStone Smalltalk and client Smalltalk expressions. Browse it to
familiarize yourself with its contents.

To open a GemStone System Workspace (Figure 11.5), choose GemStone > Tools
> System Workspace from the GemStone menu.

Figure 11.5 GemStone System Workspace

The System Workspace GBS User’s Guide

182 VMware, Inc. June 2011

Chapter

June 2011 VMware, Inc. 183

12 Using the GemStone
Programming Tools

After you install GemBuilder, many menus in your Smalltalk image contain
additional commands for executing GemStone Smalltalk code and accessing
GemBuilder programming tools. GemStone also provides GemStone Smalltalk
debugging facilities similar to the debugging aids supplied by the client Smalltalk.

These tools are in many ways similar to those of the client Smalltalk, but with
important differences. This chapter describes those differences.

Browsing Code
describes the GemStone Classes Browser and other code browsers.

Coding
explains how to use the GemBuilder tools to create classes and methods in
GemStone Smalltalk for execution and storage on the server.

The Connector Browser
explains how to use connectors in code or using the Connector Browser.

The Class Version Browser
describes a specialized Class Browser that can be used for examining a class
history, inspecting instances, migrating instances, deleting versions, and
moving versions to another class history.

Browsing Code GBS User’s Guide

184 VMware, Inc. June 2011

Inspectors
describes how to view and modify the instance variables of server objects

Breakpoints
describes breakpoints, setting breakpoints, and using the Breakpoint Browser

Debugger
describes GemBuilder’s enhanced debugger

Stack Traces
describes GbsStackDumper, GemBuilder’s enhanced stack dumping facility

12.1 Browsing Code
After logging in to GemStone, open a GemStone Classes Browser by choosing
GemStone > Browse > All Classes.

The GemStone Classes Browser allows you access source and other information
about each of the kernel classes and methods; you can also create GemStone
Smalltalk classes and methods in the GemStone repository.

Using the GemStone Programming Tools Browsing Code

June 2011 VMware, Inc. 185

Figure 12.1

Method categories
Classes Method selectors

Symbol dictionaries

Source code pane

GemStone Classes Browser

The GemStone Classes Browser is similar to the client Smalltalk System or Classes
Browser, but a few differences exist: for example, the upper left pane contains a list
of symbol dictionaries, GemStone’s mechanism for implementing
namespaces. This facilitates finding and sharing objects efficiently. The symbol
dictionaries that you can access are listed in the GemStone Browser’s symbol list
pane.

When you select a symbol dictionary in the Symbol List pane, all classes defined
in that dictionary appear in the Classes pane to the right. (Symbols other than
classes can be viewed by opening an inspector on the symbol dictionary in
question, or by selecting GemStone > Admin > Symbol Lists.)

Browsing Code GBS User’s Guide

186 VMware, Inc. June 2011

GemStone Smalltalk categorizes methods by function to make them easier to
browse. When you select a class in the Classes pane, a list of its method categories
appears in the Method Categories pane to the right.

When you select a method category, all the message selectors in that category
appear in the rightmost Method Selectors pane.

As in the comparable client Smalltalk browsers, you can switch focus between
instance or class methods using the toggle or radio buttons provided.

Also as in the comparable client Smalltalk browsers, when you select a method, its
source code is displayed in the lower portion of the browser—the source pane. In
this pane, you can edit and recompile the method, set breakpoints in it, or execute
fragments of GemStone Smalltalk code as in a workspace.

Each pane of the GemStone Browser has pop-up menus accessible with the operate
mouse button. The GemStone-specific commands in the popup menus of the
Symbol List, Class, Categories, and Methods panes are described below.

Using the GemStone Programming Tools Browsing Code

June 2011 VMware, Inc. 187

Symbol List Pane
The GemStone-specific menu options available in the Symbol List pane shown in
Table 12.1.

Table 12.1 Symbol List Menu in GemStone Browser

file out as... Prompts you for a file name under which to save all the
class and method definitions for all the classes in the
selected SymbolDictionary.

file out methods as... Prompts you for a file name under which to save all the
methods in all the classes in the selected
SymbolDictionary, so that you can file them into a client
class without creating a new version of the class.

spawn Open a Dictionary Browser on the selected
SymbolDictionary.

inspect Open an inspector on the selected SymbolDictionary.

add... Add a new Symbol Dictionary

rename as... Rename the selected SymbolDictionary.

remove... Remove the selected SymbolDictionary. Do not remove
Globals.

update Update the view of the browser to the current state in the
image.

commit Attempts to commit modifications to the repository that
occurred during the current GemStone transaction.

abort Undoes all changes that you have made in the repository
since the beginning of the current transaction. You are
asked to confirm this choice.

find class... Navigate to a specific class by name. The search string is
case sensitive, and can include wild cards.

Class Pane
The GemStone-specific menu commands available in the GemStone Browser’s
Class Pane are described in Table 12.2. A later section discusses the procedure

Browsing Code GBS User’s Guide

188 VMware, Inc. June 2011

required to add the definition of a new GemStone class to the currently selected
symbol dictionary.

Table 12.2 Class Menu in GemStone Browser

file out as...

file out methods as... Prompts you for a file name under which to save all
methods of the selected class, so that you can file them into
a client class without changing the client class’s structure.

browse class Open a Class Browser on the selected class.

browse hierarchy Open a hierarchy browser on the selected class.

browse versions Open a class version browser on the selected class.

browse references Open a method list on all references to the current version
of the class, or all versions of the class.

hierarchy Display the class hierarchy in the text pane.

definition Display the class definition in the text pane (the default)

comment Display the class comment in the text pane.

move to... Prompt for another SymbolDictionary to which to move
the selected class.

remove... Remove the selected class.

create access Creates methods for accessing and updating the instance
variables of the selected class.

create in ST Creates a client Smalltalk class having the same name and
structure as the selected GemStone Smalltalk class, if one
doesn’t already exist. If it does exist, executing this menu
item has no effect.

compile in ST Creates a client Smalltalk class having the same name and
structure as the selected GemStone Smalltalk class, and
compiles all currently defined methods for the class. If
necessary, a notifier lists any methods that cannot be
compiled in client Smalltalk.

update Update the view of the browser to the current state in the
image.

Using the GemStone Programming Tools Browsing Code

June 2011 VMware, Inc. 189

Pop-up Text Pane Menu
A pop-up menu appears in any text pane when you press the operate mouse button.
This menu provides the same commands as the corresponding menu in the client
Smalltalk browser’s text pane. In addition, it contains menus for displaying,
executing, inspecting, and filing in GemStone Smalltalk code and for using
breakpoints in GemStone Smalltalk code.

The GemStone-specific commands available from a text area pane are shown in
Table 12.3.

Table 12.3 Pop-up Menu in GemStone Browser’s Text Pane

GS-Do it Executes the code in GemStone.

GS-Print it Executes the code in GemStone and displays the result in the
text area.

GS-Inspect it Executes the code in GemStone and opens an inspector on the
result.

set break Sets a breakpoint at the step point nearest the cursor location.
If the cursor is not exactly at a step point, scans the method
from the current cursor location on and sets a breakpoint at
the next step point. See page 210 for a full discussion of using
breakpoints.

GemBuilder also adds the following items to the appropriate menus in the client
Smalltalk browsers:

Table 12.4 Additional GemStone Menu Items

Create in GS Creates a GemStone Smalltalk class having the same name
and structure as the selected client Smalltalk class, if one
doesn’t already exist. If it does exist but you’ve changed its
structure, executing this menu item creates a new version of
the class.

Compile in GS Creates a GemStone Smalltalk class having the same name
and structure as the selected client Smalltalk class, and
compiles all currently defined methods for the class in
GemStone. If necessary, a notifier lists any methods that
cannot be compiled.

Coding GBS User’s Guide

190 VMware, Inc. June 2011

12.2 Coding
This section explains how to define new GemStone classes and methods, and
describes aspects of coding unique to GemStone Smalltalk.

About GemStone Smalltalk Classes
The process of creating classes in GemStone Smalltalk differs somewhat between
GemStone server products and versions. For information specific to your server
version, refer to the GemStone Programming Guide and to the subclass creation
methods in the GemStone image.

Constraints

Constraints are supported in GemStone/S (32-bit servers), but are not available in
GemStone/S 64 Bit. If you are using 32-bit GemStone/S, refer to the GemStone/S
Programming Guide for details about constraints.

Invariance

Instances can be invariant. A class definition can specify that all instances are
invariant, meaning that after an instance is creation, it can be modified only during
the transaction in which it was created. After the transaction is committed, you
can no longer modify its instance variables, nor the size or class of the object.

You can include the symbol #instancesInvariant in the Array passed to the
options: keyword, or use subclass creation protocol with the
instancesInvariant: keyword.

Classes themselves may also be invariant or not. Classes that are variant can be
modified, e.g. you may add and remove instance variables; but you cannot create
instances of a variant class. By default, class creation results in invariant classes.

You can include the symbol #modifiable in the Array passed to the options:
keyword, or use subclass creation protocol with the isModifiable: keyword, to
create modifiable classes. Sending immediateInvariant makes the class
invariant and allows instance creation.

Non-persistent

In GemStone/S 64-bit, you may also specify on a per-class bases that instances of
the class are not persistent, meaning they cannot be committed to the repository;
of that instances are dbTransient, in which the instances may be committed, but
any data stored in instance variables of the instance is not persistent. GemStone/S
64 Bit Programming Guide for details on instancesNonPersistent and dbTransient.

Using the GemStone Programming Tools Coding

June 2011 VMware, Inc. 191

Versions

GemStone Smalltalk classes have a classHistory, which provides versioning for
classes. Defining a class with the same name as an existing class and in the same
symbol dictionary automatically creates a version of the existing class. When
multiple versions of a class exist, only the latest is displayed in the browsers, and
the display includes the sequence number of the class within the class history, in
brackets; for example, Employee[2].

Class creation can explicitly create or not create class versions using subclass
creation protocol that uses the newVersionOf: keyword. For more details on
class versions, see the chapter entitled “Class Creation, Versions, and Instance
Migration” in the GemStone/S Programming Guide

Defining a New Class
To define a new GemStone class:

Step 1. Open a GemStone Browser if one is not already open.

Step 2. In the Symbol List pane, select the dictionary in which you wish to refer
to the new class. Make sure no class is selected in the class list.

The browser displays the class definition template:

NameOfSuperclass subclass: 'NameOfClass'
instVarNames: #() "example: 'instVar1' 'instVar2' "
classVars: #() "example: 'ClassVar1' 'ClassVar2' "
classInstVars: #() "example: 'classIvar1' 'classIvar2' "
poolDictionaries: {}
inDictionary: SelectedSymbolList
options: #()

This is the basic form of the subclass creation message in GemStone/S 64 Bit
version 3.0 and later.

Step 3. Replace NameOfSuperclass with the name of your new class’s immediate
superclass.

Step 4. Replace NameOfClass with the name of the new class. By convention, the
first letter of each GemStone class name is capitalized.

Step 5. In the parentheses following the instVarNames: keyword, supply the
names of any instance variables. A class can define up to 255 named instance
variables.

Coding GBS User’s Guide

192 VMware, Inc. June 2011

Step 6. In the parentheses following the classVars: keyword, supply the
names of any class variables.

Step 7. In the parentheses following the classInstVars: keyword, supply the
names of any class instance variables.

Step 8. Fill in the brackets after the poolDictionaries: keyword with any
pool dictionaries that you want the class to access. Pool dictionaries are
special-purpose storage structures that enable any arbitrary group of classes
and their instances to share information. When classes share a pool dictionary,
methods defined in those classes can refer to the variables defined in the pool
dictionary. Note that the curly braces syntax for Arrays is not understood in
32-Bit GemStone/S.

Step 9. After the inDictionary: keyword, the name of the selected symbol
dictionary is inserted in the template. This is the symbol dictionary that will
allow you to refer to your class by name. Unless you replace the inserted text
with the name of another symbol dictionary to which you have access, your
new class is defined in the selected symbol dictionary.

Step 10. In the parentheses following the options: keyword, you can specify a
collection of symbols to define specific features of the new subclass.
options: is available only in GemStone/S 64 Bit 3.0 and later. These options
are special purpose and not commonly used; for details, see the “Class
Creation” chapter of the GemStone/S 64 Bit Programming Guide.

Step 11. Accept or save your changes and commit your transaction to make the
class part of the repository.

NOTE
You cannot subclass certain GemStone kernel classes. To determine
which ones, execute the method Object class >>
subclassesDisallowed against the class. The method returns
true for any class that you cannot subclass.

For example, consider the following definition of a class named Employee. This
creates a class with the given instance and class variables, and put the class in the
UserGlobals symbol dictionary.

Using the GemStone Programming Tools Coding

June 2011 VMware, Inc. 193

Example 12.1

Object subclass: 'Employee'
instVarNames: #('name' 'employeeNum' 'jobTitle' 'department'

 'address')
classVars: #('AllDepartments')
classInstVars #()
poolDictionaries: {}
inDictionary: UserGlobals
options: #()

Subclass Creation Methods

There are a variety of subclass creation messages, depending on the type of class
you want to create. Subclass creation methods that begin with the keyword
byteSubclass: or indexableSubclass: create classes that store data in
indexed slots, rather than limited to instance variables.

Storage format is inherited, so if the superclass is already byte or indexable format,
however, subclass creation methods that begin with the keyword subclass:
create a subclass of the same storage format.

For a full list of available subclass creation methods for your server product and
version, refer to the GemStone Smalltalk image.

For complete descriptions of the different kinds of classes, see the GemStone/S 64
Bit Programming Guide chapter on Class Creation.

Private Instance Variables

Some GemStone kernel classes have private instance variables. For example, the
superclass of GemStone Bag class defines four, used by the object manager and
primitives to implement features of nonsequenceable collections, such as adding
indexing structures for efficient querying. Private instance variable names begin
with an underscore (_).

Modifying an Existing Class
If you select an existing GemStone Smalltalk class, then modify and save the class
definition, you create a new version of that class and all of its subclasses. The
browser attempts to recompile all methods from the previous version into the new
version. Methods that fail to recompile are presented in a method list browser,

Coding GBS User’s Guide

194 VMware, Inc. June 2011

from which you can correct the errors. If the class has subclasses, they are also
versioned and their methods recompiled.

When you modify an existing class, the tools will ask if you wish to commit the
transaction and migrate all instance to the new version of the class. If you choose
not to do this, you can migrate some or all instances of one version of a class to
another version explicitly.

For more information on migrating instances, see the chapter entitled “Class
Versions and Instance Migration” in the GemStone Programming Guide.

NOTE
You can only modify classes for which you have write authorization

To create a new version of a class:

Step 1. Select the class in the browser to bring up its definition in the source pane.

Step 2. Edit the definition as required.

Step 3. Select Save or accept from the pop-up menu.

Whenever you create a class with the same name as a class that already exists in
the same symbol dictionary, the new class is automatically created as the latest
version of the existing class and it automatically shares the same class
history. Instances created after the redefinition have the new class’s structure and
access the new class’s methods. Instances that were created earlier have the old
class’s structure and access the old class’s methods, but they can be migrated to the
new class.

Let’s assume that you have a class named Employee with instance variables for
name, employeeNum, jobTitle, department, and address, and that the class
is defined as shown in Figure 12.1. Suppose that you decide that the class needs
an additional instance variable named salary to represent the Employee’s
salary.

To do this, you can define a new version of the class Employee to include the new
instance variable. Keeping the same name as the old class ensures that it shares the
same class history as the previous version.

After you compile the class definition, the new class is named Employee, and all
of the original instance and class methods are copied to the new class. Any
existing instances will still belong to the original class and may have to be
migrated to the new class.

Using the GemStone Programming Tools Coding

June 2011 VMware, Inc. 195

Defining Methods
You can modify only methods for which you have write authorization— for
example, methods that you have written for your own classes. You cannot modify
any GemStone kernel class method—that is, any method that is defined for one of
the predefined classes supplied with the GemStone system.

Public and Private Methods

GemStone has both public and private methods. Public GemStone methods are
supported. Private GemStone methods are those implemented to support the
public protocol—they are not supported and are subject to change.

Private GemStone methods are those whose selector is prefixed with an
underscore (_), or that explicitly say they are private within the method comment.
They appear in the browsers along with the public methods, and you can display
the source for them.

CAUTION
Private methods are subject to change. Do not depend on the presence or
specific implementation of any private method when creating your own
classes and methods.

Reserved and Optimized Selectors

The GemStone Smalltalk compiler optimizes certain frequently-used selectors.
These selectors cannot be overridden in subclasses; the optimized code ignores any
redefinitions. Some examples are ==, ifTrue:, and to:do:.

The specific list of selectors will vary by GemStone server product and version,
and can be found in the GemStone Programming Guide for that version, Appendix A.

Saving Class and Method Definitions in Files
It’s often useful to store the GemStone Smalltalk source code in text files. Such files
make it easy to:

 • transport your code to other GemStone systems,

 • perform global edits and recompilations,

 • produce paper copies of your work, and

 • recover code that would otherwise be lost if you are unable to commit.

Coding GBS User’s Guide

196 VMware, Inc. June 2011

To save GemStone code in a file, use any of the GemStone browser’s file out menu
items. To read and compile a saved file, use any of the Gs-File in or GS-File it in
menu items (in your client Smalltalk browser).

Saved GemStone files are written as sequences of Topaz commands. Example 12.2
shows a class definition in Topaz format:

Example 12.2

doit
Object subclass: 'Address'
 instVarNames: #(street zip)
 classVars: #()
 classInstVars: #()
 poolDictionaries: {}
 inDictionary: UserGlobals
%

! Remove existing behavior from Address
doit
Address removeAllMethods.
Address class removeAllMethods.
%
! ------------------- Class methods for Address
! ------------------- Instance methods for Address
category: 'Accessing'
method: Address
street
 "Return the value of the instance variable 'street'."
 ^street
%
category: 'Updating'
method: Address
street: newValue
 "Modify the value of the instance variable 'street'."
 street := newValue
%
category: 'Accessing'
method: Address
zip
 "Return the value of the instance variable 'zip'."
 ^zip
%
category: 'Updating'

Using the GemStone Programming Tools Coding

June 2011 VMware, Inc. 197

method: Address
zip: newValue
 "Modify the value of the instance variable 'zip'."
 zip := newValue
%

GemStone’s filing out and filing in facilities are intended mainly for saving and
restoring classes and methods without manual intervention. If this is all you want
to do, then you don’t need to understand the Topaz commands
involved. However, it is also possible to create custom files that include
commands to commit transactions and to create and manipulate objects other than
classes and methods. If you want to perform such tasks, refer to the Topaz
Programming Environment.

The file-in mechanism cannot execute the full set of Topaz commands. File-in is
limited to the following subset:

 category: method
 classmethod method:
 classmethod: printit
 commit removeAllMethods
 doit removeAllClassMethods

The GemStone file-in mechanism acknowledges the presence of the following
commands by adding notes to the System Transcript, but it does not execute them:

 display omit
 expectvalue output
 level remark
 limit status
 list time

If GemBuilder encounters any other Topaz commands it stops reading the file and
displays an error notifier.

The file-in mechanism does not display execution results, either. Instead, it
appends information to the System Transcript about the files it reads and the
classes and categories for which it compiles methods.

Handling Errors While Filing In

If one of the modules (run commands or method definitions) that you’re filing in
contains a GemStone Smalltalk syntax error, GemStone displays a compilation
error notifier that contains the erroneous module in a text editor. If you correct the

The Connector Browser GBS User’s Guide

198 VMware, Inc. June 2011

error and then choose Save, GemStone recompiles the module and then processes
the rest of the file.

In the case of authorization problems, commands that the file-in mechanism
doesn’t recognize, or other errors, GemStone displays a simple error notifier
without an editor and stops processing the file.

12.3 The Connector Browser
Chapter 4 describes connectors, which allow an application developer to explicitly
declare an association between a root client object and a root server object. This
section explains how to use GemBuilder’s Connector Browser to make and
manage connectors interactively.

To open a Connector Browser, select Browse Connectors from the GemStone
menu. With this browser, you can:

 • examine, create, and remove global or session-based connectors;

 • inspect the client or server object to which a connector resolves;

 • determine whether a specified connection is currently connected;

 • connect or disconnect a connector; and

 • examine or modify the postconnect action associated with a connector.

Figure 12.2 shows the Connector Browser.

Using the GemStone Programming Tools The Connector Browser

June 2011 VMware, Inc. 199

Figure 12.2 The Connector Browser

The Group Pane

The top pane is the Group pane; it allows you to select either global connectors or
those associated with an individual session. Global connectors are predefined to
connect the GemStone server kernel classes with their client Smalltalk
counterparts. When you select an item in this pane, the connectors defined for the
selected item appear in the middle pane.

In the Group pane, the popup menu provides the following items:

Table 12.5 Group List Menu in the Connector Browser

update Refreshes the views and updates the browser; useful if you
have made changes in other windows and need to
synchronize the browser with them.

initialize (available only when Global Connectors are selected)
Allows you to remove all connectors except those that
connect kernel classes.

The Connector Browser GBS User’s Guide

200 VMware, Inc. June 2011

The Connector Pane

The middle pane is the Connector pane; it lists the connectors, their types, and
descriptions in both the client and GemStone server Smalltalks. In the Connector
pane, the popup menu offers the following items:

Table 12.6 Connectors Menu in the Connector Browser

inspect Client Resolves and inspects the client Smalltalk object for the
selected connector.

inspect Server Resolves and inspects the GemStone server object for the
selected connector.

add... Adds a new connector, prompting for required
information.

remove... Removes a connector, after confirmation.

Using the GemStone Programming Tools The Connector Browser

June 2011 VMware, Inc. 201

The Control Panel

The bottom pane is a control panel that allows you to change the
connectVerification and removeInvalidConnectors configuration parameters
and connect or disconnect objects. setting a connector’s postconnect action is
described in the section that follows.

Table 12.7 Options in the Control Panel

Global verification When enabled, connectors (other than class
connectors) verify that they are not redefining
an object connection before connecting.
Class connectors, upon connection, verify that
the structures of the two connected classes are
of the same storage type.

Remove bad connectors When enabled, connectors that fail to resolve at
login are automatically removed from the
connector collections.

Connected / Disconnected Connects or disconnects the GemStone and
client Smalltalk objects described by the
connector. Applies to the selected session, or to
the current session if global connectors are
selected.

Enabling connector verification can slow login: we recommend that you turn on
verification during development and turn it off for production systems.

The Connector Browser GBS User’s Guide

202 VMware, Inc. June 2011

Postconnect Action

The postconnect action determines how GemBuilder sets the initial state of
connected objects. Options are:

Table 12.8 Postconnect Action Options in the Connector Browser

updateST Initializes the client object using the current state of the
GemStone server object.

updateGS Initializes the GemStone server object using the current
state of the client object.

forwarder Makes the client object a forwarder to the GemStone
server object.

clientForwarder Makes the GemStone server object a forwarder to the
client object.

none Leaves the client object and the GemStone server object
unchanged after their initial connection. The connector in
the case has no function, so it’s unlikely you’ll want to use
this option.

To create a new connector:

1. Select the session in the Group pane.

2. Place the cursor in the Connector pane.

3. Select add from the menu.

4. When prompted, specify the type of connector.

5. When prompted, specify the names of the client and server objects.

6. When prompted, specify the name of the dictionary for the server object.

7. Specify the postconnect action.

To create a forwarder:

1. Create a connector as described above.

2. Select forwarder as the desired postconnect action.

Using the GemStone Programming Tools The Class Version Browser

June 2011 VMware, Inc. 203

To change the postconnect action:

1. Disconnect the objects by clicking on the Disconnected button.

2. Change the postconnect action as required.

3. Reconnect the objects by clicking on the Connected button.

If your application initially stores its data in the client, and you intend to store the
data on the GemStone server but have not done so yet:

1. Create a connector or connectors for the root object(s) in the data set.

2. Select updateGS as the postconnect action for these connectors.

3. Log into the GemStone server so that GemBuilder can create the GemStone
server replicates for the client Smalltalk data.

4. Inspect the GemStone server objects to be sure they have the intended values.

5. Commit the transaction and log out.

6. Select the connectors and change their postconnect actions to updateST so that
future sessions will begin by using the stored GemStone server data.

12.4 The Class Version Browser
The Class Version Browser is a specialized Class Browser that can be used for
examining a class history, inspecting instances, migrating instances, deleting
versions, and moving versions to another class history.

To open a Class Version Browser, select a class in a browser and choose browse
versions from the Classes menu. If more than one version of a class has been
created, the class list in the spawned browser displays the version number next to
the class name.

A Class Version Browser is shown in Figure 12.3.

The Class Version Browser GBS User’s Guide

204 VMware, Inc. June 2011

Figure 12.3 The Class Version Browser

Menus in the Class Version Browser
For the most part, the Class Version Browser’s menus are the same as the menus
in the Class Browser. However, the Class Version Browser’s Classes menu
contains the additional items inspect instances and migrate instances.... Also,
note that the Classes menu items Move... and Remove... behave differently in this
browser.

The layout of the browser is similar to the Class Browser. The Method Category
and Message menus are the same as in a spawned Class Browser. The Classes
menu, however, has additional functionality.

The commands available in the Class Version Browser are shown in Table 12.9:

Table 12.9 Class Menu in Class Version Browser

file out as... Writes GemStone Smalltalk code defining the selected
class version and all of its methods to be written to a
file in Topaz format. The class and its methods can
later be re-created (read from the file and recompiled)
by means of a command given from the File List
Browser. See “Saving Class and Method Definitions
in Files” on page 195.

Using the GemStone Programming Tools The Class Version Browser

June 2011 VMware, Inc. 205

file out methods
as...

Writes GemStone Smalltalk code defining the selected
class version’s methods to be written to a file in Topaz
format. See “Saving Class and Method Definitions in
Files” on page 195 for more information on filing out.

browse class Opens a Class Browser that includes only the selected
class version.

browse
 hierarchy

Opens a Class hierarchy Browser that includes
superclasses and subclasses of the selected class
version.

browse versions Opens another Class Version Browser on this class
history.

browse references This menu item has two submenus: to this version of
this class and to any version of this class. Opens a
method list browser containing all methods whose
compiled code contains a reference to this version of
the class, or to any version of the class in this class
history.

hierarchy Lists the superclasses and subclasses of the current
class. Any instance variable names declared in a class
appear in the hierarchy list in parentheses.

definition Displays the definition (that is, the subclass creation
message) of the currently selected GemStone class
version. This is shown by default.

comment Displays the class comment, if one exists.
move to... Moves the selected class version to another class

history. Prompt for a target class, adds the selected
version to the target class’s class history, and updates
the browser. The class name of the selected version is
changed to that of the target class.

remove... Remove the selected class version from the class
history. Upon confirmation to proceed, asks if the
user wants to migrate instances. If yes, prompts for
the migration target, migrates the instances and
updates the browser.

create access Creates methods for accessing and updating the
instance variables of the currently selected class
version.

Table 12.9 Class Menu in Class Version Browser(Continued)

Debugging Overview GBS User’s Guide

206 VMware, Inc. June 2011

12.5 Debugging Overview
GemBuilder’s debugging tools assist you in examining and modifying application
objects during execution. These facilities enable you to perform the following
operations:

 • You can view and alter the instance variables of server objects.

 • You can step through execution of a method, examining the values of
arguments, temporaries, and instance variables after each step.

 • You can set, clear, and examine GemStone Smalltalk breakpoints. When a
breakpoint is encountered during normal execution, a debugger opens with
which you can interactively explore the contexts in the stack at the time
execution halted.

 • You can inspect or change the values of arguments, temporaries, and receivers
in any context (stack frame) on the virtual machine call stack, then continue

create in ST Generate the selected class in client Smalltalk, if a
mapping doesn’t already exist. If it does exist,
executing this menu item has no effect.

compile in ST Attempts to compile all methods (instance and class)
of selected class version in corresponding client
Smalltalk class.

update Update the browser to the current view of the class
versions.

inspect instances Open an inspector on instances on the selected
version.

migrate instances... Migrate all instances of the selected versions. Prompts
you to select which version to migrate to. The user
can only migrate to another version of the same class
history, so if all versions are selected there is no
migration destination and the item should be grayed
out. Otherwise, prompt for the version to migrate to
by popping up a list of versions not selected. Allow
the user to cancel the operation by clicking a cancel
button.

Table 12.9 Class Menu in Class Version Browser(Continued)

Using the GemStone Programming Tools Inspectors

June 2011 VMware, Inc. 207

execution from the top of the stack. This means that you can find out what the
system was doing at the time a breakpoint, or an error interrupted execution.

 • You can execute a message expression within the scope of a given context.

12.6 Inspectors
To allow you to examine the values of GemStone server objects and modify them
when appropriate, GemBuilder provides inspectors that are similar to the client
Smalltalk inspectors. When you select a GemStone Smalltalk expression and
execute GS-Inspect it, a GemStone inspector opens, as in Figure 12.4.

Figure 12.4 GemStone inspector

The GemStone inspector provides three or more tabs (depending on the specific
object you are inspecting), each with the GS prefix to indicate that these apply to a
GemStone server object. The GemStone inspector also allows you to examine the
internal state of the object’s delegate in GemBuilder, by selecting the tab labeled
“GS Delegate”.

Inspectors GBS User’s Guide

208 VMware, Inc. June 2011

Figure 12.5 GemStone Inspector GS Delegate tab

When inspecting an object that has a corresponding GemStone server object, the
inspector allows you to view both the client object and the server object in the same
inspector. Client objects with corresponding server objects includes replicates of
server objects, forwarders to server objects, stubs, and objects that are always
mapped such as nil, true, false, SmallIntegers, and Characters. When you are
inspecting one of these objects, you will see two sets of tabs: one that allows you to
examine the client object, and a second similar set of tabs with the GS prefix, to
examine the associated GemStone server object.

Using the GemStone Programming Tools Inspectors

June 2011 VMware, Inc. 209

Figure 12.6 Inspector on a Replicate

In the evaluation pane of the inspector, or any other pane, the use of “self” is
resolved according to the following rules:

 • Do it, Print it, Inspect it and Debug it resolve self to the client object.

 • GS-Do it, GS-Print it, GS-Inspect it, and GS-Debug it resolve self to the
GemStone server object.

 • When the GS Delegate tab is selected, Do it, Print it, Inspect it and Debug it
resolve self to the delegate object, as shown in Figure 12.7.

Breakpoints GBS User’s Guide

210 VMware, Inc. June 2011

Figure 12.7 Evaluating “self” in the GS Delegate tab of the Inspector

12.7 Breakpoints
For the purpose of determining exactly where a step will go during debugging, a
GemStone Smalltalk method is composed of step points. You can set breakpoints
at any step point.

Generally, step points correspond to the message selector and, within the method,
message-sends, assignments, and returns of nonatomic objects. However,
compiler optimizations may occasionally result in a different, nonintuitive step
point, particularly in a loop.

More detail on step points within GemStone Smalltalk methods is provided in the
Topaz Programming Environment, Chapter 2.

Example 12.3 indicates step points with numbered carets.

Using the GemStone Programming Tools Breakpoints

June 2011 VMware, Inc. 211

Example 12.3

includesValue: value
^1

"Return true if the receiver contains an object of the same
value as the argument. Return false otherwise."

| found index size|

found := false.
 ^2
index := 0.
 ^3
size := self size.
 ^5 ^4
[found not & (index < size)] whileTrue: [
 ^6 ^8 ^7 ^9

index := index + 1.
 ^11 ^10

found := value = (self at: index)
^14 ^13 ^12

].
^found
^15

If you use the GemStone debugger (described starting on page 213) to step through
this method, the first step takes you to the point where includesValue: is about
to be sent. Stepping again sends that message and halts the virtual machine at the
point where found is assigned. Another step sends that message and halts the
virtual machine just before the result is assigned to index, and so on.

When the GemStone Smalltalk virtual machine encounters an enabled breakpoint
during normal execution, GemStone opens the GemStone Debugger. In the
Debugger, you can interactively explore the context in which execution halted.

Special considerations apply in setting breakpoints for primitive and special
methods.

Breakpoints GBS User’s Guide

212 VMware, Inc. June 2011

Breakpoints for Primitive Methods
If you set a breakpoint in a primitive method, the break is encountered only if the
primitive fails. Consider the method below:

= aString

<primitive: 160>
self _primitiveFailed: #=

When this method is invoked, GemStone first executes the machine code in
primitive 160. If that code executes successfully, the primitive is said to succeed,
and the method returns a value. Because no GemStone Smalltalk code has yet
been encountered, the virtual machine has not yet reached the first step
point. Only if the primitive fails will the virtual machine execute the message-
send at the bottom of the method and thus encounter the breakpoint.

Breakpoints for Optimized Methods
Very simple methods are optimized by the GemStone Smalltalk compiler in such
a way that they contain no step points. Naturally, you cannot set a method
breakpoint if there are no step points. Methods that just returns true, false,
nil, self, that set or assign to an instance variable, or that return a class or pool
variable or a variable defined in a symbol dictionary, are optimized in this way,
and have no step points.

Also, certain selectors, such as ==, ifTrue:, and to:do:, are optimized by the
compiler, and cannot take step points. Optimized selectors vary by server product
and version, and are listed in the GemStone Programming Guide, Appendix A.

The Breakpoint Browser
You can set breakpoints in the source code pane of any browser, using the set
break menu item described in Table 12.3 on page 189. You can also use the
breakpoint browser, which lets you set, clear, and examine breakpoints for all
classes and methods.

After you’ve set a breakpoint, you can use the menu items to disable or re-enable
all breakpoints, or just selected ones.

A breakpoint browser has two panes: the list of break points on top, and the source
code associated with the selected breakpoint on the bottom. Figure 12.8 shows an
example:

Using the GemStone Programming Tools Debugger

June 2011 VMware, Inc. 213

Figure 12.8 GemStone Breakpoint Browser with a Breakpoint

The Break Pane

The break pane displays a scrollable list of the active breakpoints. The items in the
list look like this:

1: WriteStream >> nextPutAll: @ 8

In this example, a method break is set at step point 8 within the method
nextPutAll: defined by class WriteStream.

The Source Pane

If you have selected a breakpoint in the break pane, the text area displays the
source code for that method. This pane is similar to the GemStone Browser text
area, but you cannot recompile an edited method by executing Save.

12.8 Debugger
The GemStone Debugger is integrated with the client Smalltalk debugger,
allowing you to:

 • view GemStone Smalltalk and client Smalltalk contexts together in one stack,

Debugger GBS User’s Guide

214 VMware, Inc. June 2011

 • select a context from among those active on the virtual machine stack,

 • examine and modify objects and code within that context, and

 • continue execution either normally or in single steps.

When GemStone Smalltalk execution is interrupted, it either directly opens the
Debugger, or a notifier that includes a Debug button. Selecting the Debug button
opens the Debugger. A runtime error opens a notifier, while a breakpoint, user
interrupt, or an Object >> pause opens a debugger.

The Debugger’s stack pane displays the active call stack and allows you to choose
some context (stack frame) from that stack for manipulation in the window’s other
panes. Both GemStone server and client contacts are listed. GemStone server
contexts begin with “GS”.

Like other GemBuilder text areas, the debugger source code pane provides
commands to execute GemStone Smalltalk.

Colored contexts

You may configure VisualWorks to color the GemStone server contexts, to
distinguish them from client contexts. To do this, select the Settings button on the
Launcher toolbar, or go to System > Settings, and select Debugger (under
Tools). Select the button to edit the Context List Presentation. If no Patterns exist,
create a new Pattern for Everything with the Pattern String *. Then, create a new
Pattern with the Pattern String L*, and select a color for the GemStone server
contexts text. This new Pattern must be above the Pattern String *.

Note that for Windows-based VisualWorks Look and Feel settings, the selection
background color may leave selected context text unreadable when colored
contexts are enabled.

Disabling the Debugger
In some cases, you may want to disable the GBS debugger. You can disable and
enable the debugger using the following expressions:

GBSM enableGbsDebugger

GBSM disableGbsDebugger

Disabling the GBS debugger restores the base VisualWorks debugger.

Using the GemStone Programming Tools Stack Traces

June 2011 VMware, Inc. 215

12.9 Stack Traces
In some situations it is easier to extract complete stack traces for later analysis,
rather than debugging interactively. In addition, you may need a stack trace to
provide to GemStone Technical Support. GemBuilder includes facilities to dump
the complete stack, with more information than provided in the standard stack,
including information on GemStone server contexts and “glue” contexts.

To extract a complete stack, execute

GbsStackDumper dumpAllProcessStacks

In response, all processes in the image write their complete contexts to a file named
stacksAtx.txt in the current working directory, where x is a 10-digit number
derived from a time stamp.

To dump the stacks to a particular file location:

GbsStackDumper dumpAllProcessStacksToFileNamed: aString

These methods do not require the debugger, and can be used in runtime
applications.

Stack Traces GBS User’s Guide

216 VMware, Inc. June 2011

Chapter

June 2011 VMware, Inc. 217

13 Using the GemStone
Administration Tools

This chapter describes the GemStone tools that are provided to allow you to easily
manage the object sharing and protection issues discussed elsewhere in this
manual.

The Security Policy Tool
describes a tool for examining and changing GemStone user authorization.
Security policies (in earlier versions, Segments) provide the means for
managing GemStone authorization at the object level by assigning objects to
security policies that have appropriate authorization characteristics.

The Symbol List Browser
describes a tool that you can use for examining the GemStone SymbolLists
associated with UserProfiles. You can use it to add and delete dictionaries
from these lists, as well as to add, delete and inspect the entries in those
dictionaries.

User Account Management Tools
describes the User List, the User Dialog, and the Privileges Dialog, a set of
tools that allow you to create new user accounts, change account passwords,
and assign group memberships.

The Security Policy Tool GBS User’s Guide

218 VMware, Inc. June 2011

13.1 The Security Policy Tool
The Security Policy Tool allows you to inspect and change the authorization that
GemStone users have at the object level. As explained in the section entitled
“Object-level Security” beginning on page 123, each object in GemStone may be
associated with an object security policy. The only users authorized to read or
modify an object are those who are granted read or write authorization for the
security policy with which the object is associated. The Security Policy Tool also
allows you to examine and change group membership.

NOTE
In the 32-bit GemStone/S server product, and in GemStone/S 64 Bit 2.x,
object security policies are known as Segments.

Some of the operations supported by the Security Policy Tool involve privileged
methods. If your user account does not have the needed privileges, ask your
system administrator to set up your security policies for you.

To open a Security Policy Tool, select Admin > Security Policies from the
GemStone menu or through the User Dialog’s Object Security Policies
button. Figure 13.1 shows a Security Policy Tool.

Using the GemStone Administration Tools The Security Policy Tool

June 2011 VMware, Inc. 219

Figure 13.1 The Security Policy Tool

The Security Policy Tool is divided into two main sections. The upper section
displays security policies. The lower section displays groups and their members.

Security Policy Definition Area
The security policy definition area at the top of the dialog displays the security
policies in the SystemRepository for which the current user has read authorization.

You will notice that some security policies are named and some are
unnamed. Named security policies are security policies that are referenced in a
dictionary or symbol list. Unnamed security policies are those that are not
referenced in any dictionary or symbol list.

In addition to the security policies displayed in the Security Policy Tool, all users
also have read and write authorization to

The Security Policy Tool GBS User’s Guide

220 VMware, Inc. June 2011

GsIndexingObjectSecurityPolicy. Because authorization changes should not be
made to that security policy, however, it is not included in the tool.

NOTE
Changes made to cells in the tables are accepted automatically as soon as
you either press Return, make a selection in a combo box associated with
the cell, or simply move the focus to another cell or field by moving the
mouse. Entering an invalid value in a cell results in a warning, and the
cell reverts to the original value.

In the security policy definition area (the upper portion), you can change the
following:

Current — You can set the security policy to be your current security policy. When
you create an object, GemStone assigns it to your current security policy.

Default — You can set the security policy to be your default security policy. This
is the home security policy that is your current security policy when you log
into GemStone.

Owner Name — You can enter any valid user name that already exists in the
system. To change an owner name, type a valid owner name into the cell.

Owner Access and World Access — To change owner and world access, type one
of the following values into their cells:

 • read means that a user can read any of the security policy’s objects, but
can’t modify (write) them or add new ones

 • write means that a user can read and modify any of the security policy’s
objects and create new objects associated with the security policy

 • none means that a user can neither read nor write any of the security
policy’s objects

NOTE
Be careful when changing the authorizations on any security policy that
a user may be using as a current security policy or a default security
policy. If the account does not have write authorization in its default
security policy, the account cannot log in.

Security Policy Id — The Id number of each security policy is displayed. This
information cannot be modified.

Using the GemStone Administration Tools The Security Policy Tool

June 2011 VMware, Inc. 221

Group Definition Area
The bottom of the dialog is the group definition area. In this area you can assign
authorizations to groups of users instead of individuals. Groups are typically
organized as categories of users who have common interests or needs.

When you select a security policy at the top of the dialog, the group definition area
displays the groups that have access to the security policy. When you select one of
the groups, its members appear.

In the group definition area you can change the following:

Group Name — You can change the group name, but you should be aware that
when you edit a group name, you are not just renaming the group; you are
actually replacing the group with a new one. The old group’s members are
not copied to the new one, so you need to add them again. If the name of the
group entered is a group that does not exist, you will be asked if you want to
create it.

Group Access — Group access can be changed in the same way as owner and
world access. To change group access, type either read or write into the cell,
as outlined for owner and world access on page 220.

NOTE
Be careful when changing the authorizations on any security policy
that a user may be using as a current security policy or a default security
policy.

If you want to add group access to a security policy, select add... from the pop-up
menu in a Group Name cell. Similarly, to remove group access from a security
policy, select remove... from the pop-up menu.

In addition, you can select groups and users here to be the receiver of actions on
the menus.

Security Policy Tool Menus
The following sections describe the menus that are available in the Security Policy
Tool.

The Security Policy Tool GBS User’s Guide

222 VMware, Inc. June 2011

The File Menu

Use the File menu to commit work done in the Security Policy Tool, to abort the
transaction, to update the tool’s view of security policies, groups, and users in the
current session, and to close the Security Policy Tool.

Table 13.1 File Menu in the Security Policy Tool

Commit Commits all the work executed in GemStone during the current
transaction. After you commit, you are given a new, updated
view of the repository, and you can continue your work.

Abort... Cancels all changes that you have made anywhere in GemStone
since your last commit. After you abort the transaction, you are
given a new, updated view of the repository, and you can continue
your work.

Update Updates the information in the Security Policy Tool and gives you
a new, updated view of security policies, groups, and users that
reflects the most recent version of the repository, and you can
continue your work.

Close Close the Security Policy tool. Any changes made are kept, but not
committed to the repository.

Security Policy Menu

Use the Security Policy menu to create new security policies and to manipulate
existing security policies.

Table 13.2 Security Policy Menu in the Security Policy Tool

Create... Creates a new security policy. You must have the Security
Policy Creation privilege to use this option. In the Create
Security Policy dialog, enter a name for the security policy
and a symbol dictionary to store it in. Private security
policies are typically kept in UserGlobals. Security policies
for large groups of users are typically kept in Globals.

Using the GemStone Administration Tools The Security Policy Tool

June 2011 VMware, Inc. 223

Group Menu

Use the Group menu to add and remove groups.

Table 13.3 Group Menu in the Security Policy Tool

Add... Adds a new group. In the Add Group dialog, enter a name for
the group and choose OK or Apply.

Remove...

Removes authorization for the selected group. This does not
delete the group from GemStone. It only means that the current
security policy no longer stores access information for that
group. Users may still be able to access other objects because of
their membership in the group, but they will not have access to
the objects assigned to this security policy unless it has been
provided by the security policy’s owner or world access.

Member Menu

Use the Member menu to add users to and remove users from groups.

Table 13.4 Member Menu in the Security Policy Tool

Add... Adds a user to the group. Enter any valid user name in the Add
Member dialog and choose OK or Apply. The user must already
exist in the system. You can use the User List to create new
users.

Remove...

Removes the selected user from the group. (This does not delete
the user from GemStone.)

Grab Grabs a reference to the selected security policy and places it
on the clipboard. This can be used to add a reference to a
user’s symbol list or for changing the default security policy
of a user in the User Dialog.

Make Current Makes the selected security policy your current security
policy. When you create an object, GemStone assigns it to
your current security policy.

Make Default Makes the selected security policy your default security
policy. This is the home security policy that is your current
security policy when you log into GemStone.

Table 13.2 Security Policy Menu in the Security Policy Tool(Continued)

The Security Policy Tool GBS User’s Guide

224 VMware, Inc. June 2011

Reports Menu

Use the Reports menu to bring up a window displaying information about the
security policies, users, and groups in your view of the repository. Use the
window’s Print button to print a report, and use the Cancel button to close the
window.

Table 13.5 Report Menu in the Security Policy Tool

Group Report Produces a list of all groups in GemStone and the users in
each group.

Security Policy
Report

Produces a list of security policies the user has read
authorization for and displays information about each
one as to
• its owner,
• the groups for which it contains access information, and
• the access it grants to the owner, groups, and world.
This report includes the GsIndexingObjectSecurityPolicy,
for which all users have read and write authorization.

User Report Produces a list of all GemStone users and shows each
user’s group memberships.

Security policies that appear as Unnamed are not in your symbol list. Thus, their
names and dictionaries are unknown.

Help Menu

The Help menu contains one item, Session Info, which provides information
about the session for the Security Policy Tool window and about the current
session.

Using the Security Policy Tool
If you are a security policy’s owner, you can determine who has access to objects
assigned to that security policy. For more information, see the chapter on
administering user accounts and security policies in the GemStone System
Administration Guide.

Using the GemStone Administration Tools The Security Policy Tool

June 2011 VMware, Inc. 225

Checking Security Policy Authorization

Anyone who has read authorization for a security policy can use the Security
Policy Tool to find out who is authorized to read or write that security policy by
doing the following:

1. Bring up the Security Policy Tool by selecting GemStone > Admin > Security
Policies or by choosing Object Security Policies in a GemStone User
Dialog.

2. In the Security Policy Tool, choose Reports > Security Policy Report. The
resulting list contains all security policies.

3. To view the members of each group, choose Reports > Group Report. To
view the groups to which each user belongs, choose Reports > User Report.

Changing Security Policy Authorization

Assuming that you either have Security Policy Protection privileges or are the
security policy’s owner, you can use the Security Policy Tool to change the
authorization of a security policy.

The top half of the Security Policy Tool shows the owner, the owner’s access, and
world access for each security policy in the repository. To change owner or world
access for a security policy, click in the corresponding box, then use the pull-down
menu to select the new permission (“read”, “write”, or “none”).

The new authorization will take effect when you commit the current transaction.

CAUTION
Be careful to check whether a user is logged in before you remove write
authorization. A user will be unable to commit changes if write
authorization is removed from the current security policy, and if it is the
user’s default security policy, the user’s session will be terminated and
the user will be unable to log in again.

Controlling Group Access to a Security Policy

If you are authorized to set up or change group access to a security policy, you can
add or remove groups to that security policy’s authorization list.

 • Make sure the security policy is selected in the top half of the tool.

 • To add a group to the authorization list for the selected security policy, choose
Add... from the Group menu. Enter the group name in the dialog box that
appears. If the group does not exist in the repository, you will be asked
whether to create it.

The Symbol List Browser GBS User’s Guide

226 VMware, Inc. June 2011

 • To remove a group from the authorization list, first select the group by clicking
in the first column of the groups list. Then choose Remove... from the Group
menu. You will be asked to confirm the action.

 • To change the type of access for a particular group, first select that group in the
groups list and select the existing permission. Then enter the new permission
(“read” or “write”).

 • To add a member to a group that has access to this security policy, first select
that group in the groups list. Then choose Add... from the Member
menu. Enter the UserId and choose OK. (A UserProfile with that UserId must
already exist in the repository.)

 • To remove a member from a group that has access to this security policy, select
the UserId in the member list and choose Remove... from the Member
menu. You will be asked to confirm the action.

Remember to commit your transaction before logging out. A convenient way to
do that is by choosing Commit from this tool’s File menu.

13.2 The Symbol List Browser
The Symbol List Browser is a tool for examining the GemStone SymbolLists
associated with UserProfiles, adding and deleting dictionaries from these lists,
examining the entries in those dictionaries and adding, deleting and inspecting the
entries. References to dictionaries and dictionary entries can be copied between
GemStone user accounts, subject to authorization and security policy restrictions,
to allow users to share application objects and name spaces developed by other
users, and to publish them to other users.

To open a Symbol List Browser, select Admin > Symbol Lists from the
Gemstone menu, or click on the Symbol List button on a GemStone User Dialog.

Like the other GemStone tools, the Symbol List Browser opens on a particular login
session. When a Symbol List Browser instance is created, it is attached to the
current GemStone session and remains attached to that session until the browser
is closed.

Figure 13.2 shows the Symbol List Browser.

Using the GemStone Administration Tools The Symbol List Browser

June 2011 VMware, Inc. 227

Figure 13.2 The Symbol List Browser

The field labeled Symbol List for contains a list of all the GemStone users that are
visible to the session to which the browser is attached. When you select a
GemStone user name, a list of the dictionaries in that user’s SymbolList is
displayed in the Dictionaries pane. GemStone permissions are observed; any
dictionaries in that SymbolList that are not normally accessible to the browser’s
session will not be visible in the list.

When a dictionary is selected, the keys of the entries in the dictionary are displayed
in the Entries pane on the right.

Whenever a dictionary or an entry is selected, information about that object is
displayed at the bottom of the browser.

The Clipboard
Within the Symbol List Browser you can delete, move, and copy objects to and
from SymbolLists and the Dictionaries in those SymbolLists. For each session to
which a Symbol List Browser is attached, there is a “clipboard” onto which
GemStone server objects can be cut and copied and from which objects can be
pasted into another Symbol List Browser that is also attached to that session.

The Symbol List Browser GBS User’s Guide

228 VMware, Inc. June 2011

Symbol List Browser Menus
The menus in the symbol list browser allow you to examine, add, and delete
SymbolLists, dictionaries, and dictionary entries. You can use this browser to
copy references to dictionaries and dictionary entries among user accounts so
application objects can be shared by other users.

File Menu

The File menu contains items for operating on the window itself and for
committing and aborting transactions from the Symbol List Browser.

Table 13.6 File Menu in the Symbol List Browser

Commit Makes all changes in the current transaction permanent.
Abort Aborts the current transactions.
Update Updates the browser’s view of the GemStone server objects it

shows. The browser is automatically updated if the attached
session aborts a transaction.

Close Close the browser. Any changes are retained in the image, but not
committed to the repository.

Mode Menu

The Mode menu allows you to switch from dictionary mode to entry mode. In
dictionary mode, you can select entries and dictionaries from the lists. In entry
mode, you can edit or enter new text in the Symbol List and Selected Entry fields.

Using the GemStone Administration Tools The Symbol List Browser

June 2011 VMware, Inc. 229

Edit Menu

In Dictionary Mode, the Edit menu allows you to rearrange dictionaries by cutting,
copying, or pasting. In Entry Mode, the Edit menu allows you to rearrange entries
by cutting, copying, or pasting.

Table 13.7 Edit Menu in the Symbol List Browser

Cut Dict
Cut Entry

In Dictionary mode: Removes the selected dictionary from the user’s
symbol list and places it in the session’s clipboard.
In Entry mode: Removes the selected entry from the selected
Dictionary and places it in the session’s clipboard.

Copy Dict
Copy Entry

Copies a reference to the selected item (a dictionary or an entry,
depending on which mode is in effect) into the session’s clipboard.

Paste Dict
Paste Entry

In Dictionary mode: Causes the reference to the dictionary object in
the clipboard to be added to the SymbolList in the pane, with the
name it had when it was put in the clipboard.
In Entry mode: Causes the reference to the entry in the clipboard to
be added to the selected dictionary, with the name it had when it
was put in the clipboard.
In both modes: If the clipboard item’s name is already in use in the
destination list, a Confirmer will pop up to allow replacing the old
item, or to abort the paste operation.

Object Menu

The Object Menu allows you add a new dictionary, open an inspector on a
dictionary entry, and open a browser on a class that is contained in a dictionary.

Table 13.8 Object Menu in the Symbol List Browser

Add Dict
Add Entry

Prompts for name of a new item to be added to the
Dictionary or Entry list.

Inspect Dict
Inspect Entry

Opens a GemStone inspector on the selected item.

Browse Class If the selected entry is a class, opens a GemStone class
browser on that entry. Performs the same operation in
either Dictionary or Entry mode.

Help Menu

The Help menu contains one item, Session Info, which provides information
about the session for the Symbol List Browser and about the current session.

User Account Management Tools GBS User’s Guide

230 VMware, Inc. June 2011

13.3 User Account Management Tools
GemBuilder provides three User Account Management tools that allow the
GemStone System Administrator to create and modify user accounts, change
account passwords, and assign group membership. This section describes these
three tools: the GemStone User List, the GemStone User Dialog, and the Privileges
Dialog.

NOTE
To perform most of the system administration functions described in this
section, you must either be DataCurator or have certain privileges.

If you are responsible for GemStone system administration, refer the chapter on
administering user accounts and security policies in the GemStone System
Administration Guide for specific information on user account management. That
chapter discusses the privileges you need to manage user accounts and explains
how to add and remove users, set up user environments, change passwords and
user privileges, and how to add and remove users from groups.

GemStone User List
The GemStone User List window contains a list of all user accounts known to the
current repository. The administrator can use this window to delete users and as
a starting point to add new users and to change the attributes of GemStone users.

 • To bring up the GemStone User List from the GemStone menu, select
Admin > Users.

Figure 13.3 shows the GemStone User List.

Using the GemStone Administration Tools User Account Management Tools

June 2011 VMware, Inc. 231

Figure 13.3 GemStone User List

The GemStone Users List window has two menus: File and Help.

The File menu contains the following items:

Table 13.9 GemStone User List: File Menu

Commit Makes all changes in the current transaction permanent.
Abort Aborts the current transaction.
Update Causes the browser to update its view of the GemStone users it

shows. The browser will automatically be updated if the attached
session aborts a transaction.

Close Close the browser. Changes are retained in the image, but not
committed to the repository.

User Account Management Tools GBS User’s Guide

232 VMware, Inc. June 2011

Table 13.10 shows operations available in this dialog.

Table 13.10 GemStone User List

Create User Brings up a GemStone User dialog in which you can
define a new user.

Show User Info Brings up a GemStone User dialog displaying privilege
and group membership information for the selected user.

Delete User Allows you to remove the selected user.

The Help menu contains one item, Session Info, which provides information
about the session for the GemStone User List and about the current session.

Using the GemStone Administration Tools User Account Management Tools

June 2011 VMware, Inc. 233

GemStone User Dialog
The GemStone User Dialog displays the attributes of a particular GemStone
user. The GemStone administrator can examine and change the user’s privileges
or default security policy and can control the user’s group membership. The
administrator can also change the name available in the user’s symbol list.

The GemStone User Dialog is shown in Figure 13.4.

Figure 13.4 GemStone User Dialog

User Account Management Tools GBS User’s Guide

234 VMware, Inc. June 2011

NOTE
When using 32-bit GemStone/S or Gemstone/S 64 Bit v2.x, the
GemStone User Dialog layout is substantially different. However, the
basic functions are the same.

Table 13.11 shows the operations that are available in this dialog.

Table 13.11 Buttons in the GemStone User Dialog

Privileges... Brings up a Privileges Dialog (page 236), in which you
can select privileges for this user.

Symbol List... Brings up a Symbol List Browser (page 226) for the
designated user.

Object Security
Policies...

Brings up a Security Policy Tool (page 218).

Authentication
Method

Click the button to indicate the method for performing
authentication for the selected user: GemStone userId
and GemStone password, UNIX user ID and
password, or LDAP server.
Authentication other than GemStone is only available
in GemStone/S 64 Bit v3.0 and later. For details on
configuring authentication, see the chapter on “User
Accounts and Security” in the 0System Administration
Guide for GemStone/S 64 Bit v3.0.

Create In the Name entry box, enter the name of the new
group that you wish to create, then click this button.
The user is added to the new group.

OK Makes all changes in the current transaction
permanent, and close the dialog.

Commit and Apply Makes all changes in the current transaction
permanent.

Close Close the dialog. Changes are retained in the image,
but not committed to the repository.

 • To add a user to a group, select the group in the Available list and drag it to
the Is Member Of list.

 • To remove a user from a group, select the group in the Is Member Of list and
drag it back to the Available list.

Using the GemStone Administration Tools User Account Management Tools

June 2011 VMware, Inc. 235

The User Dialog has three menus: File, User, and Help. The File menu contains the
following items.

Table 13.12 GemStone User Dialog: File Menu

Commit Makes all changes in the current transaction permanent.
Abort Aborts the current transaction.
Update Causes the dialog to update its view of the GemStone user it

shows. The dialog will automatically be updated if the attached
session aborts a transaction.

Close Close the dialog. Changes are retained in the image, but not
committed to the repository.

The User menu contains one item, Rename. This requests a new name for this
user. You may not rename the DataCurator, GcUser, or SystemUser accounts.

The Help menu contains one item, Session Info, which provides information
about the session for the GemStone User List and about the current session.

User Account Management Tools GBS User’s Guide

236 VMware, Inc. June 2011

Privileges Dialog
Certain system functions are customarily performed by the DataCurator; for
example, many of the messages to System require explicit privilege to use. The
privileges dialog displays the privileges an individual user possesses. You can use
this dialog to examine a user’s privileges, and—if you have the authority to do
so—to select privileges for a user.

The Privileges Dialog is shown in Figure 13.5.

Figure 13.5 Privileges Dialog in GemStone User Window

The specific list of privileges and the methods that require these privileges vary
between different server products and versions.

For more information on privileges, see the chapter on “User Accounts and
Security” in the System Administration Guide for your server product and version.
The method comments in the image provide privilege requirements for executing
specific methods.

Appendix

June 2011 VMware, Inc. 237

A Packaging Runtime
Applications

Use the following guidelines when packaging a client Smalltalk application that
uses GemBuilder to access GemStone.

A.1 Prerequisites
In addition to code required by your application, the packaged image must contain
the application or parcel GbsRuntime, which contains the system code modified
for GemBuilder.

In order to ensure that your image initializes correctly, your application must
specify GbsRuntime as a prerequisite.

Do not include the application or parcel GbsTools. These are subclasses of classes
that will be deleted during the packaging process.

Names
Ensure that your image is packaged to include class pool dictionaries and instance
variable names and does not remove them.

Packaging GBS User’s Guide

238 VMware, Inc. June 2011

Replicating Blocks
To ensure that your application is able to replicate Smalltalk blocks in the same
manner as it did in the development environment, we recommend that you
include the compiler.

Defunct Stubs and Forwarders
Defunct stubs and forwarders cause problems during packaging. To avoid these
problems, start with new client image as shipped from your client Smalltalk
vendor.

Shared Libraries
A deployed runtime application that uses GemBuilder needs to contain all the
server-specific shared libraries, as well as the as the error file english.err or
englisxx.err (where xx is the release number). The Installation Guide for the
GemStone server product and version you are using will provide the specific
names of the library files.

If you are logging in only remote sessions, set the GemBuilder configuration
parameter libraryName to the RPC version of the GemStone client libraries.
Again, see the appropriate installation guide for the specific library names.

A.2 Packaging
Step 1. Open a new client image as shipped from your client Smalltalk vendor.

Step 2. Ensure that you have satisfied the prerequisites given above.

Step 3. Load your application code.

Step 4. Follow the packaging instructions given by your Smalltalk vendor.

Appendix

June 2011 VMware, Inc. 239

B Client Smalltalk and
GemStone Smalltalk

This appendix outlines the few general and syntactical differences between the
VisualWorks and GemStone Smalltalk languages.

B.1 Language Differences
GemStone’s Smalltalk language is very similar to client Smalltalk in both its
organization and its syntax. GemStone Smalltalk extends the Smalltalk language
with classes and primitives to add multiuser features such as transaction support
and persistence. The GemStone class hierarchy is extensible, and new classes can
be added as required to model an application. The GemStone class hierarchy is
described in the GemStone Programming Guide.

A quick look at the GemStone class hierarchy shows that it differs from the client
Smalltalk class hierarchy in that classes for screen manipulation and the client
Smalltalk programming environment don’t exist, and in that the GemStone
Smalltalk hierarchy contains classes for transaction control, accounting,
ownership, authorization, replication, user profiles, and indexing collections.

GemStone Smalltalk also introduces constraints and optimized selection blocks.

As a Smalltalk programmer, you will feel quite at home with GemStone Smalltalk,
but you should take note of the differences outlined in this appendix.

TimeZone handling GBS User’s Guide

240 VMware, Inc. June 2011

Selection Blocks
Selection blocks in GemStone Smalltalk and the use of dots for path notation have
no counterparts in client Smalltalk.

myEmployees select: {:i | i.is.permanent}

Array Constructors
Array constructors do not exist in client Smalltalk. In GemStone, array constructor
syntax varies by server product and version. In GemStone/S 64 Bit version 3.0 and
above, array constructors:

 • use curly braces,

 • use periods as separators,

 • have no prefix, and

 • can contain any valid GemStone Smalltalk expression as an element.

{'string one' . #symbolOne . $c . 4 . Object.new }

In 32-Bit GemStone/S and in GemStone/S 64 Bit version 2.x, array constructors:

 • use square brackets,

 • use commas as separators,

 • are prefixed by #, and

 • can contain any valid GemStone Smalltalk expression as an element.

#['string one', #symbolOne, $c, 4, Object new]

See the GemStone Programming Guide, Appendix A, for more details on Array
constructors.

B.2 TimeZone handling
The GemStone server, as a multi-user system, may have a number of TimeZones
installed, although only one is the current TimeZone for a particular session. The
instances of TimeZone include the rules governing such things as the start and
end of Daylight Savings Time. GemStone server TimeZones are created based on
the Zoneinfo or Olson TimeZone repository.

Client Smalltalk and GemStone Smalltalk TimeZone handling

June 2011 VMware, Inc. 241

DateTimes internally store the time in UTC (GMT), but display themselves based
on the local current TimeZone. DateTimes do reference an instance of TimeZone,
but most server operations use the gem’s current TimeZone.

When server DateTimes are replicated to client TimeStamps, the GbxTimeZone is
used to determine the TimeStamp’s correct current local time. How the
GbsTimeZone is set depends on the version of VisualWorks.

In VisualWorks version 7.7 and above, which implements a similar TimeZone
scheme as GemStone, the GbxTimeZone is set to the VisualWorks default
TimeZone.

In VisualWorks versions prior to 7.7, the gem’s current TimeZone instance is
replicated to the VisualWorks client for the GbxTimeZone.

If the desired TimeZone is not the VisualWorks default, or if the GBS application
changes the gem's current TimeZone after a session has logged in, GBS cannot
detect this. In this case, the client application needs to send the new message

GbsSession >> setClientTimeZoneFromServer

to re-replicate a copy of the timezone.

To explicitly set a specific time zone for the client, you can create the desired
TimeZone on the server, and replicate it to the client, using the method

GbsSession >> clientTimeZone:

For example:

myGbsSession clientTimeZone:
 (mySession evaluate: 'TimeZone
 fromGemPath:''/foo/bar/America/New_York''').

This would be the case if the gem and client are in different time zones, and you
want the time zone to be different between the gem and client (in VisualWorks
versions prior to 7.7); or if the gem and client are in different time zones, and you
want the timezone to be same between the gem and client (in VisualWorks
version 7.7 and later).

TimeZone handling GBS User’s Guide

242 VMware, Inc. June 2011

Index

June 2011 VMware, Inc. 243

Index

A
abort

(GbsSession) 106, 107
(GbsSessionManager) 107, 109

abort command 187
abort request from GemStone 109
abortErrLostOtRoot signal 110
abortTransaction (GbsSession) 110
addDependent: 40
adding connector to session or global list 98
addParameters (GbsSession) 37
addToCommitOrAbortReleaseLocksSet

: (System) 115
addToCommitReleaseLocksSet: (System)

115
alwaysUseGemCursor configuration

parameter 153, 155
application design 25–27, 46–90
argument in message to forwarder 52
array constructors in GemStone Smalltalk 240
assertionChecks configuration parameter 153,

155
autoMarkDirty configuration parameter 153,

155
automatic class generation 48–49, 163

disabling 49
automatic mark dirty

in VisualWorks 5i 56
in VisualWorks 7.x 55

automatic transaction mode 110, 111
defined 110

B
block

callback 78
replicating 75, 156

blockingProtocolRpc configuration parameter
153, 155

blockReplicationEnabled configuration
parameter 75, 153, 156

blockReplicationPolicy configuration
parameter 153, 156

GBS User’s Guide

244 VMware, Inc. June 2011

Breakpoint Browser 212–213
breakpoints 206, 212

and primitive methods 212
bulkLoad configuration parameter 153, 156
business objects 26

C
cache

space management 145
cache inventory statistics 141
callback for blocks 78
changed object notification 116, 237
changing

connector initialization 203
postconnect action 203
schema 134

class versions and 134
shared data 54, 112

choosing the locus of execution 142
class 47

connector 93, 163
connection order 94

connector, updating 48
creation 191
customizing faulting 64
filing out 195
generating automatically 48–49, 163
mapping 22, 134
mapping to one with a different storage

format 74
nonforwarding 92
structure, matching on client and server

47
updating definitions with connectors 92
versions 191, 194
versions and replication specifications 65

class instance variable connector 93
class variable connector 93
Classes pane

in GemStone Browser 186
clearCommitOrAbortReleaseLocksSet

(System) 115

clearCommitReleaseLocksSet (System)
115

client forwarder 51
Client Libraries 32
clientMapCapacity configuration parameter

153, 156
clientMapFinalizerPriority configuration

parameter 153, 157
code pane

menu for 189
collections with instance variables, replicating

79
commit command 187
commitAndReleaseLocks (System) 115
committing

a transaction 22
and flushing, compared 55
changes to the repository 106

commitTransaction
(GbsSession) 106

compile in ST 206
compile in ST command

in GemStone Browser’s Class menu 188
compiling

a class definition 191
in a runtime application 238

concurrent transactions, managing 112
configuration parameters 151–168

alwaysUseGemCursor 153, 155
assertionChecks 153, 155
autoMarkDirty 153, 155
blockingProtocolRpc 153, 155
blockReplicationEnabled 75, 153, 156
blockReplicationPolicy 153, 156
bulkLoad 153, 156
clientMapCapacity 153, 156
clientMapFinalizerPriority 153, 157
confirm 153, 158
connectorNilling 53, 92, 153, 158
connectVerification 153, 158
defaultFaultPolicy 62, 153, 159
deprecationWarnings 153, 159
eventPollingFrequency 153, 159
eventPriority 153, 160

GBS User’s Guide

June 2011 VMware, Inc. 245

faultLevelLnk 153, 160
faultLevelRpc 153, 160
forwarderDebugging 153, 161
freeSlotsOnStubbing 153, 161
fullCompression 153, 161
gcedObjBufferSize 154, 162
GemStone

CONCURRENCY_MODE 121
STN_GEM_ABORT_TIMEOUT 110

generateClassConnectors 49, 154, 162
generateClientClasses 48, 154, 162
generateServerClasses 48, 154, 163
initialDirtyPoolSize 154, 163
libraryName 32, 154, 164
pollForAsynchronousEvents 154, 164
pollForRpcResponse 154, 165
removeInvalidConnectors 154, 165
replicateExceptions 154, 165
rpcSocketWaitTimeoutMs 154, 166
serverMapLeafCapacity 154, 166
setting and examining 151

global 151
session specific 152

stubDebugging 154, 167
traversalBufferSize 145, 154, 167
verbose 154, 168

confirm configuration parameter 153, 158
Connected command in Connector Browser

92, 203
connected objects, synchronizing 202
connector 87–102, 198–203

adding to session or global list 98
class 93, 163

class versions and 50
connection order 94
forwarders and 50
update direction and 50
updating 48

class hierarchy 96
class instance variable 93
class variable 93
connecting object networks 88
connection order 94

controlling 99
creating automatically 162
creating interactively 202
creating programmatically 96
defined 47, 87, 198
fast 95
for kernel classes 93
global 90, 199
initializing 91
introduction to 22
list of 98
name 93
nilling 53, 92, 158
postconnect action 51, 91
removing duplicates 91
removing invalid 165
removing unresolved 201
scope 90
session 199
setting postconnect action

programmatically 97
setup for initial storage of data in

GemStone 203
updateGS postconnect action 203
updateST postconnect action 203
updating class definitions and 92
verifying 91, 158, 201

Connector Browser 198–203
updateGS postconnect action 203
updateST postconnect action 203

connectorNilling configuration parameter 53,
92, 153, 158

connectVerification configuration parameter
153, 158

contexts 207
controlling the size of the client Smalltalk

object cache 145
converting among forwarders, stubs,

replicates, and delegates 82
copyEmpty:, implementing for collections

with instance variables 79
create access 205
create access command

in Browser’s Class menu 188

GBS User’s Guide

246 VMware, Inc. June 2011

create in ST 206
create in ST command

in Browser’s Class menu 188, 189
creating

connector interactively 202
connector programmatically 96
forwarder 51
forwarder interactively 202
linked session 36
remote session 36
subclasses 191

CstMessengerSupport parcel 27
current session 38

setting 177
tools attached to 39

D
data

cost of managing 142
modifying shared 54, 112
storage in GemStone 203

debug command 214
debugger 206, 213
debugging 206–215

forwarders 161
getting stack trace without debugger 215
stubs 167

defaultFaultPolicy configuration parameter
62, 153, 159

defining GemStone errors 128
definition 205
defunct forwarder 52

during packaging 238
defunct stub 63

during packaging 238
delegate

converting 82
Delivery and Deployment 27
dependencies between objects, managing

with replication specifications 68
dependents, session 40–44

adding 40

committing a transaction 40
removing 41

Deprecated Features 28–29
deprecated: 29
deprecationWarnings configuration

parameter 29, 153, 159
dictionaries

pool 192
specifying for a new class 192

dirty, defined 54
disableGbsDebugger 214
disabling

automatic class generation 49
block replication 75

Disconnected command in Connector
Browser 92, 203

domain objects 26
dumpAllProcessStacks 215

E
enableGbsDebugger 214
error, user-defined 128
error-handling

during file in 198
evaluate: 80
evaluate:context: 81
event, polling for 159
eventPollingFrequency configuration

parameter 153, 159
eventPriority configuration parameter 153,

160
examining the internal structure of a

GemStone object 207
exception-handling 125–130
exclusiveLock: (GbsSession) 113
exclusiveLock:ifDenied:ifChanged:

(GbsSession) 113
exclusiveLockAll: (GbsSession) 114
exclusiveLockAll:ifIncomplete:

(GbsSession) 114
execution

in GemStone 142
in the client Smalltalk 142

GBS User’s Guide

June 2011 VMware, Inc. 247

profiling 138
tuning 142–143

explicit stubbing of objects to reclaim space
145

extents 21

F
fast connector 95
fault 63
fault control

and replicates 143
and stubs 143

fault level
defined 59
performance and 143
specifying with replication specification

63
fault policy, defined 62
faulting

at login 59
changes from other sessions 62
cost of 143
customized 70–74
customizing a class 64
default policy for 159
dirty GemStone objects 143
immediate 62
inadequate, penalties of 144
lazy 62
minimizing for performance tuning 144
when a stub receives a message 60
while flushing, error caused by 71

faulting, defined 54
faultLevelLnk configuration parameter 153,

160
faultLevelRpc configuration parameter 153,

160
faultToLevel: 80
file

writing class and method definitions to
195

file in, and error-handling 198

file out 204
file out methods 205
filing out classes and methods 195
flushing 55

and committing, compared 55
customized 70–74
improving performance of 163
of dirty replicates 142
when 55
while faulting, error caused by 71

flushing, defined 54
forwarder 50–53

arguments to 52
classes that cannot become 92
converting 82
creating 51
creating interactively 202
debugging 161
declaring in replication specification 51
defined 47
defunct 52
enforcing a return of 52
for optimization 146
return from 52
sending messages to 51
to client 51
to server 50
when to use 50

forwarderDebugging configuration
parameter 153, 161

freeSlotsOnStubbing configuration parameter
153, 161

fullCompression configuration parameter
153, 161

fwat: 52
fwat:ifAbsent: 52
fwevaluate: 81
fwevaluate:context: 81

G
GbsBuffer 71
GbsClassInstVarConnector 96

GBS User’s Guide

248 VMware, Inc. June 2011

GbsClassVarConnector 96
GbsConnector 96
GbsError 238
GbsFastConnector 96
GBSM global 37
GBSM, instance of GbsSessionManager 35,

106
GbsNameConnector 96
GbsRuntime 237
GbsRuntime parcel 27
GbsServerClass 51
GbsSession 35

reference to parameters 38
GbsSessionManager 35
GbsSessionParameters 35

instance creation 36
GbsSessionParameters class

instance creation 36
GbsStackDumper 215
GbsTimeZone 241
GbsTools 237
GbsTools parcel 27
gcedObjBufferSize configuration parameter

154, 162
Gem

service name 36, 174
signaling another Gem 117
user process 20, 21

GemBuilder
overview 21

GemBuilder tools
Breakpoint Browser 212
Classes Browser 184–189
Connector Browser 198–203
debugger 213
GemStone menu 170
overview 3, 24
Security Policy Tool 218–??
Session Browser 172–177
Session Parameters Editor 173
Symbol List Browser 226–229
System Workspace 181
User Account Management Tools 230–236

GemStone
security 122–??

GemStone Browser 184, 185
Class List pane 187
Classes pane 186
Method Categories pane 186
Symbol List pane 185

GemStone inspector 207
GemStone Smalltalk

comparing with client Smalltalk 239
debugger 213, 214
features of 23

GemStone User List (User Account
Management Tools) 230

Gem-to-Gem notifiers 117
generateClassConnectors configuration

parameter 49, 154, 162
generateClientClasses configuration

parameter 48, 154, 162
generateServerClasses configuration

parameter 48, 154, 163
global configuration parameters 151
global connectors 90
GsInterSessionSignal 117
gsObjImpl 74

H
hierarchy 205

I
immediate fault policy 62
indexableSize 74
indexableValueAt: 73
indexableValueAt:put: method 71
indexableValues 72
indexableValuesBuffer 71
inheritance

replication specification and 64
initialDirtyPoolSize configuration parameter

154, 163
initializing

connectors 91

GBS User’s Guide

June 2011 VMware, Inc. 249

connectors programmatically 97
inspecting

in a debugger 207
inspector 207
instance variables

direct access causing stub errors 60
in Collections 79
mapping 49, 57
mapping nonmatching names 58
maximum number in a Class 191
modifying while faulting 70
modifying while flushing 72
private 193
suppressing replication of 57

instancesAreForwarders 51
instVarMap 57

K
kernel class

connecting connectors for 94
connecting instances of 93

L
lazy fault policy 62
libraryName

setting Client Libraries 32
libraryName configuration parameter 154,

164
linked application 33
linked session 33
locks 112

logging out, effect of 114
on objects 113
releasing 115
removing 114
setting 113

locus of execution 142
logging into GemStone

interactively 176
programmatically 38

logging out of GemStone

effect on locks 114
interactively 177
programmatically 40
to resynchronize application state 110

login
faulting at 59

login message 38
logout message 40
lost OT root 110

M
main statistics 138
managing

concurrent transactions 112
connectors 98
space, and cache size 145

manual mark dirty 56
manual transaction mode 111
manual, organization of 4
mapping 47

automatic 49
class 22
class versions and 50
classes 47
classes with different storage formats 74
instance variables 57
nonmatching names 58
schema coordination 134

mark dirty 55–56
marking dirty, automatic

in VisualWorks 5i 56
in VisualWorks 7.x 55

marking dirty, manually 56
maximum number of instance variables in a

class 191
messages

faulting when a stub receives 60
Method Categories pane in GemStone

Browser 186
methods

breakpoints in 206
filing out 195

GBS User’s Guide

250 VMware, Inc. June 2011

primitive, and breakpoints 212
protecting 123
public 195

monitoring GemStone execution 138
move 205
moving data into GemStone 203
multiprocess applications 147

N
name connector 93
name of superclass, specifying 191
namedValueAt: 73
namedValueAt:put: 71
namedValues 72
namedValues:indexableValues: 71
namedValuesBuffer 71
network

node 36, 174
of objects, connecting 88

notification, Gem-to-Gem 117

O
object

business 26
domain 26
repository, overview 20

optimization
and multiprocess applications 147
and traversal buffer size 145
by explicit stubbing 145
by using forwarders 146
choosing execution platform 46
choosing the execution platform 142
controlling replication level and 59
controlling the locus of execution 142
controlling the replication level 144
cost of data management 142
explicit stubbing and 63
minimizing replication cost 56–70
preventing transient stubs 144
statistics gathering for 138

using forwarders 50, 146
using GemStone Smalltalk for searching

and sorting large objects 143
using GemStone user actions and client

Smalltalk primitives 147
order in which connectors are connected 94

P
packaging runtime applications 237
parameter in message to forwarder 52
password

GemStone 35, 37, 174
host 36, 174

performance 27
choosing execution platform 46
choosing the execution platform and 142
client Smalltalk primitives and 147
controlling fault level and 144
controlling replication level and 59
controlling the locus of execution and 142
cost of data management and 142
database searching and sorting 143
determining bottlenecks 138
enhancing replication 56
explicit stubbing and 63, 145
fault levels and 143
forwarders and 146
GemStone Smalltalk user actions and 147
minimizing faulting of dirty GemStone

objects 144
minimizing replication cost 56–70
multiprocess applications and 147
preventing transient stubs 144
statistics gathering for tuning 138
traversal buffer size and 145
using forwarders 50
using GemStone Smalltalk for searching

and sorting large objects 143
pollForAsynchronousEvents configuration

parameter 154, 164
pollForRpcResponse configuration parameter

154, 165

GBS User’s Guide

June 2011 VMware, Inc. 251

pool dictionaries 192
pool variables 192
postconnect action 91

changing 203
setting programmatically 97
updateGS 203

postFault 72
precedence

of multiple replication specifications 69
of replication mechanisms 80

preFault 72
prerequisites 4
preventing transient stubs 144
primitives 147

arguments to 63
breakpoints and 212

private
instance variables 193

Private Classes and Methods 28
Privileges Dialog 236
profiling GemStone Smalltalk execution 138
ProfMonitor class 138
programming interface 22
protecting methods 123
public methods 195

R
read lock messages

readLock: (GbsSession) 113
readLock:ifDenied:ifChanged:

(GbsSession) 113
readLockAll: (GbsSession) 114
readLockAll:ifIncomplete:

(GbsSession) 114
read set 112
read/write transaction conflicts 112
reduced-conflict classes 116
reducing the number of objects in Smalltalk

145
registering a session 37
releasing locks 115
remote session 33

remove 205
removeDependent: 41
removeFromCommitOrAbortReleaseLoc

ksSet: (System) 115
removeFromCommitReleaseLocksSet:

(System) 115
removeInvalidConnectors configuration

parameter 154, 165
removeLock: (GbsSession) 115
removeLockAll: (GbsSession) 115
removeLocksForSession:

(GbsSession) 115
removeParameters (GbsSession) 37
removing

duplicate connectors 91
locks 114
unresolved connectors 165, 201

replicate 53–80
as argument to primitive method 63
converting 82
customized faulting of 64
defined 47
fault control and 143
flushing dirty 55, 142
update direction 53
when to use 53

replicateExceptions configuration parameter
154, 165

replicating
blocks, avoiding 78
client Smalltalk blocks 75, 156
limits of 74–80
minimizing costs of 56
precedence of various mechanisms 80
suppressing instance variables 57

replication specification 64–70
class versions and 65
declaring forwarder in 51
inheritance and 64
managing dependencies between objects

with 68
precedence 69
root object for 69
specifying fault levels in 63

GBS User’s Guide

252 VMware, Inc. June 2011

switching among several 66
replicationSpecSet: 66
repository

modifying 54, 112
overview 20

return value from forwarder 52
root objects 88–90

in replication specifications 69
RPC Gems

using blocking protocol for 155
RPC session 33
rpcSocketWaitTimeoutMs configuration

parameter 154, 166
RT_ERR_SIGNAL_ABORT signal 109
runtime applications 237

S
saving

class and method definitions 195
login information 175

schema
coordinating 134
matching, and instance variable mapping

49
modification 134

class versions and 134
scope of connectors 90
security 26, 122

protecting methods 123
security policies

changing authorization 225
checking authorization 225
group assignment 221
Security Policy Tool 218

Security Policy Id 220
Security Policy Tool 218, 225

changing authorization 225
displaying security policies 219
examining authorization 225
File menu 222
Group menu 223
Help menu 224

Member menu 223
Report menu 224
Security Policy menu 222

Segment 124, 218
selection blocks in GemStone 240
serverMapLeafCapacity configuration

parameter 154, 166
session 31–44

control 34
classes for 34

creating linked 36
creating remote 36
current 32, 38, 177
dependents 40–44

adding 40
committing a transaction 40
removing 41

linked 33
logging in

interactively 176
programmatically 38

logging out
interactively 177
programmatically 40

managing connectors for 99
multiple 33, 38
persistence of notify set in 116
registering with GBSM 37
remote 33
RPC 33
seeing others’ changes 62
signaling between 117
supplying parameters with Session

Parameters Editor 173
tools attached to current 39

Session Browser 172–177
opening 172
starting 172

session main statistics 139
Session Manager main statistics 139
session parameters 35–37

adding connectors and 101
adding new 173

GBS User’s Guide

June 2011 VMware, Inc. 253

See also GbsSessionParameters
Session Parameters Editor 173
session-specific configuration parameters 152
setting

Client Library 32
configuration parameters 151
locks 113

Settings Browser, VisualWorks 7.x 178
shared libraries required for runtime

applications 238
shared variables 192
sharing objects

determining which 25, 46
modifications and 112

signaledAbortAction: (GbsSession) 110
signaling one Gem from another 117
Smalltalk

GemStone, features of 23
spawn hierarchy 205
special

methods, and breakpoints 212
special GBSM classes 237
SpecialGemStoneObjects dictionary 74
stack

examining in GemStone 214
getting trace without debugger 215

statistics gathering 138
step points 210
stepping 206
STN_GEM_ABORT_TIMEOUT GemStone

configuration parameter 110
Stone

name of 35, 174
repository monitor 20, 21

storing data in GemStone 203
stub 59–64

as argument to primitive method 63
controlling the stub level 144
converting 82
debugging 167
defined 47
defunct 63
explicit control of 145

explicit creation 63
explicit stubbing 145
fault control and 143
faulting upon message receipt 60
preventing transient 144
replicating 63
sending messages to 59
setting instance variables to nil 161

stubDebugging configuration parameter 154,
167

stubYourself 145, 63
subclassing 191
superclass, specifying name of 191
symbol dictionaries 227
Symbol List Browser 226–229

copying and pasting objects 227
Dictionaries pane 227
File menu 228

Symbol List pane in GemStone Browser 185
synchronizing

client and GemStone objects 54–56
shared objects 202

SystemRepository, security policies in 219

T
TimeZone 240
tools

attached to current session 39
overview 24

transaction 103–118
aborting 107
committing 22
committing, and session dependents 40
managing 40, 104, 106
modes 110–112

automatic 110, 111
automatic, defined 110
manual 111
manual, defined 111
switching between 112
transactionless 104

transactionless transaction mode 104

GBS User’s Guide

254 VMware, Inc. June 2011

transient object stubs, preventing 144
transitive closure 90
transparency

and access to GemStone 22
traversalBufferSize (method) 145
traversalBufferSize configuration parameter

145, 154, 167

U
updateRequest: 41
updating

class definitions 48
replicate 53

User Account Management Tools
GemStone User Dialog 233, 234
GemStone User List 230
Privileges Dialog 236

user actions 147
and primitives 147

UserClasses symbol dictionary 49
user-defined errors 128
username

GemStone 35, 174
host 36, 174

UserProfile
purpose 122

V
variables

pool 192
shared 192

verbose configuration parameter 154, 168
verifying connectors 201
versions of classes 134

connecting and 50
mapping and 50
replication specifications and 65

VisualWorks 7.x Settings Browser 178
VSD (visual stat display) 141

W
write lock messages

writeLock: (GbsSession) 113
writeLock:ifDenied:ifChanged:

(GbsSession) 113
writeLockAll: (GbsSession) 114
writeLockAll:ifIncomplete:

(GbsSession) 114
write set 112
write/write transaction conflicts 112

	1 Basic Concepts
	1.1 The GemStone Object Server
	Figure 1.1 The GemStone Object Server

	1.2 GemBuilder for Smalltalk
	The Programming Interface
	Transparent access to GemStone

	GemStone’s Smalltalk Language
	The GemBuilder Tools

	1.3 Designing a GemStone Application: an Overview
	Which objects should be stored and shared?
	Which objects should be secured?
	Which objects should be connected?
	How should transactions be handled?
	How can performance be improved?

	1.4 Delivery and Deployment
	Public and Private Classes and Methods

	2 Communicating with the GemStone Object Server
	2.1 Client Libraries
	2.2 GemStone Sessions
	RPC and Linked Sessions
	Figure 2.1 RPC and Linked Gem Processes

	2.3 Session Control in GemBuilder
	Session Parameters
	Defining Session Parameters Programmatically

	2.4 Logging In to and Logging Out of GemStone
	Logging In to GemStone
	The Current Session
	Example 2.1

	Logging Out of GemStone

	2.5 Session Dependents
	Example 2.2
	Example 2.3
	Example 2.4
	Figure 2.2 Committing with Approval From a Session Dependent

	3 Sharing Objects
	3.1 Which Objects to Share?
	3.2 Class Mapping
	Automatic Class Generation and Mapping
	Schema Mapping
	Behavior Mapping
	Mapping and Class Versions

	3.3 Forwarders
	Sending Messages
	Arguments
	Results

	Defunct Forwarders
	Example 3.1

	3.4 Replicates
	Synchronizing State
	Faulting
	Flushing
	Marking Modified Objects Dirty Automatically
	Marking Modified Objects Dirty Manually

	Minimizing Replication Cost
	Instance Variable Mapping
	Example 3.2
	Example 3.3
	Example 3.4

	Stubbing
	Figure 3.1 Two-level Fault of an Object
	Figure 3.2 A Stub Responds to a Message

	Replication Specifications
	Example 3.5
	Example 3.6

	Forwarding Messages to Server Objects Through Replicates and Stubs
	Customized Flushing and Faulting
	Modifying Instance Variables During Faulting
	Modifying Instance Variables During Flushing
	Example 3.7
	Example 3.8

	Mapping Classes With Different Formats

	Limits on Replication
	Replicating Client Smalltalk BlockClosures
	Block Callbacks
	Replicating Collections with Instance Variables

	3.5 Precedence of Replication Controls
	3.6 Evaluating Smalltalk Code on the GemStone server
	Example 3.9
	Example 3.10

	3.7 Converting Between Forms
	Table 3.1 Delegate Conversion Protocol
	Table 3.2 Forwarder (to the Server) Conversion Protocol
	Table 3.3 Replicate Conversion Protocol
	Table 3.4 Stub Conversion Protocol
	Table 3.5 Conversion Protocol for Unshared Client Objects

	4 Connectors
	4.1 Connecting Root Objects
	Figure 4.1 Connecting Application Roots
	Figure 4.2 Root Objects
	Scope
	Verifying Connections
	Initializing
	Updating Class Definitions

	4.2 Connecting and Disconnecting
	4.3 Kinds of Connectors
	Connection Order
	Lookup
	Connecting by Name
	Figure 4.3 Connecting a Name Connector

	Connecting by Identity: Fast Connectors

	4.4 Making and Managing Connectors
	Making Connectors Programmatically
	Figure 4.4 Connector Class Hierarchy
	Creating Connectors
	Setting the Postconnect Action
	Adding Connectors to a Connector List
	Example 4.1

	Session Control
	Example 4.2
	Example 4.3
	Example 4.4
	Example 4.5
	Example 4.6

	5 Managing Transactions
	5.1 Transaction Management: an Overview
	5.2 Operating Inside a Transaction
	Figure 5.1 GemBuilder Application Workspace
	Committing a Transaction
	Aborting a Transaction
	Avoiding or Handling Commit Failures

	5.3 Operating Outside a Transaction
	Table 5.1 GbsSession Methods for Running Outside of a Transaction
	Being Signaled to Abort

	5.4 Transaction Modes
	Automatic Transaction Mode
	Manual Transaction Mode
	Choosing Which Mode to Use
	Switching Between Modes

	5.5 Managing Concurrent Transactions
	Setting Locks
	Example 5.1

	Releasing Locks Upon Aborting or Committing

	5.6 Reduced-Conflict Classes
	5.7 Changed Object Notification
	Example 5.2

	5.8 Gem-to-Gem Notification
	Example 5.3

	5.9 Asynchronous Event Error Handling

	6 Security and Object Access
	6.1 GemStone Security
	Login Authorization
	The UserProfile

	Controlling Visibility of Objects with SymbolLists
	System Privileges
	Protecting Methods
	Object-level Security
	Object Security Policies

	7 Exception Handling
	7.1 GemStone Errors and Exception Classes
	7.2 Handling Exceptions
	Example 7.1
	Example 7.2
	User-Defined Errors
	Example 7.3
	Example 7.4

	7.3 Interrupting GemStone Execution

	8 Schema Modification and Coordination
	8.1 Schema Modification
	8.2 Schema Coordination

	9 Performance Tuning
	9.1 Profiling
	Profiling Client Smalltalk Execution
	Main Statistics
	Table 9.1 Session Manager Main Statistics
	Table 9.2 Session Main Statistics

	Cache Inventory Statistics
	VSD

	9.2 Selecting the Locus of Control
	Locus of Execution
	Relative Platform Speeds
	Cost of Data Management
	GemStone Optimization

	9.3 Replication Tuning
	Controlling the Fault Level
	Preventing Transient Stubs
	Setting the Traversal Buffer Size

	9.4 Optimizing Space Management
	Explicit Stubbing
	Figure 9.1 Employee Set Faulted into the Client Smalltalk

	Using Forwarders

	9.5 Using Primitives
	9.6 Multiprocess Applications
	Blocking and Nonblocking Protocol
	One Process per Session
	Multiple Processes per Session
	Coordinating Transaction Boundaries
	Coordinating Flushing
	Coordinating Faulting

	10 GemBuilder Configuration Parameters
	10.1 Setting Configuration Parameters
	10.2 GemBuilder Configuration Parameters
	Table 10.1 Configuration Parameters for GemBuilder
	alwaysUseGemCursor
	assertionChecks
	autoMarkDirty
	blockingProtocolRpc
	blockReplicationEnabled
	blockReplicationPolicy
	bulkLoad
	clientMapCapacity
	clientMapFinalizerPriority
	confirm
	connectorNilling
	connectVerification
	defaultFaultPolicy
	deprecationWarnings
	eventPollingFrequency
	eventPriority
	faultLevelLnk
	faultLevelRpc
	forwarderDebugging
	freeSlotsOnStubbing
	fullCompression
	gcedObjBufferSize
	generateClassConnectors
	generateClientClasses
	generateServerClasses
	InitialDirtyPoolSize
	libraryName
	pollForAsynchronousEvents
	pollForRpcResponse
	removeInvalidConnectors
	replicateExceptions
	rpcSocketWaitTimeoutMs
	serverMapLeafCapacity
	stubDebugging
	traversalBufferSize
	verbose

	11 The GemStone Tools: an Overview
	11.1 GemStone Menu
	Table 11.1 The GemStone Menu

	11.2 The GemStone Session Browser
	Starting the Session Browser
	Figure 11.1 The GemStone Session Browser

	Opening the Session Parameters Editor
	Figure 11.2 The Session Parameters Editor

	Managing Session Parameters
	Table 11.2 Functions in the Session Browser

	11.3 Logging In to and Logging Out of GemStone
	Logging In to GemStone
	Figure 11.3 The GemStone Session Browser

	Setting the Current Session
	Logging Out of GemStone

	11.4 The Settings Browser
	Opening the Settings Browser
	The Settings Browser
	Figure 11.4 The Settings Browser Summary

	Parameter Categorization
	Table 11.3 Settings Browser Categorization
	Table 11.4 Buttons in the Settings Browser

	11.5 The System Workspace
	Figure 11.5 GemStone System Workspace

	12 Using the GemStone Programming Tools
	12.1 Browsing Code
	Figure 12.1 GemStone Classes Browser
	Symbol List Pane
	Table 12.1 Symbol List Menu in GemStone Browser

	Class Pane
	Table 12.2 Class Menu in GemStone Browser

	Pop-up Text Pane Menu
	Table 12.3 Pop-up Menu in GemStone Browser’s Text Pane
	Table 12.4 Additional GemStone Menu Items

	12.2 Coding
	About GemStone Smalltalk Classes
	Defining a New Class
	Example 12.1
	Subclass Creation Methods
	Private Instance Variables

	Modifying an Existing Class
	Defining Methods
	Public and Private Methods
	Reserved and Optimized Selectors

	Saving Class and Method Definitions in Files
	Example 12.2
	Handling Errors While Filing In

	12.3 The Connector Browser
	Figure 12.2 The Connector Browser
	The Group Pane
	Table 12.5 Group List Menu in the Connector Browser

	The Connector Pane
	Table 12.6 Connectors Menu in the Connector Browser

	The Control Panel
	Table 12.7 Options in the Control Panel

	Postconnect Action
	Table 12.8 Postconnect Action Options in the Connector Browser

	12.4 The Class Version Browser
	Figure 12.3 The Class Version Browser
	Menus in the Class Version Browser
	Table 12.9 Class Menu in Class Version Browser

	12.5 Debugging Overview
	12.6 Inspectors
	Figure 12.4 GemStone inspector
	Figure 12.5 GemStone Inspector GS Delegate tab
	Figure 12.6 Inspector on a Replicate
	Figure 12.7 Evaluating “self” in the GS Delegate tab of the Inspector

	12.7 Breakpoints
	Example 12.3
	Breakpoints for Primitive Methods
	Breakpoints for Optimized Methods
	The Breakpoint Browser
	Figure 12.8 GemStone Breakpoint Browser with a Breakpoint

	12.8 Debugger
	Disabling the Debugger

	12.9 Stack Traces

	13 Using the GemStone Administration Tools
	13.1 The Security Policy Tool
	Figure 13.1 The Security Policy Tool
	Security Policy Definition Area
	Group Definition Area
	Security Policy Tool Menus
	The File Menu
	Table 13.1 File Menu in the Security Policy Tool

	Security Policy Menu
	Table 13.2 Security Policy Menu in the Security Policy Tool

	Group Menu
	Table 13.3 Group Menu in the Security Policy Tool

	Member Menu
	Table 13.4 Member Menu in the Security Policy Tool

	Reports Menu
	Table 13.5 Report Menu in the Security Policy Tool

	Help Menu

	Using the Security Policy Tool
	Checking Security Policy Authorization
	Changing Security Policy Authorization
	Controlling Group Access to a Security Policy

	13.2 The Symbol List Browser
	Figure 13.2 The Symbol List Browser
	The Clipboard
	Symbol List Browser Menus
	File Menu
	Table 13.6 File Menu in the Symbol List Browser

	Mode Menu
	Edit Menu
	Table 13.7 Edit Menu in the Symbol List Browser

	Object Menu
	Table 13.8 Object Menu in the Symbol List Browser

	Help Menu

	13.3 User Account Management Tools
	GemStone User List
	Figure 13.3 GemStone User List
	Table 13.9 GemStone User List: File Menu
	Table 13.10 GemStone User List

	GemStone User Dialog
	Figure 13.4 GemStone User Dialog
	Table 13.11 Buttons in the GemStone User Dialog
	Table 13.12 GemStone User Dialog: File Menu

	Privileges Dialog
	Figure 13.5 Privileges Dialog in GemStone User Window

	A Packaging Runtime Applications
	A.1 Prerequisites
	Names
	Replicating Blocks
	Defunct Stubs and Forwarders
	Shared Libraries

	A.2 Packaging

	B Client Smalltalk and GemStone Smalltalk
	B.1 Language Differences
	Selection Blocks
	Array Constructors

	B.2 TimeZone handling

	Index

